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Abstract. The concept of a quantum group of unitary operators is relevant for the theory of
non-compact locally compact quantum groups. It plays similar role as the concept of a quantum

matrix group in the compact case. To show the usefulness of this notion we present an approach

to a construction of quantum ‘az + b’ group based on this idea. A brief survey of the present
status of quantum group theory is also included.

1. Introduction
sek0

The Conferences in Bia lowieża were unforgettable events due to a rare combination of a beautiful
wild surroundings with its unique old forest and a specific atmosphere. Hopefully for us they started
almost at the same time as quantum group theory was initiated and from the very beginning they
were open for reports concerning a development of a general quantum group theory as well as to
constructions of examples. Due to this we (especially the second author) participated in many
of them. The jubilee occasion seems to be a good one to give also a brief account of the present
status of the theory.

Roughly speaking ‘a quantum group’ is ‘a quantum space’ endowed with a group structure. One
may consider a pure algebraic version of the theory or a topological one.

The first one is known as a Hopf ∗-algebra approach. Let A be a unital ∗-algebra and ∆ : A →
A⊗alg A be unital ∗-homomorphism such that

coass (1.1) (∆⊗ id)∆ = (id⊗∆)∆

(coassociativity). In this approach A encodes a quantum space. Now ∆ endows a group structure
on it if (A, ∆) is a Hopf ∗-algebra.

We recall that (A, ∆) is a Hopf ∗-algebra if there exist linear mapping e : A → C and κ : A → A
such that

(e⊗ id)∆(a) = a = (id⊗ e)∆(a)

and
m(κ⊗ id)∆(a) = e(a)I = m(id⊗ κ)∆(a)

for any a ∈ A, where m : A ⊗alg A → A denotes the multiplication map, i.e. m(a ⊗ b) = ab
for any a, b ∈ A. It is known that e (called counit) and κ (called coinverse or antipode) are
uniquely determined. Moreover e is a unital ∗-algebra homomorphism, κ is antimultiplicative,
anticomultiplicative and

κ (κ(a∗)∗) = a

for any a ∈ A.
The topological approach uses C∗-algebra language. Any (locally compact) quantum space is

encoded by a C∗-algebra A. This is approved by Gelfand-Naimark theorem which says that any
commutative C∗-algebra A is isomorphic to the algebra C∞(Λ) of all complex continuous and
vanishing at infinity functions on some locally compact space Λ. The space Λ is unique up to a
homeomorphism, i.e. we have a correspondence

Λ ←→ A = C∞(Λ).

Moreover A is unital if and only if Λ is a compact space. No theory of such type is known for
noncommutative C∗-algebra A. Formally one can solve the problem (cf. e.g. [15]) by considering
the category dual to the category of C∗-algebras. Objects of this dual category are called ‘locally
compact quantum spaces’ and its morphisms - continuous mappings of (locally compact) quantum
spaces. The notion of quantum spaces introduces a new language to the C∗-algebra theory. In
particular, if A is unital (or non-unital) we say that we deal with compact case (or noncompact,
respectively).
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Now we pass to the description of the (locally compact) quantum groups. It turned out that
the compact case was relatively easy and starting from simple axioms a nice theory, parallel to
that for classical compact groups was build [22] on early stage of the theory.

Gcomp Definition 1.1. Let G = (A, ∆), where A is a separable C∗-algebra and ∆ : A −→ A ⊗ A is a
unital ∗-algebra homomorphism. We say that G is a compact quantum group if
(1) ∆ is coassociative (cf (1.1)) and
(2) The sets

{ (b⊗ I)∆(a) : a, b ∈ A }, { (I ⊗ b)∆(a) : a, b ∈ A }
are total subsets of A⊗A.

Using these axioms one shows that there are many finite-dimensional representations of G.
We recall that a unitary matrix V = (vkl) ∈ MN (A) = MN (C) ⊗ A is a N -dimensional unitary
representation of G if

∆(vkl) =
N∑

r=1

vkr ⊗ vrl

or using leg-numbering notation:

rep1 (1.2) (id⊗∆)V = V12V13.

Let A be the set of all linear combinations of matrix elements of all finite-dimensional unitary
representations of G. Then we have the following result [22, Theorem 2.2 and Theorem 2.3]

G1 Theorem 1.2. Let G= (A, ∆) be a compact quantum group. Then
1. A is dense ∗-subalgebra of A and ∆(A) ⊂ A⊗alg A.
2. (A, ∆|A) is a Hopf ∗-algebra.
3. There exists unique state (normalized positive linear functional) h on A such that

(h⊗ id)∆(a) = h(a)I = (id⊗ h)∆(a).

for any a ∈ A.
4. h is faithful on A, i.e. if a ∈ A and h(a∗a) = 0 then a = 0.

Statement 1 and Statement 2 give a connection between C∗-algebra approach and Hopf ∗-
algebra one in the compact case. Clearly the functional h in Statement 3 of the above theorem is
a Haar state (measure). It is still an open problem how to guarantee the faithfulness of h on the
whole algebra A. If this would be the case then a deeper insight into the structure of G could be
obtained [22, Theorem 2.]. Let us note that left-invariant state and right-invariant state coincide.
Therefore a compact quantum group is unimodular as in classical case. Nevertheless the Haar
state needs not be central one. Therefore if h is faithful there is modular structure coming from
the Tomita-Takesaki theory.

Definition 1.1 is not very useful if one is looking for examples of compact quantum groups. In
this aspect a concept of a compact matrix quantum group [17],[18] turns out to be very useful.

Let A be unital C∗-algebra and V = (vkl) ∈MN (A) = MN (C)⊗A. We say that V generates A
if the smallest ∗-algebra containing all matrix elements vkl, k, l = 1, 2, ...N is dense in A.

Gmatrix Definition 1.3. Let A be unital C∗-algebra and V = (vkl) ∈MN (A) = MN (C)⊗A. Assume that
1. A is generated by V.
2. There exists a unital ∗-algebra homomorphism ∆ : A −→ A⊗A such that

rep2 (1.3) (id⊗∆)V = V12V13.

3. V and V > are invertible in MN (A), where > denotes transposition.
Then (A, V ) is called a compact quantum matrix group.

One can easily show that ∆ is uniquely defined by (1.3) and when it exists it is automatically
coassociative. Moreover, G = (A, ∆) is a compact group [22, Remark 2] in the sense of Definition
1.1. If V is a unitary matrix than V is a unitary representation of G (cf.(1.2)).

The majority of known examples of compact quantum group is of this kind. In particular the
first nontrivial example, namely the quantum SUq(2) introduced in [16] is a compact matrix quan-
tum group.

Now we turn to the non-compact case. Then a C∗-algebra A is non-unital. In the case of a
non-compact locally compact space Λ, A = C∞(Λ) consists of continuous functions vanishing at
infinity on Λ. On the other hand one has to consider also other classes of continuous functions, such
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as bounded or all ones. The counterparts of above notions for general noncommutative C∗-algebra
are provided by concepts of a multiplier and an affiliated element. We recall these notions.

Let A be a (separable) C∗-algebra. To simplify further considerations we assume that A is a non-
degenerate C∗-algebra of operators acting on the Hilbert space H, A ⊂ B(H). The non-degeneracy
means that AH is dense in H. To abbreviate the notation we write A ∈ C∗(H).

The multiplier algebra of A is denoted by M(A) and

M(A) =
{
a ∈ B(H) : aA ⊂ A and Aa ⊂ A

}
.

Clearly M(A) is a unital C∗-subalgebra of B(H). Now we define elements affiliated with A. These
should be treated as “unbounded” multipliers. To be more precise, let T be a closed densely defined
linear operator acting on H. Its z-transform is by definition

zT (1.4) zT = T (I + T ∗T )−
1
2 .

Then zT is a bounded operator and ‖zT ‖ ≤ 1. One should notice that ‖T‖ < ∞ if and only if
‖zT ‖ < 1. The affiliation relation, denoted by η, is introduced as follows.

aff (1.5)
(

T η A
)
⇐⇒

(
zT ∈M(A) and

(I + T ∗T )−
1
2 A is dense in A

)
.

