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Abstract

A large class of representations of the quantum Lorentz group QLG (the one admitting
Iwasawa decomposition) is found and described in detail. In a sense the class contains all
irreducible unitary representations of QLG.

Parabolic subgroup P of the group QLG is introduced. It is a smooth deformation of
the subgroup of SL(2,C) consisting of the upper-triangular matrices. A description of
the set of all 1-dimensional representations (the characters) of P is given. It turns out
that the topological structure of this set is not the same as for the parabolic subgroup of
the classical Lorentz group.

The class of (in general non-unitary) representations of QLG induced by characters of
its parabolic subgroup P is investigated. Representations act on spaces of smooth sections
of (quantum) line boundles over the homogeneous space P \ QLG (Gelfand spaces) as in
the classical case. For any pair of Gelfand spaces the set of all non-zero invariant bilinear
forms is described. This set is not empty only for certain pairs. We give a complete list of
such pairs. Using this list we solve the problems of equivalence and irreducibility of the
representations. We distinguish a class of Gelfand spaces carrying unitary representations
of QLG.
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0 Introduction

The paper contains a systematic study of the representation theory of the quantum Lorentz
group. The main results were announced in [12]. The classical SL(2,C) group of unimodu-
lar matrices is a very interesting object of the theory of complex semisimple Lie groups. It
is the simplest example of a noncommutative and noncompact group of this kind. On the
other hand it appears as symmetry group of many important spaces. Among them we have
the Riemann sphere (compactified complex plane), 3-dimensional Lobaczewski space and 4-
dimensional vector Minkowski space. The last example is important for relativistic physics.
For this reason SL(2,C) is often called the Lorentz group. Due to these facts the study of
the representation theory of SL(2,C) is of great importance.

In the group representation theory one may distinguish two approaches, the local and
the global one. In the local approach at first one studies the representations of infinitesimal
operators (the Lie algebra representation theory). Next one investigates the problem of inte-
grability using for example the Nelson theorem. In particular this method is very fruitful in
the study of unitary representations. To illustrate the power of this approach in the context
of the classical Lorentz group we mention the beautiful book of Naimark [8].

The global approach is based on the theory of induced representations. It uses homoge-
neous spaces, sections of vector boundles etc. The method is very effective also in the case
when one deals with not necessarily unitary representations. In an excellent book of Gelfand,
Graev and Vilenkin (cf.[3]) such a method was developed to describe and investigate a large
class of representations of SL(2,C).

The quantum Lorentz group considered in the paper is the quantum deformation of the
Lorentz group described in [10]. It is obtained as the result of double group construction
applied to quantum SU(2) group corresponding to a fixed value of the deformation parameter
µ = q ∈]0, 1[. The group will be denoted by QLG. For the convenience of the reader the basic
facts concernig the SqU(2) group, its representation theory and Pontryagin dual ̂SqU(2) group
are collected in Appendix B. Appendix C contains the basic information concerning QLG.

As in the classical case one may study the representation theory of QLG. In [11] the local
method corresponding to the one of Naimark was developed to describe unitary representa-
tions of QLG. As the result of this approach the complete classification of irreducible unitary
representations of QLG was obtained. In some sense the results of [11] were suprising. The
structure of the set of irreducible unitary representations of QLG turned out to be essen-
tially different from that of the classical Lorentz group. In both cases we have principal and
supplementary series of representations. Representations of principal series are labeled by dis-
crete (minimal spin) and coninuous parameter. In the classical case the continuous parameter
runs over R, whereas for QLG it belongs to S1 = R/ 2π

log q
Z. QLG has two (instead of one)

supplementary series of representations. Moreover for QLG we have a new one-dimensional
(nontrivial) unitary representation which does not exist in classical case (cf. Theorem 6.1 in
Section 6).

The aim of the present paper is to explain this sudden change of the representation theory.
Inspired by the classsical results presented in [3] we tried to use the global approach.

In this framework we investigate a large family of ( not necessarily unitary) representations
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of QLG induced by 1-dimensional representations of the quantum parabolic subgroup P of
QLG. The representations act on spaces of smooth sections of (quantum) line boundles over
the homogeneous space P \QLG . Such spaces denoted by Dχ (where χ runs over the set of
1-dimensional representations of P ) play the fundamental role in [3]. We call them Gelfand
spaces.

