Overview of quark fragmentation functions

Rafał Gazda

Soltan Institute for Nuclear Studies

May 6, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Phenomenology
- QCD framework

- 1 Introduction
 - Phenomenology
 - QCD framework
- Processes to study FF
 - Anihilation $e^+e^- \rightarrow h + X$

- SIDIS: $IN \rightarrow I'h + X$
- $pp \rightarrow h + X$
- Experimental data

- Phenomenology
- QCD framework
- Processes to study FF
 - Anihilation $e^+e^- \rightarrow h + X$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

- SIDIS: $IN \rightarrow I'h + X$
- $pp \rightarrow h + X$
- Experimental data
- 3 Analysis technique
 - Fitting groups
 - Parametrizations
 - Assumptions

- Introduction
 - Phenomenology
 - QCD framework
- 2 Processes to study FF
 - Anihilation $e^+e^- \rightarrow h + X$

(日) (문) (문) (문) (문)

- SIDIS: $IN \rightarrow I'h + X$
- $pp \rightarrow h + X$
- Experimental data
- 3 Analysis technique
 - Fitting groups
 - Parametrizations
 - Assumptions

Phenomenology QCD framework

Fenomenology

Initial and final state (hadrons) are colorless! $q \rightarrow h + X$:

 $D_j^h(z, Q^2)$ – probability density that parton j fragments into hadron h where

 Q^2 – energy scale of the particular process

z – fraction of energy of intermidiate boson carried by final hadron

< ロ > < 同 > < 三 > < 三 >

Phenomenology QCD framework

Evolution of FF in QCD framework

DGLAP

$$\frac{d}{dlnQ^2}\vec{D}^h(z,Q^2)=[\vec{P}^{(T)}\otimes\vec{D}^h](z,Q^2)$$

where

$$ec{D}^{h} = \left(egin{array}{c} D_{\Sigma}^{h} \ D_{g}^{h} \end{array}
ight), \qquad D_{\Sigma}^{h} = \sum (D_{q}^{h} + D_{\overline{q}}^{h}) \ ec{P} = \left(egin{array}{c} P_{qq} & 2n_{f}P_{gq} \ rac{P_{qg}}{2n_{f}} & P_{gg} \end{array}
ight)$$

split functions P_{ij} have perturbative expansion of the form: $P_{ij}(z, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} P_{ij}^{(0)}(z) + \left(\frac{\alpha_s(Q^2)}{2\pi}\right)^2 P_{ij}^{(1)}(z) + \dots$ \otimes denoting convolution

< ロ > < 同 > < 三 > < 三 >

Phenomenology QCD framework

Limitaton

Range of applicability for fragmentation function as defined previously is limited to medium-to-large values of z.

- In NLO $P_{gq}(z) \approx ln^2 z/z$. $z \ll 1 \Rightarrow D_i^h < 0$ through Q^2 evolution and $d\sigma < 0$.
- Massless approximation: finite mass correction $\propto M_h/(sz)^2 \gg 0$ at low z.

Energy conservation

$$\sum_{h}\int_{0}^{1}dzzD_{i}^{h}(z,Q^{2})=1$$

but since small z are problematic only truncated moments are meaningful $\int_{z_{min}}^{1} dzz D_i^h(z, Q^2)$ so the energy conservation cannot be used as a constraint.

Anihilation $e^+e^- \rightarrow h + X$ SIDIS: $IN \rightarrow I'h + X$ $pp \rightarrow h + X$ Experimental data

$$e^+e^-
ightarrow (\gamma, Z)
ightarrow h + X$$

Cross-section in NLO accuracy

$$\frac{d\sigma^h}{dz^h} = \sigma_{tot} \frac{\sigma_0}{\sum_q e_q^2} \left[2(F_1^h(z, Q^2)) + F_L^h(z, Q^2) \right]$$

where

$$\sigma_{tot} = \sum_{q} e_q^2 \sigma_0 \left[1 + \frac{\alpha_s(Q^2)}{\pi} \right], \qquad \sigma_0 = \frac{4\pi \alpha^2(Q^2)}{s},$$
$$z = \frac{2E_h}{\sqrt{s}}, \qquad \qquad \sqrt{s} = Q,$$