The set of all affiliated elements is denoted by Aη. Let us remark that since (I + T ∗T )−
1
2 is

selfadjoint, the density of (I + T ∗T )−
1
2 A is equivalent to the density of A(I + T ∗T )−

1
2 . Since

(zT )∗ = zT∗ , zT ∈M(A) if and only if both zT and zT∗ are right multipliers of A.
Clearly A ⊂M(A) ⊂ Aη. Moreover if T ∈ Aη and T is bounded then T ∈M(A). If A is unital

then A = M(A) = Aη. On the other hand for A = C∞(Λ) we have M(A) = Cbounded(Λ) and
Aη = C(Λ). For the algebra A = K(H) (of all compact operators on H) we get M(A) = B(H)
and Aη is the set of all closed densely defined operators acting on H. Therefore in general Aη is
not an algebra or even a vector space. Nevertheless the set Aη is closed under ∗-operation: T ∗ η A
and T ∗T η A for any T ∈ Aη.

The natural topology of M(A) is that of pointwise convergence on A. This is called a strict
topology of M(A). It is known that M(A) equipped with this topology is a topological ∗-algebra.
In turn the strict topology of M(A) induces (by z-transform) a natural topology of Aη.

Let A and B be C∗-algebras and let B ∈ C∗(K). We say that π is a morphism from A into B if π
is a (non-degenerate) representation of A on the Hilbert space K and π(A)B is dense subset of B.
The set of all morphism from A into B is denoted by Mor(A,B). In particular π ∈ Mor(A,K(K)).
Clearly π maps A into M(B) and one can easily prove that any π ∈ Mor(A,B) has unique extension
to a C∗-algebra homomorphism from M(A) into M(B) (this allows to make a composition of
morphisms possible) and then to a ∗-preserving map from Aη into Bη.

Let us note that a bad algebraic structure of Aη is the main source of a great discrepancy
between Hopf ∗-algebra approach to non-compact quantum groups and C∗-algebra one. In this
case elements of Hopf algebra have to be represented in general by unbounded (closed and densely
defined) operators on a Hilbert space. Since the sum and the product of two such operators are
badly defined, no representation of the whole Hopf algebra exists in general. There are also more
subtle reasons of the discrepancy coming from the existence of symmetric operators without self-
adjoint extensions or due to the phenomenon of commuting but not strongly commuting pairs of
selfadjoint operators. These diversity of situations not apparent on the Hopf algebra level makes
the constructions of topological quantum groups much more sophisticated. On the other hand the
nice algebraic structure of Aη = A for unital C∗-algebra A explains why the Statement 1 and 2 of
Theorem 1.2 holds for compact quantum groups and fails in non-compact case.

Now we are ready to describe briefly the present status of the theory of locally compact quantum
groups. The theory of multiplicative unitary operators plays the central role in the approach. It
was developed by S.Baaj and G.Skandalis [3]. Let H be a Hilbert space. A unitary operator W
acting on H ⊗H is called multiplicative unitary if it satisfies the pentagon equation:

WU (1.6) W23W12 = W12W13W23.

Such operators have appeared long ago in the theory of locally compact groups in the context of
generalized Pontryagin duality. Let G be a locally compact group and H = L2(G, dg), where dg is
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a right-invariant Haar measure. For any x ∈ H and g, g′ ∈ G we set

kac (1.7) (Wx)(g, g′) = x(gg′, g′).

Then one can easily verify that W is a unitary operator acting on H ⊗H. Moreover(
W23W12x

)
(g1, g2, g3) = x(g1(g2g3), g1g2, g2),

(
W12W13W23x

)
(g1, g2, g3) = x((g1g2)g3, g1g2, g2)

for any x ∈ H ⊗ H ⊗ H and any g1, g2, g3 ∈ G. Now the pentagon equation (1.6) is equivalent
to the associativity of the group multiplication. The operator W introduced by formula (1.7) is
called Kac-Takesaki operator. It contains the full information about the group G. Following this
idea to any multiplicative unitary operator W one may try to assign a quantum group. It turns
out [3] that it is possible if pentagon equation is supplemented by a regularity condition:

reg (1.8)
{

(id⊗ ω)(ΣW ) : ω ∈ B(H)∗
}norm closure

= K(H)

where Σ ∈ B(H ⊗H) is a flip automorphism, Σ(x⊗ y) = y⊗ x for any x, y ∈ H and B(H)∗ is the
space of all normal functionals on B(H).

Unfortunately this theory does not apply to all multiplicative unitaries related to quantum
groups [1],[2]. To overcome this difficulty the regularity condition was replaced by a less restrictive
condition of manageability [23]. It was shown [6] that any quantum group may be related to
a manageable multiplicative unitary. On the other hand it is not easy to verify manageability
condition in particular examples. Moreover the natural choice for the multiplicative unitaries in
specific examples is not manageable. Let us stress that the correspondence between multiplicative
unitaries and quantum groups is not one to one. Different multiplicative unitaries may describe
the same quantum object. Using this non-uniqueness a weakened condition of modularity was
introduced in [13].

A multiplicative unitary W is called modular if there exist strictly positive selfadjoint operators
Q̂ and Q acting on H and a unitary operator W̃ acting on H ⊗H such that

modular0 (1.9) W (Q̂⊗Q) = (Q̂⊗Q)W

and

modular (1.10) (x⊗ u W z ⊗ y) =
(
z̄ ⊗Qu W̃ x̄⊗Q−1y

)
for any x, z ∈ H, u ∈ D(Q) and y ∈ D(Q−1). In the above definition H is the complex conjugate
Hilbert space related to H by the antiunitary mapping H 3 x −→ j(x) = x̄ ∈ H. In what follows
> will denote a transposition map

transp (1.11) B(H) 3 m −→ m> = j om∗oj−1 ∈ B(H).

Clearly it is antiisomorphisms of C∗-algebras.
Now multiplicative unitary is manageable whenever it is modular with Q̂ = Q. We have

regularity =⇒ manageability =⇒ modularity.

Let A be a C∗-algebra and ∆ ∈ Mor(A,A ⊗ A). We say that (A, ∆) is a C∗-bialgebra if ∆ is
coassociative. The following result [13, Theorem 2.3] is a structure theorem for bialgebra (A, ∆)
which is related to a modular multiplicative unitary.

GMU Theorem 1.4. Let W ∈ B(H ⊗H) be a modular multiplicative unitary. Define

AMU (1.12)
A = {(ω ⊗ id)W : ω ∈ B(H)∗}norm closure

Â = {(id⊗ ω)W ∗ : ω ∈ B(H)∗}norm closure
.

Then
(1) A and Â are nondegenerate separable C∗-subalgebras in B(H).
(2) W ∈M(Â⊗A).
(3) There exists a unique ∆ ∈ Mor(A,A⊗A) such that

(id⊗∆)W = W12W13.

Moreover ∆ is coassociative and

{ (b⊗ I)∆(a) : a, b ∈ A }, { (I ⊗ b)∆(a) : a, b ∈ A }

are total subsets of A⊗A.
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(4) There exists a unique closed linear operator κ on the Banach space A such that
{(ω ⊗ id)W : ω ∈ B(H)∗} is a core for κ and

κ
(

(ω ⊗ id)W
)

= (ω ⊗ id)W ∗

for any ω ∈ B(H)∗. Moreover
(i) the domain of κ is a subalgebra of A and κ is antimultiplicative: κ(ab) = κ(b)κ(a) for

any a, b ∈ D(κ).
(ii) κ

(
(D(κ)

)
= D(κ)∗ and κ (κ(a∗)∗) = a for all a ∈ D(κ).

(iii) the operator κ admits the following polar decomposition

κ = Roτi/2,

where R is involutive (normal) antiautomorphism of A and τi/2 is the analytic gen-
erator of a one parameter group of ∗-automorphisms {τt}t∈R of the C∗-algebra A,

(iv) R commutes with τt for any t ∈ R, in particular D(τ) = D(τi/2),
(v) R and {τt}t∈R are uniquely determined.