A deeper investigation (with the technique of invariant bilinear forms) of Dχ shows that
in principle all results concerning the classical Lorentz group contained in Chapter 3 of [3]
remains are valid in the quantum case. In particular the conditions distinguishing unitary
representations are of the same form and lead in a natural way to principal and supplementary
series.

The difference between the classical and quantum case consists in a slightly different topo-
logical structure of the set of 1-dimensional representations (characters) of the group P. In
the classical case those representations are labeled by pairs (n1, n2) where n1, n2 ∈ C with
n1 − n2 ∈ Z and the different pairs correspond to the different representations.

In the quantum case the correspondence between the pairs (n1, n2) and the representa-
tions of P is no longer one-to-one: the pairs (n1, n2) and (n1 + 2πi

log q , n2 + 2πi
log q ) give rise to

the same representations of P.
The above difference between the classical and the quantum case explains in a simple way

all the suprising features of the theory of unitary representations of the quantum Lorentz group
such as the new topological structure of the principal series, the existence of two (instead of
one) supplementary series and the existence of non-trivial 1-dimensional representation.

We shall use the following notation.
For a C∗-algebra A, M(A) denotes its multiplier algebra i.e. the largest C∗-algebra

containing A as an essential ideal. This assignment is functorial and M(A) = A if and
only if A is unital. The multiplier functor M is an algebraic counterpart of the C̆ech-Stone
compactification of a locally compact space.

We shall also consider elements affiliated with A. They should be regarded as unbounded
multipliers acting on A. For a precise definition of the affiliation relation we refer to [17]. This
relation is denoted by η and Aη is the set of all affiliated elements: a η A ⇔ a ∈ Aη. In general
Aη is not even a vector space but for the C∗-algebra A related to QLG, Aη is a ∗-algebra. In
any case Aη ⊃ M(A). Moreover Aη = A if and only if A is unital.

For C∗-algebras A and B a morphism Φ from A to B is a non-degenerate ∗-algebra
homomorphism Φ : A −→ M(B) (non-degeneracy means that Φ(A)B is dense in B). This
notion of morphism corresponds to that of a continuous map between locally compact spaces
in the category of commutative C∗-algebras. The set of morphism is denoted by Mor(A,B).
In particular if B = CB(H) is the algebra of compact operators acting on the Hilbert space
H then Mor(A,CB(H)) = Rep(A,H) where Rep(A,H) is the set of all non-degenerate
representations of A in H. If G = (A,∆) is a quantum group then the comultiplication
∆ ∈ Mor(A, A⊗ A). In this definition A is the (non-commutaive) C∗-algebra of “continuous
functions vanishing at infinity” on G and the comultiplication encodes the group structure on
it.

It is known that any Φ ∈ Mor(A,B) has the canonical extension to Aη. It maps Aη into
Bη and M(A) into M(B). Φ restricted to M(A) ia a ∗-algebra homomorphism.

The basic notion used in the paper is that of representation (an action of a quantum
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group on a vector space). At first we recall (e.g.[14], [19], [11]) that a unitary representation
of a quantum group G acting on the Hilbert space H is by definition a unitary element
u ∈ M(CB(H)⊗A) satisfying the equality

(id⊗∆)u = u12u13. (0.1)

For our purposes this definition is too restrictive since we would like to deal also with
non unitary representations of the quantum Lorentz group acting on vector spaces with no
scalar product structure. We shall consider representations acting on smooth vector spaces.
By definition a smooth vector space is a countable Cartesian product of at most countable
dimensional vector spaces endowed with natural topology. The basic facts concerning this
class of vector spaces are collected in Appendix A.

To define a larger class of representations of QLG we introduce a ∗-subalgebra A ⊂ Aη.
It is a smooth vector space and A is called the algebra of “smooth continuous functions” on
QLG (cf. Appendix C). We show that A is invariant under the left action of QLG on Aη (cf.
(C.7) of Appendix C):

∆ : A −→ A⊗̂A, (0.2)

where ⊗̂ is a projective tensor product of topological locally convex vector spaces. The counit e
related to QLG belongs to Mor(A,C). Its natural extension is a multiplicative linear functional
on A. Clearly (idA ⊗ e)∆(a) = (e ⊗ idA)∆(a) = a for any a ∈ A. We call (0.2) the smooth
regular action of QLG.