 $\label{eq:Q-momentum} \begin{aligned} Q &- \text{momentum of the intermediate boson} \left(\gamma, Z\right) \\ E_h &- \text{energy of observed hadron} \end{aligned}$

イロト イボト イヨト イヨト

э

Anihilation $e^+e^- \rightarrow h + X$ SIDIS: $IN \rightarrow I'h + X$ $pp \rightarrow h + X$ Experimental data

$$e^+e^- \rightarrow (\gamma, Z) \rightarrow h + X$$

structure functions

$$\begin{split} F_{1}^{h}(z,Q^{2}) &= \frac{1}{2} \sum_{q} e_{q}^{2} \Big\{ \left[D_{q}^{h}(z,Q^{2}) + D_{\bar{q}}^{h}(z,Q^{2}) \right] + \\ &+ \frac{\alpha_{s}(Q^{2})}{2\pi} \left[C_{q}^{1} \otimes \left(D_{q}^{h} + D_{\bar{q}}^{h} \right) + C_{g}^{1} \otimes D_{g}^{h} \right] (z,Q^{2}) \Big\} \\ F_{L}^{h}(z,Q^{2}) &= \frac{1}{2} \frac{\alpha_{s}(Q^{2})}{2\pi} \sum_{q} e_{q}^{2} \left[C_{q}^{L} \otimes \left(D_{q}^{h} + D_{\bar{q}}^{h} \right) + C_{g}^{L} \otimes D_{g}^{h} \right] (z,Q^{2}) \end{split}$$

where

$$D_{q,g}$$
 – quark (gluon) fragmentation functions $C_{q,g}^{1,L}$ – coefficient functions calculated in NLO

・ロト ・回ト ・ヨト ・ヨト

Ξ.

 Introduction
 Anihilation $e^+e^- \rightarrow h + X$

 Processes to study FF
 SIDIS: $N \rightarrow l'h + X$

 Analysis technique
 $pp \rightarrow h + X$

 Results
 Experimental data

advantages

- General: no cross section dependence on parton density function
- Practical: very high statistics recorded in experiments (CERN: LEP; SLAC: TPC, SLD)

disadvantages

- no q-q̄ separation
- at scale of M_Z electroweak couplings roughly the same \Rightarrow only flavor siglet combination can be determined
- gluon FF available only at NLO
- lack of accurate data at low scales and at large hadron energy fraction

< ロ > < 同 > < 三 > < 三 >

Anihilation $e^+e^- \rightarrow h + X$ SIDIS: $IN \rightarrow I'h + X$ $pp \rightarrow h + X$ Experimental data

$IN \rightarrow I'h + X$

Cross-section

$$\frac{d\sigma^{h}}{dxdQ^{2}dz^{h}} = \frac{2\pi\alpha^{2}}{Q^{2}} \left[\frac{(1+(1-y)^{2})}{y} 2F_{1}^{h}(x,Q^{2},z^{h}) + \frac{2(1-y)}{y}F_{L}^{h}(x,Q^{2},z^{h}) \right]$$

where

$$x = \frac{Q^2}{2p_N \cdot q}, \qquad Q^2 = -q^2 = -(k - k')^2, \qquad Q^2 = sxy$$
$$y = \frac{p_N \cdot q}{p_N \cdot k}, \qquad z_h = \frac{E_h}{E_l - E_{l'}}$$

 k,k^{\prime},p_{N} – four-momentum of incoming lepton, outcoming lepton and nucleon

э

Anihilation $e^+e^- \rightarrow h + X$ SIDIS: $IN \rightarrow I'h + X$ $pp \rightarrow h + X$ Experimental data

$IN \rightarrow I'h + X$

Assuming factorization:

Structure functions

$$\begin{aligned} F_1^h(z, x, Q^2) &= \frac{1}{2} \sum_{q,q'} e_q^2 \Big\{ q(x, Q^2) D_q^h(z, Q^2) + \\ &+ \frac{\alpha_s(Q^2)}{2\pi} \left[q \otimes C_{qq}^1 \otimes D_q^h + q \otimes C_{gq}^1 \otimes D_g^h + q \otimes C_{qg}^1 \otimes D_q^h \right] (x, Q^2, z) \Big\} \\ F_L^h(z, x, Q^2) &= \frac{1}{2} \frac{\alpha_s(Q^2)}{2\pi} \sum_{q,q'} e_q^2 \Big[q \otimes C_{qq}^1 \otimes D_q^h + q \otimes C_{gq}^1 \otimes D_g^h + q \otimes C_{qg}^1 \otimes D_g^h \Big] (x, Q^2, z) \end{aligned}$$

where

 $q(x, Q^2)$ – probability that the quarks of paricular flavor carry a fraction x of proton momentum (PDF)

(日)

Anihilation $e^+e^- \rightarrow h + X$ SIDIS: $IN \rightarrow I'h + X$ $pp \rightarrow h + X$ Experimental data

$IN \rightarrow I'h + X$

advantages

- practical: experiments probe fragmentation in energy regime complementary to e^+e^-
- general: sensitivity to FF of individual quark and anti-quark flavors

disadvantages

- one has to assume x vs. z factorization
- non-trivial dependence of cross sections on PDF of the nucleon
- different parametrizations of PDF brings additional uncertainties

< ロ > < 同 > < 三 > < 三 >

Anihilation $e^+e^- \rightarrow h + \lambda$ SIDIS: $IN \rightarrow I'h + X$ $pp \rightarrow h + X$ Experimental data

$$pp \rightarrow h + X$$

Cross section

$$E_{h}\frac{d^{2}\sigma}{d^{3}p_{h}} = \sum_{a,b,c} \left(q_{a} \otimes q_{b} \otimes d\sigma_{ab \to c} \otimes D_{c}^{h} \right) (s, p_{T}, z)$$

- the sum is over all contributing partonic channels $a + b \rightarrow c + X$ with $d\sigma_{ab \rightarrow c}$ the assoctiated partonic cross section
- $d\sigma_{ab\rightarrow c}$ can be expanded as a power series in the strong coupling of α_s (NLO corrections are available)

< ロ > < 同 > < 回 > < 回 > .

Anihilation $e^+e^- \rightarrow h + A$ SIDIS: $IN \rightarrow I'h + X$ $pp \rightarrow h + X$ Experimental data

$$op o h + X$$

advantages

- quarks and gluons come at the same order
- sensitive to gluon FF through dominance of $gg \rightarrow gX$ processes at low p_T (gluons are on average softer than quarks)
- sensitive to fragmentation at high z

disadvantages

- large uncertainties (2 PDFs and 3 convolutions)
- NLO corrections are very important because of large contributions from elementary subprocesses involving gluons

イロト イボト イヨト イヨト

 Introduction
 Anihilation $e^+e^- \rightarrow h + \lambda$

 Processes to study FF
 SIDIS: $IN \rightarrow I'h + X$

 Analysis technique
 $pp \rightarrow h + X$

 Results
 Experimental data

Data sets: e^+e^-

Fully inclusive charged pion and kaon production in e^+e^- :

Pion data

- Access to flavor singlet at $Q = M_Z$
- small z region cut at z_{min} = 0.05(0.1) for all pion (kaon) data sets.

 Introduction
 Anihilation $e^+e^- \rightarrow h$

 Processes to study FF
 SIDIS: $IN \rightarrow I'h + X$

 Analysis technique
 $pp \rightarrow h + X$

 Results
 Experimental data

Data sets: e^+e^-

- "flavor tagged" data from ALEPH, DELPHI and TPC: Light quarks separated from heavy quarks Not measured directly nor clearly calculable in QCD (MC dependence)
- fully flavor separated data from OPAL: probabilities $\eta_i^h(z_p)$ for a quark flavor $i = q + \bar{q}$ to produce a jet containing the hadron h with z larger than z_p . At LO $\eta_i^h(z_p) = \int_{z_p}^1 dzz D_i^h(z)$; problems for pQCD at NLO.
- Other e^+e^- data:

-three jet events: $q\bar{q}g$ at LO - gluon FF, but not clear at NLO -unidentified hadrons: dominant by π , K

< ロ > < 同 > < 三 > < 三 >

IntroductionAnihilation e^+e^- Processes to study FFSIDIS: $IN \rightarrow I'h + X$ Analysis technique $pp \rightarrow h + X$ ResultsExperimental data

Data sets: $IN \rightarrow I'h + X$, $pp \rightarrow h + X$

- SIDIS (HERMES)
 - charged pions and kaon multiplicities flavor separation
 - measurement at scales $\mu pprox {\cal Q} = 2 {\it GeV} \ll {\it M_Z}$
- hadronic collision (RHIC)
 - neutral pions at central (| $\eta|<$ 0.35) and forward ($\langle\eta\rangle\approx$ 3.5) rapidities (PHENIX and STAR)
 - charged pions and kaons at forward rapidities ($\langle\eta\rangle\approx$ 3, BRAHMS)
 - $K_{\mathcal{S}}^{0}$ production at $|\eta| <$ 0.5 (STAR)

< ロ > < 同 > < 回 > < 回 > .

Fitting groups Parametrizations Assumptions

Fits to inclusive e^+e^-

- [KKP] Kniehl, Kramer, Potter (NPB 582, 2000)
- [KRE] Kretzer (PRD 62, 2000)
- [AKK] Albino, Kniehl, Kramer (NPB 725, 2005)
- [HKNS] Hirai, Kumano, Nagai, Sudoh (PRD 75, 2007)

< ロ > < 同 > < 回 > < 回 > .

Fitting groups Parametrizations Assumptions

Fits to inclusive e^+e^- + other processes

- [KLC] Kretzer, Leader, Christova (EPJ C 22, 2001)
 LO analysis of charged pion in SIDIS (fair agreement with previous Kretzer set)
- [DSS] *De Florian, Sassot, Stratmann* (PRD 75, 2007) - LO and NLO anlysis. SIDIS and *pp* data included

< ロ > < 同 > < 三 > < 三 >

Fitting groups Parametrizations Assumptions

Parametrizations

History...

$$D_{i}^{h}(z, \mu_{0}) = N_{i} z^{\alpha_{i}} (1-z)^{\beta_{i}}$$

$$D_{i}^{h}(z, \mu_{0}) = N_{i} z^{\alpha_{i}} (1-z)^{\beta_{i}} \left[1 + \gamma_{i} (1-z)^{\delta_{i}} \right]$$

$$D_{i}^{h}(z, \mu_{0}) = \frac{N_{i} z^{\alpha_{i}} (1-z)^{\beta_{i}} \left[1 + \gamma_{i} (1-z)^{\delta_{i}} \right]}{B(2 + \alpha_{i}, \beta_{i} + 1) + \gamma_{i} B(2 + \alpha_{i}, \beta_{i} + \delta_{i} + 1)}$$

where

- B() is a Euler beta function: $B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$
- The normalization N, and the parameters α , β , γ , δ in general depend on the energy scale μ_0 .

イロト イボト イヨト イヨト

Fitting groups Parametrizations Assumptions

Pions

Charged hadron fragmentation function

$$D_i^{h^+} = D_i^{\pi^+} + D_i^{K^+} + D_i^p + D_i^{res^+}$$

Symmetry assumption for π^+ FF:

•
$$D_{\bar{u}}^{\pi^+} = D_d^{\pi^+}$$
 (izospin symmetry in sea)
• $D_{d+\bar{d}}^{\pi^+} = N D_{u+\bar{u}}^{\pi^+}$ (DSS only, $N = N' = 1$ for other groups)

•
$$D^{\pi^+}_{s}= {\sf N}' D^{\pi^+}_{ar u}$$
 (DSS only, ${\sf N}={\sf N}'=1$ for other groups)

•
$$D_c^{\pi^+} = D_{\overline{c}}^{\pi^+}$$
 (only e^+e^- contribute)

•
$$D_b^{\pi^+} = D_{\overline{b}}^{\pi^+}$$
 (only e^+e^- contribute)