(5) We have
(i) ∆oτt = (τt ⊗ τt)o∆ for all t ∈ R,
(ii) ∆oR = σ(R⊗R)o∆, where σ is a flip automorphisms of A⊗A.

(6) Let W̃ and Q be the operators related to W by modularity condition. Then
(i) τt(a) = Q2itaQ−2it for any a ∈ A and t ∈ R,
(ii) W>⊗R = W̃ ∗, where aR denotes R(a) for any a ∈ A and > is the transposition map

(1.11).

The antiautomorphism R which appear in the polar decomposition of the antipode κ is called
the unitary antipode and {τt}t∈R is called a scaling group. It is clear that for any locally compact
group κ = R and the scaling group is trivial.

Now using above Theorem we can say that C∗-bialgebra G = (A, ∆) is a quantum group if it is
related to some modular multiplicative unitary in the above sense (A coincides with the C∗-algebra
introduced by he first formula (1.12) and ∆ as in Statement 3). To verify such definition one has to
know a multiplicative unitary W in advance. It is not easy. But if this is the case one has the rich
theory of modular multiplicative operators in disposition. In particular the operator Ŵ = ΣW ∗Σ
is a modular multiplicative unitary (operators Q and Q̂ exchanges their position) and a quantum
group related to Ŵ is a Pontryagin dual group Ĝ = (Â, ∆̂).

As we noticed the above concept of quantum group is very involved and it would be nice to
have much simpler set of axioms that will guarantee that a C∗-bialgebra (A, ∆) is a quantum
group in the above sense. Now the situation is much better than a few years ago. There are two
approaches in this direction. The first one, proposed by J.Kustermans and S.Vaes is very close
to Definition 1.1 for the compact quantum group. A supplementary assumption is the existence
of a left-invariant faithful weight and right-invariant one. It is very interesting that their theory
anticipated non-invariance of Haar wights with respect to the scaling group. In [14] A.Van Daele
shows that it really happens in the case of the quantum ‘az + b’ group for deformation parameter
being a root of unity.

The second approach, presented in [6] assumes the existence only one faithful Haar weight but in
addition one postulates the polar decomposition of antipode κ. Then clearly, if φ is a left-invariant
weight then composing it with unitary antipode one gets a right-invariant one.

In both approaches the existence of a Haar weight is postulated. On the other hand when
dealing with examples one is able to find such weight (cf [14], [26]). In particular when modular
multiplicative unitary is known then a formula for an invariant weight can be derived [26, Theorem
1.1]. Let us recall that a (right) Haar weight on the quantum group G = (A, ∆) is by definition a
lower semicontinuous faithful locally finite weight h on A such that

Haar (1.13) h
[
(id⊗ φ)∆(a)

]
= φ(I)h(a)

for any positive functional φ on A and any positive a ∈ A such that h(a) < ∞. A weight h is a
locally finite if the set {c ∈ A : h(c∗c) <∞} is dense in A.

fHaar Proposition 1.5. Let G = (A, ∆) be a quantum group related to a modular multiplicative W and
Q and Q̂ be strictly positive selfadjoint operators entering formulae (1.9) and (1.10). For any
positive c ∈ A we set

fHaar1 (1.14) h(c) = Tr(Q̂cQ̂).
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Then h is faithful lower semicontinuous weight on A. Assume that h is locally finite. Then h is a
(right) Haar weight on the quantum group G.

At the moment it is not clear whether for any quantum group there exists a modular multi-
plicative unitary such that the weight (1.14) is locally finite.

Now we shall consider concepts of C∗-algebra generated by families of affiliated elements. For
a non-unital C∗-algebra the problem of generating is more complicated. Even when we deal
with classical non-compact groups the matrix elements of unitary representations are unbounded
continuous functions in general. Therefore they are only affiliated with algebra of continuous
functions vanishing at infinity. This means that for non-unital C∗-algebra A one has to precise
what does it mean that A is generated by elements which does not belong to A. This problem was
solved in [21]. It turns out that algebra A should to be known in advance. At first we recall the
concept of a C∗-algebra generated by finite set of affiliated elements [21, Definitin 3.1].

Let A be a C∗-algebra and Tj ∈ Aη, j = 1, 2, ...N. We say that A is generated by T1, T2, ....TN

if for any Hilbert space K, any B ∈ C∗(K) and any π ∈ Rep(A,K) we have

genkl (1.15)

(
π(Tj) η B for any

j = 1, 2, ...N

)
=⇒

(
π ∈ Mor(A,B).

)
This condition is not easy to verify but we have a nice criterion ([21, Theorem 3.3].

kryt1 Theorem 1.6. Let A be a C∗-algebra and Tj ∈ Aη for any j = 1, 2, ...N and let

R =
{

(I + T ∗j Tj)−1, (I + TjT
∗
j )−1 : j = 1.2, ...N

}
.

Assume that
1. T1, T2, ...TN separates representations of A : if ϕ1, ϕ2 are different elements of Rep(A,H)

then ϕ1(Tj) 6= ϕ(Tj) for some j = 1, 2, ...N .
2. There exist elements r1, r2, ...rk ∈ R such that the product r1r2...rk ∈ A.

Then A is generated by T1, T2, ....TN .

For commutative C∗-algebra this criterion simplifies ([21, Exemple 2].

kryt2 Proposition 1.7. Let Λ be a locally compact space and f1, f2, ...fN ∈ C(Λ). Assume that f1, f2, ...fN

separates points of Λ and

lim
λ→∞

N∑
j=1

|fj(λ)| = +∞.

Then A is generated by f1, f2, ....fN .

To introduce a notion of a quantum group of unitary operators we shall use the concept of a
C∗-algebra generated by a quantum family of affiliated elements [24, Definition 4.1].

Let C, A be C∗-algebras and V be an element affiliated with C ⊗ A. We may regard V as a
family of elements of Cη labelled by the “quantum space” A. We say that A is generated by an
element V η (C ⊗A) if and only if for any representation π of A and any B ∈ C∗(Hπ) we have:

genkw (1.16)
(

(id⊗π)V η (C⊗B)
)

=⇒
(
π ∈ Mor(A,B)

)
Let us note that if V generates A and B is a C∗-algebra then any morphism φ ∈ Mor(A,B)
is completely determined by its value on V. To be more precise, let φ1, φ2 ∈ Mor(A,B) and
B ∈ C∗(K). Then

phijed (1.17)
(

(id⊗ φ1)V = (id⊗ φ2)V
)

=⇒
(

φ1 = φ2

)
Indeed, let φ̃ = φ1 ⊕ φ2. Then φ̃ ∈ Mor(A,B ⊕ B). Let B̃ = {b ⊕ b : b ∈ B}. Clearly B̃ ∈
C∗(K ⊕K) and one can easily verify that B̃η = {b⊕ b : b ∈ Bη}. Now our assumption means that
(id⊗ φ̃)V ηC ⊗ B̃. Therefore φ̃ ∈ Mor(A, B̃) and by definition of B̃

φ̃(c) = φ1(c)⊕ φ2(c) ∈M(B̃).

for any c ∈ A. Since M(B̃) ⊂ B̃η, the statement is proven.

In this more general situation we also have a useful criterion (cf. [24, Example 10, page 507]):
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kryt3 Proposition 1.8. Let C, A be C∗-algebras and V be a unitary element of M(C ⊗ A). Assume
that there exists a faithful representation φ of C such that:

1. For any φ-normal linear functional ω on C we have: (ω ⊗ id)V ∈ A

2. The smallest ∗-subalgebra of A containing {(ω ⊗ id)V : ω is φ-normal} is dense in A.

Then A is generated by V ∈ M(C ⊗A).

Let us remind that a linear functional ω on C is said to be φ-normal if there exists a trace-class
operator ρ acting on Hφ such that ω(c) = Tr(ρφ(c)) for all c ∈ C.

A unitary element V ∈M(K(K)⊗A) may be treated as a “strongly continuous family” (labelled
by the quantum space A) of unitary operators acting on the Hilbert space K. To precise when such
a family is a (quantum) group we shall accept for the purpose of our paper the following definition.