More generally, let D be a smooth vector space and

v : D −→ D⊗̂A
be a continuous linear map. We say that v is a smooth representation of QLG acting on D
whenever (idD ⊗ e)v = idD and the diagram

D
v

−−−−−−→ D⊗̂A

v

y

y
v ⊗ idA

D⊗̂A
idD ⊗∆
−−−−−−→ D⊗̂A⊗̂A

(0.3)

is commutative. This condition replaces (0.1). Let us note that if the classical group G acts
on the vector space D by linear operators vg (g ∈ G) then the commutativity of the diagram
(0.3) means that vg1(vg2x) = vg1g2x for any x ∈ D and g1, g2 ∈ G.

A very interesting example of such situation arises when D is a closed invariant subspace
of A i.e.

∆(D) ⊂ D⊗̂A.

Then v = ∆ |D makes the diagram (0.3) commutative by the co-associativity of ∆. In partic-
ular all Gelfand spaces are countable dimensional invariant subspaces of A.

Let A′ be the space of all continuous linear functionals on A. For any ψ ∈ A′ we set

vψ = (idD ⊗ ψ)v.
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Then vψ is a linear continuous operator on D and linearly depends on ψ. Using the convolution
product of functionals (cf.e.g.[16] p.626)

ψ1 ∗ ψ2 := (ψ1 ⊗ ψ2)∆

for any ψ1, ψ2 ∈ A′ one can immediately check that ψ1 ∗ ψ2 ∈ A′ and by commutativity of
the diagram (0.3) that

vψ1vψ2 = vψ1∗ψ2 . (0.4)

Therefore the map ψ → vψ is a homomorpsim of the convolution algebra A′ into the algebra
of continuous operators on D. We say that vψ (ψ ∈ A′) are operators of the representation v.

If Ψ ∈ A′ is in the convolution center of A′ then vΨ commutes with all operators of v. In
this case we say that vΨ is a Casimir operator.

We shall briefly describe the content of the paper.
Section 1 is devoted to the parabolic subgroup P of the Lorentz group. At first we de-

scribe quantum version of P (on Hopf ∗-algebra level and C∗-algebra level). Next by natural
embeding we identify P with a subgroup of QLG. An important result of the Section is the
description of the set of all characters (i.e. 1-dimensional representations) of P.

In Section 2 we investigate representations of QLG induced by characters of P. For any
character χ of P the corresponding representation vχ of QLG acts on the Gelfand space Dχ.
This space is realized as a countable dimensional subspace of the algebra A of “smooth func-
tions” on QLG and vχ = ∆|Dχ . The invariants of vχ such as spin spectrum and Casimir
operators are computed (cf.Theorem 2.4). It turns out that the spin spectrum of vχ is simple
and Casimir operators are multiples of the identity.

The basic computational tools used in the paper are developed in Section 3 and 4. For
any pair (χ, χ′) of characters of the parabolic group P we investigate the set of all Lorentz
invariant bilinear functionals on Dχ ×Dχ′ . If the set contains non-zero functionals then the
pair (χ, χ′) is called admissible. In Section 3 we analyze the general form of such functionals.
The Lorentz invariance is equivalent to SqU(2)-invariance and ̂SqU(2)-invariance. It turns out
that any Lorentz invariant bilinear functional f on the pair Dχ ×D′

χ of Gelfand spaces may
be expressed in terms of the Haar measure h on SqU(2) and some special functional ψ on the
algebra of smooth functions on SqU(2). The functional ψ satisfies certain equality (involving
χ and χ′). It is called a (χ, χ′)-spherical functional (cf.Definition 3.4). Therefore the admis-
sibility is equivalent to the existence of non-zero (χ, χ′)-spherical functional (cf.Theorem 3.5
and Proposition 3.2). In Section 4 the (χ, χ′)-spherical functionals are studied in more detail.
As a result the complete list of admissible pairs is obtained. It is shown that for any admissi-
ble pair (χ, χ′) the space of (χ, χ′)-spherical functionals is one dimensional (cf.Theorem 4.9).
Moreover we give explicite formulae for these functionals.