• $\gamma = 0$ for heavy quarks

イロト イポト イヨト イヨト

э

Fitting groups Parametrizations Assumptions

Kaons

Symmetry assumption for K^+ FF:

•
$$D_{\bar{u}}^{K^+} = D_d^{K^+} = D_{\bar{d}}^{K^+} = D_s^{K^+}$$

•
$$D_c^{K^+} = D_{\bar{c}}^{K^+}$$
 (only e^+e^- contribute)

•
$$D_b^{K^+} = D_{\overline{b}}^{K^+}$$
 (only e^+e^- contribute)

•
$$\gamma = 0$$
 for gluons

•
$$\gamma = 0$$
 for heavy quarks

•
$$D_u^{K^+} \neq D_{\overline{s}}^{K^+}$$
 (favored fragmentations are not equal in DSS)

æ

Fitting groups Parametrizations Assumptions

Protons

Symmetry assumption for proton FF:

- $D_u^p = ND_d^p$ (izospin symmetry for favored fragmentation)
- $D^{p}_{\bar{u}} = ND^{p}_{\bar{d}}$ (izospin symmetry for unfavored fragmentation)

•
$$2D^p_{\overline{u}} = (1-z)^{\beta}D^p_{u+\overline{u}}$$
 with $\beta > 0$

• $2D^p_{\overline{d}} = (1-z)^{\beta}D^p_{d+\overline{d}}$ with $\beta > 0$

•
$$D_s^p = D_{\overline{s}}^p = N' D_{\overline{u}}^p$$

•
$$D_c^p = D_{\overline{c}}^p$$
 (only e^+e^- contribute)

•
$$D_b^{\rho} = D_{\overline{b}}^{\rho}$$
 (only e^+e^- contribute)

•
$$\gamma = 0$$
 for gluons

• $\gamma = 0$ for heavy quarks

くロ と く 同 と く ヨ と 一

э

Fitting groups Parametrizations Assumptions

Rest of hadrons

Symmetry assumption for the rest of hadrons:

- $D_u^{res^+} = D_d^{res^+} = D_s^{res^+}$ (SU(3) flavor symetry for quarks)
- $D_{\bar{u}}^{res^+} = D_{\bar{d}}^{res^+} = D_{\bar{s}}^{res^+}$ (SU(3) flavor symetry for antiquarks)
- $2D_{ar{u}}^{res^+} = (1-z)^{eta} D_{u+ar{u}}^{res^+}$ with eta > 0
- $2D_{\overline{d}}^{res^+} = (1-z)^{\beta} D_{d+\overline{d}}^{res^+}$ with $\beta > 0$
- $\gamma = 0$ for heavy quarks

イロト イポト イヨト イヨト

Fitting groups Parametrizations Assumptions

Other possible assumptions

•
$$D_i^{\pi^0} = \frac{\left(D_i^{\pi^+} + D_i^{\pi^-}\right)}{2}$$
, for all flavors
• $D_i^{K^0} = \frac{\left(D_i^{K^+} + D_i^{K^-}\right)}{2}$, with $u \to K^+$ and $d \to K^+$ FF interchanged

Charge conjugation assumed to obtain FF for h^-

 $D_q^h = D_{\overline{q}}^{\overline{h}}$

イロト イボト イヨト イヨト

э

Fitting groups Parametrizations Assumptions

Minimization technichque

Definition of $\chi 2$

$$\chi^2 = \sum_{i=1}^{N} \frac{(T_i - E_i)^2}{\delta E_i^2}$$

where

- E_i measured value of a given observable
- δE_i error associeted with this measurement ($E_i = \sqrt{E_{i_{stat}}^2 + E_{i_{syst}}^2}$)
- T_i theoretical estimate for a given set of parameters (α , β , γ , δ)

< ロ > < 同 > < 三 > < 三 >

Fitting groups Parametrizations Assumptions

Mellin transformation

The Mellin moments

$$D_i^h(n, Q^2) = \int_0^1 z^{n-1} D_i^h(z, Q^2) dz$$

Inverse Mellin transform

$$D_i^h(z, Q^2) = \frac{1}{2\pi i} \int_{C_n} z^{-n} D_i^h(n, Q^2) dn$$

- $\bullet\,$ very fast procedure 10^3 faster than direct minimization
- about 100 first moments calculated (DSS) to reproduce the cross section to an accuracy of better than 1% for all data points