Vgen Definition 1.9. Let A be a C∗-algebra, K be a Hilbert space and let V be a unitary element of
M(K(K)⊗A). Assume that
1. A is generated by V.
2. There exists a morphism ∆ ∈ Mor(A,A⊗A) such that

Deltadef (1.18) (id⊗∆)V = V12V13.

Then we say that (A, V ) is a quantum group of unitary operators.

kolocz Remark 1.10. By previous considerations there is at most one ∆ ∈ Mor(A,A ⊗ A) satisfying
(1.18). On the other hand if ∆ exists then it is co-associative. Indeed, Φ1 = (id ⊗ ∆)∆ and
Φ2 = (∆⊗ id)∆ are both elements of Mor(A,A⊗A⊗A) and

(id⊗ Φ1)V = V12V13V14 = (id⊗ Φ2)V

Since they coincide on V , they coincide. Therefore (A, ∆) is a bi-algebra and V is a co-representation.
Now one can study whether G = (A, ∆) is a quantum group in the sense described in Section 1. If
this is the case then V may be treated as the fundamental unitary representation of G.

Recently (cf [11]) an approach basing on above concepts was used for construction of new de-
formations of quantum ‘ax + b’ group. In this approach a role of generating aspects is more
transparent. To demonstrate these ideas we consider the construction of quantum ‘az + b’ group
introduced in [20] from this point of view. This is a content of next sections. There are no new
results concerning the theory of quantum ‘az +b’ group. Nevertheless, with respect to the method-
ology and to the tools involved in the approach this presentation may be interesting.

2. Group Γ, related special functions and generating algebras
sek1

In this section we recall the basic facts concerning the construction of quantum ‘az + b’ group
for real values of deformation parameter (cf [24], [20], [9]). To this end for a fixed value of a real
parameter q, 0 < q < 1 we consider a multiplicative subgroup Γ of nonzero complex numbers,

Γ =
{
z ∈ C : |z| ∈ qZ} .

Then Γ is an abelian locally compact group. Denote by dγ the Haar measure:∫
Γ

x(γ)dγ =
∑
n∈Z

1
2π

∫ 2π

0

x(qneiϕ)dϕ.

Clearly any γ ∈ Γ is of the form γ = qiϕ+n for unique n ∈ Z and ϕ ∈
[
0,− 2π

log q

[
. For any γ, γ′ ∈ Γ

we set

chi (2.1) χ(γ, γ′) = χ(qiϕ+n, qiϕ′+n′
) = qi(ϕn′+ϕ′n).

Then χ : Γ× Γ→ S1 and χ is a symmetric function. One can easily check that

tozchi (2.2) χ(γ, q) = Phase γ, χ(γ, qit) = |γ|it

for any γ ∈ Γ. Moreover χ is a nondegenerate bicharacter on Γ. Therefore we may identify Γ with
its Pontryagin dual Γ̂.

Let Γ denote the closure of Γ. Clearly Γ = Γ ∪ {0}. The C∗- algebras C∞(Γ) and C∞(Γ) play
a key role in further consideration. We consider C∗-algebra C∞(Γ) first.

Let
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gengamma (2.3) f1(γ) = γ, f2(γ) = γ−1

for any γ ∈ Γ. Then f1, f2 ∈ C(Γ) = C∞(Γ)η. Moreover f1 and f2 separates points of Γ and
|f1(γ)|+ |f1(γ| −→ +∞ whenever γ tends to infinity in Γ, i.e. |γ| −→ 0 or |γ| −→ +∞. Therefore
by Proposition 1.7, f1, f2 generates C∞(Γ).

Let X be a normal operator acting on the Hilbert space K. Assume that X is invertible and
Sp X ⊂ Γ. Then the mapping

repres1 (2.4) C∞(Γ) 3 f −→ π(f) = f(X) ∈ B(K)

is a representation of C∞(Γ) acting on K. Operators X and X−1 are determined by π. Indeed,
X = π(f1) and X−1 = π(f2), where f1, f2 are given by (2.3). Recall that f1, f2 generate C∞(Γ).
Therefore for any representation π of C∞(Γ) and any B ∈ C∗(Hπ) we have:(

π(f1), π(f2) η B
)

=⇒
(
π ∈ Mor(C∞(Γ), B)

)
=⇒

(
π(f) η B for any f ∈ C(Γ)

)
In particular for π introduced by (2.4) and B ∈ C∗(K) we get:

tauT (2.5)

(
X, X−1 η B

f ∈ C(Γ)

)
=⇒

(
f(X) η B

)
.

Let fγ(γ′) = χ(γ′, γ) for any γ, γ′ ∈ Γ. Then fγ ∈ C(Γ) and fγ(X) = χ(X, γ) is a unitary element

of B(K). Let us note that X is completely determined by χ(X, γ). Indeed, using (2.2) one can
easily show

chirownosc Proposition 2.1. Let Xk (k = 1, 2) be a normal invertible operator acting on a Hilbert space K
and such that Sp Xk ⊂ Γ. Then(

χ(X1, γ) = χ(X2, γ)

for all γ ∈ Γ

)
⇐⇒

(
X1 = X2

)
.

Assume that X is normal invertible operator and Sp X ⊂ Γ. Then the mapping

chiX (2.6) Γ 3 γ −→ χ(X, γ) ∈ B(K)

is strongly continuous. By the general theory strongly continuous mappings from Γ into the set of
unitary operators acting on K correspond to unitary multipliers of K(K)⊗ C∞(Γ).

chiXgen Proposition 2.2. Let X be a normal invertible operator acting on a Hilbert space K and X ∈
M(K(K) ⊗ C∞(Γ)) be the unitary corresponding to the mapping (2.6). Assume that the spectral
measure of X is absolutely continuous with respect to the Haar measure on Γ.
Then X generates C∞(Γ).

Proof. We use Proposition 1.8. For any normal linear functional ω on B(K) we set fω = (ω⊗ id)X.
Then fω ∈M(C∞(Γ)) = Cbounded(Γ). Clearly

fω(γ) = ω
(
χ(X, γ)

)
for any γ ∈ Γ. Since the spectral measure of X is absolutely continuous with respect to the Haar
measure, fω ∈ C∞(Γ) by the Riemann-Lebesgue lemma.

We shall show that fω separates points of Γ. To this end let γ, γ′ ∈ Γ, γ 6= γ′. Suppose that
fω(γ) = fω(γ′) for all ω. Then χ(X, γ) = χ(X, γ′) and χ(X, γ0) = I where γ0 = γ′γ−1. This means
that the spectral measure of X is supported by the set {z ∈ Γ : χ(z, γ0) = 1}. Inspecting formula
(2.1) we find that this is a discrete subset of Γ. This is in contradiction with the assumption of
absolute continuity with respect to the Haar measure. Therefore fω separates points of Γ. Now
by the Stone-Weierstrass theorem the smallest ∗-subalgebra of C∞(Γ) containing all fω is dense in
C∞(Γ). This ends the proof.

�

As a conclusion we formulate the following Proposition which will be very useful in further
considerations.

chigen Proposition 2.3. Let X be a normal invertible operator acting on a Hilbert spaces K. Assume that
Sp X ⊂ Γ and the spectral measure of X is absolutely continuous with respect to the Haar measure.
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Let Z be a normal invertible operator acting on a Hilbert space H. Assume that Sp Z ⊂ Γ.
Then for any A ∈ C∗(H) we have:(

χ(X ⊗ I, I ⊗ Z) ∈M(K(K)⊗A)
)

=⇒
(

Z,Z−1 η A

)

Proof. For any f ∈ C∞(Γ) we set π(f) = f(Z). Then π is a representation of C∞(Γ) acting on
the Hilbert space Hπ = H. Let X ∈ M(K(K) ⊗ C∞(Γ)) be unitary introduced in Proposition
2.2. A moment of reflection shows that (id ⊗ π)X = χ(X ⊗ I, I ⊗ Z). If χ(X ⊗ I, I ⊗ Z) is
affiliated with K(K) ⊗ A then π ∈ Mor(C∞(Γ), A) and π maps continuous functions on Γ into
elements affiliated with A. Applying this rule to the functions f1, f2 introduced by (2.3) we obtain
Z = π(f1) η A, Z−1 = π(f2) η A.