These results are used in Section 5 to consider the equivalence and irreducibility of repre-
sentations of QLG on Gelfand spaces. We proceed in the same way as in the classical approach
of [3]. For any pair of characters (χ, χ′) we consider a space Mor(χ, χ′) of all linear operators
T : Dχ −→ Dχ′ intertwining the representations vχ and vχ′ . The main result of this Sec-
tion is formulated in Theorem 5.7. It shows that dim Mor(χ, χ′) ≤ 1. In particular any vχ

is irreducible i.e. vχ does not split into the direct sum of two nontrivial subrepresentations.
Moreover Theorem 5.7 reveals also the role of positive integer points (cf.Definition 5.3). If
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neither χ nor −χ is a positive integer point then vχ is equivalent to vχ′ (i.e. Mor(χ, χ′) con-
tains a bijection) iff χ′ = χ or χ′ = −χ.

In Section 6 we select all characters χ such that Dχ admits vχ-invariant scalar product.
Such scalar product is unique up to a positive factor. Applying completion procedure based
on the theory of Hilbert C∗-modules we show that vχ gives rise to the unitary representa-
tion of QLG acting on the Hilbert space Hχ obtained by the standard completion of Dχ.
Comparing this result with Theorem 6.1 (proved in [11]) we see that all infinite-dimensional
representations of QLG may be obtained in this way.

We belive that the methods developed in this paper will be also useful in the representation
theory of other quantum deformations of the Lorentz group. In particular in a forthcoming
paper we shall investigate representations of the quantum Lorentz group having Gauss de-
composition property.

1 Parabolic subgroup and its characters

The parabolic subgroup P of the classical Lorentz group G = SL(2,C) consists of all upper-
triangular matrices

P =

{ (
α, β
γ, δ

)
∈ SL(2,C) : γ = 0

}
.

The algebra Poly (P ) of polynomial functions on P coincides with Poly (SL(2,C))/Iγ where
Iγ is the ideal generated by the relation γ = 0. We follow this idea in the quantum case.

The Hopf *-algebra AP of polynomials on the parabolic subgroup of the quantum Lorentz
group is generated by three elements α̇, β̇, δ̇ subject to relations

α̇∗α̇ = α̇α̇∗, δ̇δ̇∗ = δ̇∗δ̇,
α̇β̇ = qβ̇α̇, β̇α̇∗ = q−1α̇∗β̇,

β̇δ̇ = qδ̇β̇, δ̇α̇∗ = α̇∗δ̇,
α̇δ̇ = I = δ̇α̇, δ̇β̇∗ = qβ̇∗δ̇,
β̇β̇∗ = β̇∗β̇ + (1− q2)(δ̇∗δ̇ − α̇∗α̇).

(1.6)

These are the Podleś relations (cf.[10] eq.(1.9)-(1.25)) supplemented by the relation γ̇ = 0.
The group structure of P is imposed by the requirement that

uP =

(
α̇, β̇

0, δ̇

)
(1.7)

should be the fundamental representation of P. The comultiplication ∆P : AP → AP ⊗ AP

is uniquely defined by its values on the generators:

∆P (α̇) = α̇⊗ α̇, ∆P (β̇) = α̇⊗ β̇ + β̇ ⊗ δ̇,

∆P (δ̇) = δ̇ ⊗ δ̇.
(1.8)
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On the C∗-level the generators α̇, β̇ and δ̇ are unbounded elements affiliated to a C∗-
algebra AP of “continuous functions vanishing at infinity on P.” To construct this algebra
we use the method which is a quantum version of semi-direct product construction known
in group theory. Such a method was used in [10] to introduce the quantum double group
construction.

Let w be a 2×2 - matrix with entries being bounded operators acting on the Hilbert space
H : w ∈ M2(B(H)). We say that w is a P−matrix if w is of the form (1.7) and its matrix
elements satisfy the P−relations (1.6). If in addition α̇ is positive then matrix elements of
w satisfy the relations corresponding to ̂SqU(2)−group. We refer to this particular case by
saying that w is a ̂SqU(2)−matrix. A P−matrix w is unitary if and only if α̇ is unitary,
β̇ = 0 and δ̇ = α̇∗. We shall refer to such situation by saying that w is a S1−matrix.