Comparision of charge pion production $pp \to \pi^{\pm} X$ from BRAHMS with DSS and KRE parametrization

イロト イヨト イヨト

э

Comparision of charged pion multiplicities from HERMES with DSS and KRE parametrization

Rafał Gazda Overview of quark fragmentation functions

Pion FF

Comparision of pion FF determined by three different groups: DSS, HKNS and KRE

Pion FFs at NLO (thick) and LO (thin) at $Q^2 = 2 \text{ GeV}^2$.

э

-

• (1) • (1) • (1)

Kaon FF

Comparision of kaon FF determined by three different groups: DSS, HKNS and KRE

Kaon FFs at NLO (thick) and LO (thin) at $Q^2 = 2 \text{ GeV}^2$.

▲ 同 ▶ ▲ 三 ▶ ▲

Results - numbers LO

Fitting parameters for fragmentation function $D_i^{\pi^+}(z,\mu)$ at scale $\mu_0 = 1 \text{GeV}$ in LO

flavor i	N_i	$lpha_i$	eta_i	γ_i	δ_i
$u + \overline{u}$	0.367	-0.228	1.20	5.29	4.51
$d + \overline{d}$	0.404	-0.228	1.20	5.29	4.51
$\overline{u} = d$	0.117	0.123	2.19	7.80	6.80
$s + \overline{s}$	0.197	0.123	2.19	7.80	6.80
$c + \overline{c}$	0.256	-0.310	4.89	0.00	0.00
$b + \overline{b}$	0.469	-1.108	6.45	0.00	0.00
g	0.493	1.179	2.83	-1.00	6.76

< 同 ト < 三 ト < 三 ト

Results - numbers NLO

Fitting parameters for fragmentation function $D_i^{\pi^+}(z,\mu)$ at scale $\mu_0 = 1 GeV$ in NLO

flavor i	N_i	$lpha_i$	eta_i	γ_i	δ_i
$u + \overline{u}$	0.345	-0.015	1.20	11.06	4.23
$d + \overline{d}$	0.380	-0.015	1.20	11.06	4.23
$\overline{u} = d$	0.115	0.520	3.27	16.26	8.46
$s + \overline{s}$	0.190	0.520	3.27	16.26	8.46
$c + \overline{c}$	0.271	-0.905	3.23	0.00	0.00
$b + \overline{b}$	0.501	-1.305	5.67	0.00	0.00
g	0.279	0.899	1.57	20.00	4.91

э

Summary

- FFs determined by several groups.
- Most recent analysis by DSS is the most complete one:
 - all data sets from e^+e^- , pp and SIDIS taken into account
 - analyses done in NLO
 - weaker assumptions on relations between FFs
 - more flexible parametrization of FFs
- Improvements (in terms of agreement with data) found wrt earlier analyses (e.g. Kretzer)
- Uncertainties of FF are at level of 2-5% (non-strange quarks) and above 10% (for strange quarks)
- All analyses determined so far only spin-idenpendent FFs.

< ロ > < 同 > < 回 > < 回 >

æ

Error estimation

Theoretical errors estimated using Lagrange multipliers:

Lagrange technique

$$\Phi(\lambda_i, \{a_j\}) = \chi^2(\{a_j\}) + \sum_i \lambda_i O_i(\{a_j\})$$

where

 λ_i – Lagrange multipliers related to O_i O_i – observable depending on $\{a_j\}$ $\{a_j\}$ – set of parameters describing PDF for fixed value of λ_i

Estimated errors

$$\sigma(D_u, D_d) \approx 2 - 5\%$$

 $\sigma(D_s) \approx 10\%$

Profiles of χ^2 vs. $\eta_i^{h^+} = \int_{x_p}^1 dz z D_i^{h^+}(z)$ at $x_p = 0.2, Q = 5$ GeV (DSS).

イロト イヨト イヨト

3