�

We shall need an operator version of Proposition 2.1.

chirop Proposition 2.4. Let X be a normal invertible operator acting on a Hilbert spaces K. Assume
that Sp X ⊂ Γ and the spectral measure of X is absolutely continuous with respect to the Haar
measure. Let Zk (k = 1, 2) be a normal invertible operator acting on a Hilbert space H. Assume
that Sp Zk ⊂ Γ. Then(

χ(X ⊗ I, I ⊗ Z1) = χ(X ⊗ I, I ⊗ Z2)
)

=⇒
(
Z1 = Z2

)
.

Proof. Let A = {m ⊕m : m ∈ K(H)} and Z = Z1 ⊕ Z2. Then χ(X ⊗ I, I ⊗ Z) ∈ M(K(K) ⊗ A)
due to the assumption. Therefore Z ∈ Aη by Proposition 2.3. This means that Z1 = Z2. �

Now we pass to the set Γ and the C∗-algebra C∞(Γ).
Let

gengamma1 (2.7) f0(γ) = γ

for any γ ∈ Γ. Then f0 ∈ C(Γ) = C∞(Γ)η. Using Proposition 1.7 one easily verifies that C∞(Γ) is
generated by f0.

Let Y be a normal operator acting on a Hilbert space K and Sp Y ⊂ Γ. Then the mapping

repres2 (2.8) C∞(Γ) 3 f −→ π(f) = f(Y ) ∈ B(K)

is a representation of C∞(Γ) acting on K. The operator Y is determined by π, Y = π(f0) (cf
(2.7)). Since f0 generate C∞(Γ),(

π(f0) η B
)

=⇒
(
π ∈ Mor(C∞(Γ), B)

)
=⇒

(
π(f) η B for any f ∈ C(Γ)

)
for any representation π of C∞(Γ) and any B ∈ C∗(Hπ). In particular for π introduced by (2.8)
and B ∈ C∗(K) we get

tauT1 (2.9)

(
Y η B

f ∈ C(Γ)

)
=⇒

(
f(Y ) η B

)
.

Now consider a special function Fq : Γ→ C. This is a quantum exponential function introduced
in [24] by the formula

Fq(γ) =
∞∏

k=0

1 + q2kγ

1 + q2kγ

for γ ∈ Γ \ {−1,−q−2,−q−4, . . .}. Setting Fq(γ) = −1 for γ ∈ {−1,−q−2,−q−4, . . .} one gets a
continuous function on Γ. In addition Fq(0) = 1.

Let z, γ ∈ Γ. Due to [24, p. 427] the asymptotic behavior of Fq(zγ) for large |zγ| is described
by the formula

Fasymp (2.10) Fq(zγ) ∼ α(z)α(γ)χ(z, γ)

where α(z) = (Phase z)logq |z|−1 and ‘∼’ means that the difference goes to 0 when |zγ| −→ ∞.
We know that Fq ∈ C(Γ) and assumes values of modulus one. Therefore if Y is a normal

operator acting on a Hilbert space H and Sp Y ⊂ Γ then Fq(Y ) is unitary. Moreover we have
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Fqrownosc Proposition 2.5. Let Yk (k = 1, 2) be normal operator acting on a Hilbert space H and such that
Sp Yk ⊂ Γ. Then (

Fq(zY1) = Fq(zY2)

for all z ∈ Γ

)
⇐⇒

(
Y1 = Y2

)
.

Proof. One may proceed as in the proof of [10, Lemma 3.1] but here we present another proof. It
is known (cf [24, p.425]) that asymptotic behavior of Fq(γ) for small γ is described by the formula

asF (2.11) Fq(γ) = 1− γ

1− q2
+

γ

1− q2
+ o(|γ|).

Let

fnF (2.12) fn(γ) =
1

2πi

∫
|z|=qn

Fq(zγ)
z

dz

z
=

1
2π

∫ 2π

0

Fq(qneiϕγ)
qneiϕ

dϕ.

where n is an integer. Then fn ∈ Cbounded(Γ). Set n −→ +∞. Then fn(γ) −→ − 1
1−q2 γ for all

γ ∈ Γ due to (2.11). The convergence is almost uniform. Therefore if Y is a normal operators
acting on a Hilbert space H and Sp Y ⊂ Γ we have

lim
n→+∞

fn(Y ) = − 1
1− q2

Y

in a natural topology (cf. [21]) on the set of affiliated elements K(H)η. We know that Fq(zY1) =
Fq(zY2). Therefore fn(Y1) = fn(Y2) and Y1 = Y2 (the limit is unique).

�

To reveal the usefulness of Fq we need a notion of a G-pair. This notion involves a pair (X, Y )
of normal operators and assigns a precise meaning to the relations of the form

Gpair (2.13) XY = q2Y X, XY ∗ = Y ∗X.

They were investigated in [24],[20].

Definition 2.6. Let X and Y are closed densely defined operators acting on a Hilbert space H.q2
We say that (X, Y ) is a G-pair on H if X and Y are normal, Sp X, Sp Y ⊂ Γ, ker X = {0} and

q2pair (2.14) χ(X, γ)Y χ(X, γ)∗ = γY

for all γ ∈ Γ.

Setting γ = q and γ = qit in the above formula we have (cf (2.2))

(Phase X)Y (Phase X)∗ = qY and |X|it Y |X|−it = qitY.

respectively. In particular |X| and |Y | strongly commute and (Phase X) |Y | = q |Y | (Phase X).

Weyl Remark 2.7. It is known that if (X, Y ) is a G-pair on H then (Y ∗, X∗) and (XY, Y ) are G-pairs
on H as well. If in addition Y is an invertible operator then formula (2.14) takes the form of Weyl
relation:

q2pairp (2.15) χ(X, γ)χ(Y, γ′) = χ(γ, γ′)χ(Y, γ′)χ(X, γ)

for any γ, γ′ ∈ Γ. Then one can show that (Y,X−1), (Y −1, X) and (Y −1, Y −1X) are G-pairs on H.

We shall need the following result [24, Theorem 2.1, Theorem 2.2 and Theorem 3.1].

Qexp Theorem 2.8. Let (X, Y ) be a G-pair on a Hilbert space H. Then the sum Y + X is a densely
defined closeable operator and its closure Y +̇ X is a normal operator and Sp (Y +̇ X) ⊂ Γ. More-
over

EXP (2.16) Fq(Y +̇ X) = Fq(Y )Fq(X).

If in addition ker Y = {0} then

Fqsum (2.17) Y +̇ X = Fq(Y −1X)Y Fq(Y −1X)∗.
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The reader should notice that the last formula combined with (2.16) leads to

FXFY (2.18) Fq(Y )Fq(X) = Fq(Y −1X)Fq(Y )Fq(Y −1X)∗.

Formula (2.16) supports the name “quantum exponential function” assigned to the function Fq.

Now we shall introduce a generating element for C∞(Γ) associated with Fq. To this end for any
z ∈ Γ and γ ∈ Γ we set:

unitarny (2.19) Φ(z, γ) = Fq(γ)Fq(zγ).

Then |Φ(z, γ)| = 1 and Φ is a continuous function on Γ × Γ. Therefore it may be treated as a
unitary element of M

(
C∞(Γ)⊗ C∞(Γ)

)
. We have

Gene1 Proposition 2.9. The C∗-algebra C∞(Γ) is generated by Φ ∈ M
(
C∞(Γ)⊗ C∞(Γ)

)
.

Proof. We shall use Proposition 1.8 setting C = C∞(Γ), A = C∞(Γ) and V = Φ. Denote by
dz the Haar measure on Γ and let φ be the natural representation of C∞(Γ) acting on L2(Γ, dz):
φ(h) is the multiplication by h for any h ∈ C∞(Γ). Then φ is faithful representation and a linear
functional ω on C∞(Γ) is φ-normal if and only if it is of the form

ω(h) =
∫

Γ

h(z)ϕω(z) dz,

where ϕω ∈ L1(Γ, dz).
Let fω = (ω ⊗ id)Φ. Then fω ∈ M

(
C∞(Γ)

)
i.e. fω is a bounded continuous function on Γ.