Matrix elements of any P−matrix w satisfy also the relations for the quantum Lorentz
group. Therefore the Iwasawa decomposition for quantum Lorentz group-matrices ([10] The-
orem 1.3) holds for P−matrices:

Proposition 1.1
Let w ∈ M2(B(H)) be a P−matrix. Then there exist the unique matrices wd, wS1 ∈
M2(B(H)) such that

w = wdwS1 ,

where wd is a ̂SqU(2)−matrix and wS1 is S1−matrix. Matrix elements of wd commute with
matrix elements of wS1 . Moreover the C∗− subalgebra of B(H) generated by matrix elements
of w contains the matrix elements of wd and wS1 .

This shows that the quantum space P is homeomorphic to the Cartesian product ̂SqU(2)×S1.
In other words the C∗−algebra of functions on P is the tensor product of the corresponding
C∗−algebras:

AP = Ad ⊗ C(S1).

The group structure of P is related to that of ̂SqU(2) and S1 in a nontrivial manner. Neverthe-
less it is possible to give a description of the group structure of P using the group structures
of ̂SqU(2) and S1. As in the case of the quantum double construction desription involves a
canonical bicharacter u̇ defined on ̂SqU(2)×S1.

Let
u̇ := (Id ⊗ z)2J3⊗IS1 (1.9)

Then u̇ is a unitary element of M(Ad ⊗ C(S1)) and

(∆d ⊗ idS1)u̇ = u̇23 u̇13, (idd ⊗∆S1)u̇ = u̇12 u̇13

(ed ⊗ idS1)u̇ = IS1 , (idd ⊗ eS1)u̇ = Id.
(1.10)

It means that u̇ is a bicharacter. Now for any f ∈ C(S1) and x ∈ Ad we set

σ̇(f ⊗ x) := u̇(x⊗ f) u̇∗. (1.11)

Then σ̇ ∈ Mor(C(S1)⊗Ad, Ad ⊗ C(S1)). Moreover

(ed ⊗ idS1) ◦ σ̇ = idS1 ⊗ ed, (idd ⊗ eS1) ◦ σ̇ = eS1 ⊗ idd. (1.12)
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By definition the comultiplication

∆P := (idd ⊗ σ̇−1 ⊗ idS1) (∆d ⊗∆S1). (1.13)

Clearly ∆P ∈ Mor(AP , AP ⊗AP ) and one can show (cf.the proof of Theorem 4.1 of [10]) that
∆P is coassociative:

(idP ⊗∆P )∆P = (∆P ⊗ idP )∆P .

Therefore ∆P defines the group structure on P. The counit is

eP := ed ⊗ eS1 .

The formula for the coinverse can be also presented as in [10] but is omitted since it will not
be used.

̂SqU(2) and S1 are subgroups of P. The embedings ̂SqU(2) ↪→ P and S1 ↪→ P are related
to the morphisms

ṗd = idd ⊗ eS1 ∈ Mor(AP , Ad),

ṗS1 = ed ⊗ idS1 ∈ Mor(AP , C(S1)).

One can easily verify that

∆dṗd = (ṗd ⊗ ṗd)∆P , ∆S1 ṗS1 = (ṗS1 ⊗ ṗS1)∆P

edṗd = eP , eS1 ṗS1 = eP .

This means that group structures on ̂SqU(2) and S1 are restrictions of that on P.
Now remembering that the set of affiliated elements (Ad⊗C(S1))η is a *-algebra we are

able to connect our construction with relations (1.6) - (1.8) (cf.Theorem 5.4 of [10]).

Theorem 1.2
Let α̇, β̇ and δ̇ be elements affiliated with AP = Ad ⊗ C(S1) introduced by

α̇ := qJ3 ⊗ z̄, β̇ := (1− q2)q−1/2J+ ⊗ z

δ̇ := q−J3 ⊗ z
(1.14)

and

uP =

(
α̇, β̇

0, δ̇

)
:=

(
qJ3 , (1− q2)q−1/2J+

0, q−J3

)
©⊥

(
z̄, 0
0, z

)
. (1.15)

Then
1o α̇, β̇, δ̇ satisfy relations (1.6)
2o uP is a representation of P i.e.