Clearly for any γ ∈ Γ we have

funkcje (2.20) fω(γ) =
∫

Γ

Φ(z, γ)ϕω(z) dz = Fq(γ)
∫

Γ

Fq(zγ)ϕω(z) dz.

Now using the asymptotic behavior (2.10) and the Riemann–Lebesgue lemma one can show that
the integral on the right hand side vanish when |γ| → +∞. This means that fω ∈ C∞(Γ).

To prove that the smallest ∗-algebra containing all functions of the form (2.20) is dense in C∞(Γ)
we apply the Stone-Weierstrass theorem to the one point compactification of Γ. Clearly for any
γ ∈ Γ one can find a functional ω such that fω(γ) 6= 0. It remains to show that functions fω

separate points of Γ. Let γ, γ′ ∈ Γ and assume that fω(γ) = fω(γ′) for all φ-normal functionals
ω. Then Fq(γ)Fq(zγ) = Fq(γ′)Fq(zγ′) for all z ∈ Γ. Recall that Fq is a continuous function and
Fq(0) = 1. Therefore taking the limit z → 0 we get Fq(γ) = Fq(γ′). This formula combined with
the previous one imply that Fq(zγ) = Fq(zγ′) for all z ∈ Γ. Then for any integer n the function
fn introduced by formula (2.12) attains the same value on γ and γ′, fn(γ) = fn(γ′). Remembering
that limn→∞ fn(γ) = − 1

1−q2 γ for any γ ∈ Γ we conclude that γ = γ′. The statement is proved.
�

To solve some technical problems which appear in further considerations we need the following
result.

FToz Proposition 2.10. Let Y , U and X be operators acting on a Hilbert space H and C ∈ C∗(H).
Assume that:

1. X and Y are normal and (X, Y ) is a G-pair on H,

2. U is unitary and commutes with X,

3. Operators X, X−1, Y and U are affiliated with C.

Then Fq(Y ) ∈ M(C) and

1. For any representation ρ of C and any B ∈ C∗(Hρ) we have:(
ρ(X), ρ(X−1), ρ

(
Fq(Y )U

)
are affiliated with B

)
=⇒

(
ρ(Y ), ρ(U)

are affiliated with B

)
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2. For any representations ρ1 and ρ2 of C acting on the same Hilbert space Hρ1 = Hρ2 we have:(
ρ1(X) = ρ2(X),

ρ1

(
Fq(Y )U

)
= ρ2

(
Fq(Y )U

) ) =⇒

(
ρ1(Y ) = ρ2(Y ),
ρ1(U) = ρ2(U)

)

Proof. Relation Fq(Y ) ∈ M(C) follows immediately from (2.9).
Ad 1. Let z ∈ Γ. Using the commutation relations satisfied by operators X, Y and U we have:

χ(X, z) Fq(Y )U χ(X, z)∗ = Fq(zY )U.

Passing to a representation ρ of C we get

χ
(
ρ(X), z

)
ρ
(
Fq(Y )U

)
χ
(
ρ(X), z

)∗ = ρ
(
Fq(zY )U

)
.

If ρ(X), ρ(X−1), ρ
(
Fq(Y )U

)
η B, then all factors on the left hand side of the above equation

belong to M(B) and depend continuously on z in the strict topology of M(B) (cf [20, Theorem
5.2]). Therefore ρ

(
Fq(zY )U

)
∈ M(B) for any γ ∈ Γ and the mapping

Γ 3 z 7−→ ρ
(
Fq(zY )U

)
∈ M(B)

is strictly continuous. Multiplying from the right by the hermitian conjugation of ρ
(
Fq(Y )U

)
we

get

ρ
(
Fq(zY )Fq(Y )∗

)
= ρ

(
Fq(Y )∗Fq(zY )

)
= ρ

(
Φ(z, Y )

)
∈ M(B)

where Φ is the function introduced by formula (2.19). Moreover the mapping

21 (2.21) Γ 3 z 7−→ ρ
(
Φ(z, Y )

)
∈ M(B)

is strictly continuous. By general theory (cf [21]) such mappings from Γ into M(B) correspond to
elements of M(C∞(Γ)⊗B). A moment of reflection shows that the mapping (2.21) corresponds to
the element (id ⊗ ρoπ)Φ, where π is the representation of C∞(Γ) introduced by (2.8). Therefore
(id⊗ ρoπ)Φ ∈ M(C∞(Γ)⊗B). Now using Proposition 2.9 we conclude that ρoπ ∈ Mor(C∞(Γ), B).
In consequence ρoπ maps continuous functions on Γ into elements affiliated with B. Applying this
rule to function f0 (cf. (2.7)) and Fq we obtain that ρ(Y ) is affiliated with B and ρ(Fq(Y )) ∈ M(B).
By passing to adjoint ρ(Fq(Y )∗) ∈ M(B). We have assumed that ρ

(
Fq(Y )U

)
∈ M(B). Therefore

ρ(U) ∈ M(B) and Statement 1 is proved.

Ad 2. Let ρ = ρ1⊕ ρ2. Then Hρ = Hρ1 ⊕Hρ2 and ρ(c) = ρ1(c)⊕ ρ2(c). In our case Hρ1 = Hρ2 .
We set: B = {m⊕m : m ∈ K(Hρ1)}. Then B ∈ C∗(Hρ). One can easily verify that for any c η C
we have: (

ρ(c) η B
)
⇐⇒

(
ρ1(c) = ρ2(c)

)
.

Now Statement 2 follows immediately from Statement 1.
�

We shall use slightly different version of Statement 2 of the above Proposition.

FToz1 Proposition 2.11. Let Y1, U1, Y2, U2, X be operators acting on a Hilbert space H. Assume that
for each k = 1, 2 the operators Yk, Uk, X satisfy the assumptions 1-3 of the previous Proposition.
Then

22.50 (2.22)
(

Fq(Y1)U1 = Fq(Y2)U2

)
=⇒

(
Y1 = Y2,

U1 = U2.

)

UF Remark 2.12. Since Fq(Y )U = UFq(U∗Y U) the same result holds under assumption that we
have U1Fq(Y1) = U2Fq(Y2).

Proof. Let C = K(H) ⊕ K(H) and for any m1,m2 ∈ K(H) we set ρk(m1 ⊕m2) = mk (k = 1, 2).
We use Proposition 2.10 with Y , U and X replaced by Y1 ⊕ Y2, U1 ⊕ U2 and X ⊕X, Now (2.22)
follows immediately from Statement 2 of Proposition 2.10. �
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3. Construction of quantum ‘az + b’ group.
sek2

The quantum ‘az + b’ group considered in this paper was introduced in [20, Appendix A].
Following the idea of [11] in this section we shall present it as a quantum group of unitary operators.
In this approach one considers a C∗-algebra A and a Hilbert space K endowed with a certain
additional structure. The main object is a pair (A, V ) where V is a unitary element of M(K(K)⊗A).
It may be treated as a quantum family of unitary operators acting on K ‘labeled by elements’ of
quantum space related to the C∗-algebra A.

At first we define A. To this end we consider two operators a and b acting on the Hilbert space
H = L2(Γ, dγ). For any γ ∈ Γ let uγ denote the shift operator:

(uγx)(γ′) = x(γγ′)

for any x ∈ H. Clearly Γ 3 γ −→ uγ ∈ B(H) is a unitary representation of Γ. Therefore by SNAG
theorem [4, Chap. 6, §2, Theorem 1] there exists a spectral measure dE(γ) on Γ̂ = Γ such that

uγ =
∫

Γ

χ(γ′, γ)dE(γ′)

for all γ ∈ Γ. Let

a =
∫

Γ

γ′dE(γ′).

Then a is a normal operator, ker a = {0} and Sp a ⊂ Γ. Moreover uγ = χ(a, γ). By b we denote
the multiplication operator:

(bx)(γ′) = γ′x(γ′).

By definition a domain D(b) consists of all x ∈ H such that the right hand side is square integrable.
Clearly b is normal and Sp b ⊂ Γ. Moreover ker b = {0}. Now one can easily check that

abrel (3.1) χ(a, γ)bχ(a, γ)∗ = uγbu∗γ = γb.

This means (cf (2.14)) that (a, b) is a G-pair on H. We refer to it as a Schrödinger pair.

Cstaralg Theorem 3.1. Let

gesty (3.2) A =
{

f(b)g(a) : f ∈ C∞(Γ), g ∈ C∞(Γ)
} norm closed

linear envelope
.

Then: 1. A is a nondegenerate C∗-algebra of operators acting on L2(Γ, dγ),

2. a, a−1 and b are affiliated with A: a, a−1, b η A,

3. a, a−1 and b generate A.

Proof. Ad 1. Operator b is normal and Sp b ⊂ Γ. Therefore the mapping C∞(Γ) 3 f −→ f(b) ∈
B(H) is a representation of the C∗-algebra C∞(Γ) on the Hilbert space H. Let

gesty1 (3.3) B =
{
f(b) : f ∈ C∞(Γ)

}
.

Then B is a non-degenerate C∗-subalgebra of B(H). Let C0(Γ, B) denote the set of all continuous
mappings from Γ into B with compact support. Then

gesty2 (3.4) A =
{∫

Γ

h(γ)χ(a, γ)dγ : h ∈ C0(Γ, B)
}

norm closure
.

Indeed, for h(γ) = f(b)ĝ(γ), where γ ∈ Γ and ĝ ∈ C0(Γ) we have∫
Γ

h(γ)χ(a, γ)dγ = f(b)g(a),

where g(γ′) =
∫
Γ

ĝ(γ)χ(γ′, γ)dγ (γ′ ∈ Γ). By the Riemann-Lebesque lemma (e.g. [12, Theorem
1.2.4]), g ∈ C∞(Γ) and the set consisting of functions of such form is dense in C∞(Γ). This proves
formula (3.4). Now (3.1) shows that the unitaries χ(a, γ) (γ ∈ Γ) implement a one parameter
group of automorphisms of B. Using the standard technique of the theory of crossed products (cf.
[8, Section 7.6]) one can show that (3.4) is a (non-degenerate) C∗-algebra of operators acting on
L2(Γ, dγ).
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Ad 2. The affiliation relation was introduced in (1.5). We consider the operator a first. We
know that a is a normal invertible operator and Sp a ⊂ Γ. Let

g1g2 (3.5) g1(γ) =
1√

1 + |γ|2
, g2(γ) =

γ√
1 + |γ|2

,

for any γ ∈ Γ. For T = a and T = a∗ we have za = g2(a) and za∗ = ḡ2(a). In both cases
(I + T ∗T )−

1
2 = g1(a). Clearly g1, g2 ∈ M(C∞(Γ)). Now inspecting definition (3.2) one can easily

show that Ag1(a) is dense in A and za, za∗ are right multipliers of A. This means (cf the comment
after (1.5)) that za is a multiplier of A and a is affiliated with A. In the same manner we prove
that a−1 η A.

Now consider the operator b. Let g1 and g2 be given by the expression (3.5) again but now
for any γ ∈ Γ. Then zb = g2(b), zb∗ = ḡ2(b) and in both cases (I + T ∗T )−

1
2 = g1(b). Now

g1, g2 ∈M(C∞(Γ)). Therefore g1(b)A is dense in A and zb, zb∗ are left multipliers. In consequence
zb is a multiplier of A and b η A.

Ad 3. Let c ∈ A be of the form c = f(b)g(a), where f ∈ C∞(Γ) and g ∈ C∞(Γ). By definition
(3.2) the set of such elements is total in A. Let π be a non-degenerate representation of A. Then
π(a) is invertible and π(c) = f(π(b))g(π(a)). Therefore π is completely determined by π(a) and
π(b). This means that a, a−1 and b separate representations of A.

Let r1 = (I+b∗b)−1, r2 = (I+a∗a)−1 and r3 = [I+(a−1)∗a−1]−1. To end the proof it is sufficient
(cf Theorem 1.6) to show that r1r2r3 ∈ A. Since r1r2r3 = f(b)g(a) where f(γ) = (1 + |γ|2)−1, and
g(γ) = |γ|2 (1 + |γ|2)−2, the result follows from (3.2).

�

Now we describe the Hilbert space K. The structure of K is determined by two normal operators
â and b̂ such that

(â, b̂) is a G-pair on K and ker b̂ = {0}.

It is known that any such pair is unitary equivalent to the direct sum of copies of the Schrödinger
pair. In particular spectral measures of â and b̂ are absolutely continuous with respect to the Haar
measure on Γ.

Let

V1 (3.6) V = Fq (̂b⊗ b) χ(â⊗ I, I ⊗ a).

It is the basic object considered in this Section. We shall prove

AV Theorem 3.2.
1. V is a unitary operator and V ∈ M(K(K)⊗A)

2. A is generated by V ∈ M(K(K)⊗A).

Proof. Let Y = b̂⊗ b, U = χ(â⊗I, I⊗a), X = â⊗I and C = K(K)⊗A. Then all the assumptions
of Proposition 2.10 are satisfied. Therefore V = Fq(Y )U ∈ M(C) and Statement 1 is proved.

Let π be a representation of A and B ∈ C∗(Hπ). Then id⊗π is a representation of C acting on
K⊗Hπ. Let us note that (id⊗π)X = â⊗ I is affiliated with K(K)⊗B. Assume that (id⊗π)V ∈
M(K(K)⊗B). By Proposition 2.10, operators: (id⊗π)Y = b̂⊗π(b) and (id⊗π)U = χ(â⊗I, I⊗π(a))
are affiliated with K(K)⊗B. By Proposition A.1 of [25] operator π(b) is affiliated with B. On the
other hand operators â and π(a) satisfy the assumptions of Proposition 2.3. Therefore π(a) and
π(a)−1 are affiliated with B.

According to Statement 3 of Theorem 3.1, a, a−1 and b generate A. Therefore π ∈ Mor(A,B).
This way we showed that (id ⊗ π)V ∈ M(K(K) ⊗ B) implies π ∈ Mor(A,B). It means that A is
generated by V ∈ M(K(K)⊗A).

�

Now we formulate the main result of this Section:

mnoz Theorem 3.3. There exists ∆ ∈ Mor(A,A⊗A) such that

delta (3.7) (id⊗∆)V = V12V13
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Proof. Let us recall that b is an invertible operator. Therefore (b−1, a) and (b−1, b−1a) are G-pairs
on H by Remark 2.7. In particular b−1a is normal and Sp (b−1a) ⊂ Γ. Let

W’def (3.8) W = Fq(b−1a⊗ b) χ(b−1 ⊗ I, I ⊗ a).

Clearly W is a unitary operator acting on H ⊗H. We shall prove that

W’V (3.9) V12V13 = W23V12W
∗
23.

To deal with shorter formulae we set

U = χ(â⊗ I, I ⊗ a), Z = χ(b−1 ⊗ I, I ⊗ a).

Applying formula (2.14) for the G-pairs (â, b̂) and (b−1, a) one can easily verify that

up (3.10) U (̂b⊗ I)U∗ = b̂⊗ a

and

upZ (3.11) Z(a⊗ I)Z∗ = a⊗ a.

With the above notation V = Fq (̂b⊗ b)U and

W12W13 (3.12) V12V13 = Fq (̂b⊗ b⊗ I) U12 Fq (̂b⊗ I ⊗ b) U13.

By the relation (3.10) we get

eG1 (3.13) U12 Fq (̂b⊗ I ⊗ b) = Fq (̂b⊗ a⊗ b)U12

and

fV12V13a (3.14) V12V13 = Fq (̂b⊗ b⊗ I)Fq (̂b⊗ a⊗ b) U12U13.

Let us consider the first factor in (3.14). We apply formula (2.18) with X = b̂ ⊗ a ⊗ b and
Y = b̂⊗ b⊗ I. Then

Fq(Y −1X) = Fq(I ⊗ b−1a⊗ b).
Now (3.14) takes the form

fnV12V13 (3.15) V12V13 = Fq(I ⊗ b−1a⊗ b)Fq (̂b⊗ b⊗ I)Fq(I ⊗ b−1a⊗ b)∗ U12U13.

Since χ is a bicharacter, U12U13 = χ(â⊗ I ⊗ I, I ⊗ a⊗ a). Since a⊗ a commutes with b−1a⊗ b,

Fq(I ⊗ b−1a⊗ b)∗ U12U13 = U12U13 Fq(I ⊗ b−1a⊗ b)∗.

The relation (3.11) implies that Z23U12Z
∗
23 = U12U13 and the formula (3.15) takes now the form

fnV12V13b (3.16) V12V13 = Fq(I ⊗ b−1a⊗ b)Fq (̂b⊗ b⊗ I)Z23U12Z
∗
23Fq(I ⊗ b−1a⊗ b)∗

Finally b⊗I commutes with Z. Therefore Fq (̂b⊗b⊗I) commutes with Z23. Clearly Fq (̂b⊗b⊗I)U12 =
[Fq (̂b⊗ b)⊗ I]U12 = V12 and Fq(I⊗ b−1a⊗ b)Z23 = [I⊗Fq(b−1a⊗ b)]Z23 = W23. Now (3.9) follows
immediately from (3.16).

Now we prove the main statement. For any c ∈ A we set

DeltaW (3.17) ∆(c) = W (c⊗ I)W ∗.

Then ∆ is a representation of A acting on L2(Γ, dγ)⊗L2(Γ, dγ). We know that V ∈ M(K(K)⊗A).
Formula (3.9) shows that

(id⊗∆)V = V12V13.

Clearly V12, V13 ∈ M(K(K) ⊗ A ⊗ A). Therefore (id ⊗ ∆)V = V12 V13 ∈ M(K(K) ⊗ A ⊗ A).
Remembering that A is generated by V we conclude that ∆ ∈ Mor(A,A⊗A).

�

We conclude the section by discussion to what extent C∗-bialgebra A, ∆) is a quantum group.
Using formula (3.17) one can calculate ∆(c) for any c ∈ A. The same is true for any c affiliated

with A. We shall show that

Deltaab (3.18)
∆(a) = a⊗ a,

∆(b) = a⊗ b +̇ b⊗ I.

Since b−1a⊗ b commutes with a⊗ a, formula for ∆(a) follows immediately from (3.11). To prove
formula for ∆(b) we notice that Z and b⊗ I commute. Therefore

db (3.19) W (b⊗ I)W ∗ = Fq(b−1a⊗ b)(b⊗ I)Fq(b−1a⊗ b)∗
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Now we use formula (2.17) with X = a⊗ b and Y = b⊗ I. Then Y −1X = b−1a⊗ b and the right
hand side of (3.19) coincides with X +̇ Y . The formula for ∆(b) is proved.

Formula (3.18) shows that (A, ∆) does not depend on the particular choice of a Hilbert space
K nor on operators â and b̂. One can choose K = L2(Γ, dγ) and (â, b̂) = (a, b). However it turns
out that K = L2(Γ, dγ) and

dbwyb (3.20) (â, b̂) = (b−1, b−1a).

is a more interesting choice. If this is the case then operator (3.6) coincides with (3.8): V = W .
Relation (3.9) takes the form:

W23W12 = W12W13W23.

This is a pentagon equation (1.6). It means that W is a multiplicative unitary. It turns out [20],[13]
that W is modular with (cf formulae (1.9) and (1.10)

Q̂ = |b| , Q = |a|

and

tW (3.21) W̃ = Fq

(
(b−1a)> ⊗ (−qa−1b)

)∗
χ
(
(b−1)> ⊗ I, I ⊗ a

)
.

One can easily verify that (A, ∆) is related to W in the sense explained after Theorem 1.4. Therefore
(A, ∆) is a quantum group. Its structure is described by Theorem 1.4. In particular there exists
an antipode admitting a polar decomposition. We shall show that in this case

abR (3.22) aR = a−1, bR = −qa−1b

where R is a unitary antipode (cf Statement 4(iii) of Theorem 1.4). We use Statement 6(ii) of this
theorem to prove these formulae. Since >⊗R is an antiisomorphism of B(H)⊗A into B(H)⊗A,
it is antimultiplicative. We get

W>⊗R = χ
(
(b−1)> ⊗ I, I ⊗ aR

)
Fq

(
(b−1a)> ⊗ bR

)
.

On the other hand (cf (3.21))

W̃ ∗ = χ
(
(b−1)> ⊗ I, I ⊗ a

)∗
Fq

(
(b−1a)> ⊗ (−qa−1b)

)
.

Clearly χ(γ′, γ) = χ(γ′, γ−1) for any γ′, γ ∈ Γ. Therefore

χ
(
(b−1)> ⊗ I, I ⊗ a

)∗
= χ

(
(b−1)> ⊗ I, I ⊗ a−1

)
.

Now formula W>⊗R = W̃ ∗ may be written as

Rtoz (3.23)
χ
(
(b−1)> ⊗ I, I ⊗ aR

)
Fq

(
(b−1a)> ⊗ bR

)
= χ

(
(b−1)> ⊗ I, I ⊗ a−1

)
Fq

(
(b−1a)> ⊗ (−qa−1b)

)
.

We apply Proposition 2.11 with

Y1 = (b−1a)> ⊗ bR, U1 = χ
(
(b−1)> ⊗ I, I ⊗ aR

)
,

Y2 = (b−1a)> ⊗ (−qa−1b), U2 = χ
(
(b−1)> ⊗ I, I ⊗ a−1

)
,

X = b>⊗ I and C = K(H)⊗A. Taking into account that (b>, a>) is a G-pair on H one can easily
check that all assumptions of Proposition 2.11 are satisfied. Then (cf Remark 2.12) we get Y1 = Y2

(this proves the second formula in (3.22)) and U1 = U2. Now the first formula in (3.22) follows by
Proposition 2.4.

Now consider formula (1.14). In this case it takes the form

fHaarn (3.24) h(c) = Tr(|b| c |b|).

We shall show that h is locally finite (cf [26]), i.e. the set {c ∈ A : h(c∗c) < +∞} is dense in A. By
Statement 1 of Theorem 3.1 we know that a set of elements of the form c = g(a)f(b), where g ∈
C∞(Γ) and f ∈ C∞(Γ) is total in A. The same is true if g is of the form g(γ) =

∫
Γ

ĝ(γ′)χ(γ, γ′)dγ′,
where ĝ ∈ C0(Γ). Clearly h(c∗c) = Tr((c |b|)∗c |b|) and since [χ(a, γ′)x](γ) = x(γγ′), c |b| is an
integral operator

[c |b|x](γ) =
∫

Γ

ĝ(γ′)f(γγ′) |γγ′|x(γγ′)dγ′ =
∫

Γ

ĝ(γ−1γ′)f(γ′) |γ′|x(γ′)dγ′
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with a kernel Kc(γ, γ′) = ĝ(γ−1γ′)f(γ′) |γ′| . Therefore

h(c∗c) =
∫

Γ×Γ

|Kc(γ, γ′)|2 dγdγ′ =
(∫

Γ

|f(γ)|2 |γ|2 dγ

)(∫
Γ

|ĝ(γ)|2 dγ

)
where we used the invariance of Haar measure on Γ. Now by Plancherel formula

h(c∗c) =
(∫

Γ

|f(γ)|2 |γ|2 dγ

)(∫
Γ

|g(γ)|2 dγ

)
.

Clearly L2(Γ, dγ)∩C∞(Γ) is dense in C∞(Γ) and since the measure dµ(γ) = |γ|2 dγ is locally finite
on Γ, L2(Γ, dµ) ∩ C∞(Γ) is dense in C∞(Γ). This means that h is finite on a dense subset of A.
Therefore h is a (right) Haar weight by Proposition 1.5.

We recall that (cf Statement 6, (ii) of Theorem 1.4) the scaling group acts in the following way

τt(c) = Q2itcQ−2it = |a|2it
c |a|−2it

.

Remembering that |a| and |b| commute we conclude (cf (3.24)) that in this case (in contrast to the
quantum ‘az + b’ group at roots of unity) the Haar weight is scaling invariant, hoτt = h.
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