∆P (α̇) = α̇⊗ α̇, ∆P (β̇) = α̇⊗ β̇ + β̇ ⊗ δ̇,

∆P (δ̇) = δ̇ ⊗ δ̇.
(1.16)

3o (α̇, β̇, δ̇) generate C∗−algebra AP in the sense of Definition 3.1 of [18] (cf.[18] Examples
8-10 p.500).
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Let us note that δ̇ is an invertible element affiliated with AP , δ̇∗δ̇ = q−2J3⊗IS1 . Therefore

Sp δ̇∗δ̇ = qZ ∪ {0} (1.17)

and this was not apparent from the commutation relations (1.6).
The quantum group P may be realized as a subgroup of the quantum Lorentz group QLG.

At first let us recall that the commutation relations for α̇, β̇ and δ̇ were obtained by adding
the relation “γ = 0” to Podleś relations for the quantum Lorentz group. Therefore it seems
very natural to define AP as

AP = A/Iγ ,

where Iγ is the closed two sided ideal of A “generated by γ.” Unfortunately γ is the un-
bounded operator which does not belong to A and the rigorous meaning of the phrase inserted
in quotation marks is not clear. On the other hand according to the Iwasawa decomposition
γ = qJ3⊗γc (cf.(5.15) in [10]). Since qJ3 is ivertible the relation γ = 0 is equivalent to γc = 0.
Therefore the ideal Iγ may be replaced by the ideal generated by Id⊗ γc. We shall follow this
idea.

Let Iγc be the ideal in Ac generated (in the usual sense) by γc and π̇c be the canonical
epimorphism π̇c : Ac → Ac/Iγc . Then clearly the C∗−algebra Ac/Iγc is isomorphic to C(S1)
since π̇c(γc) = 0 and π̇c(α∗c) may be identified with the unitary generator z of C(S1) :
π̇c(αc

∗) = z where z ∈ C(S1), z(ζ) = ζ for any ζ ∈ S1. Clearly π̇c ∈ Mor(Ac, C(S1)) and
for a matrix element us

kl (k, l = −s,−s + 1, ..., s) of the unitary representation us of SqU(2)
with spin s (cf. (B.19) ) we obtain

π̇c(us
kl) = δklz

2k. (1.18)

Moreover
(π̇c ⊗ π̇c)∆c = ∆S1 ◦ π̇c, eS1 π̇c = ec.

It shows that π̇c describes an embedding S1 ↪→ SqU(2) preserving the group structures.
Let

π̇ = idd ⊗ π̇c.

Then π̇ ∈ Mor(A,AP ) and

π̇(u
1
2 ) = (idd ⊗ π̇c)

(
αc, −qγ∗c
γc, α∗c

)
=

(
z̄, 0
0, z

)
.

Taking this into account and comparing the Iwasawa decomposition for P and that for QLG
we get

π̇(α) = α̇, π̇(β) = β̇, π̇(γ) = 0, π̇(δ) = δ̇.

Due to (1.18) π̇(us) = z2Js
3 . Therefore for the canonical bicharacter u =

∑⊕
s∈S us ∈ M(A) =

M(Ad ⊗Ac) we obtain

π̇(u) = (idd ⊗ π̇c)u = (Id ⊗ z)2J3⊗IS1 = u̇, (1.19)
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where u̇ is the bicharacter (1.9).
Now one can check that the diagram

Ad ⊗Ac

σ−1

−−−−−−→ Ac ⊗Ad

idd ⊗ π̇c

y

y
π̇c ⊗ idd

Ad ⊗ C(S1)
σ̇−1

−−−−−−→ C(S1)⊗Ad

(1.20)

is commutative.

Using this we have

∆P π̇ = (idd ⊗ σ̇−1 ⊗ idS1)(∆d ⊗∆S1)π̇

= (idd ⊗ σ̇−1 ⊗ idS1)(∆d ⊗∆S1 ◦ π̇c)

= (idd ⊗ σ̇−1 ⊗ idS1)(idd ⊗ idd ⊗ π̇c ⊗ π̇c)(∆d ⊗∆c)

= (idd ⊗ π̇c ⊗ idd ⊗ π̇c)(idd ⊗ σ−1 ⊗ idc)(∆d ⊗∆c) = (π̇ ⊗ π̇)∆

and similarly e = eP ◦ π̇. It shows that π̇ describes an embedding P ↪→ QLG preserving the
group structures.

Now we shall describe characters of P i.e. 1-dimensional representations of P. We shall
consider this in full generality not assuming unitarity or even boundedness. By definition a
character of P is an invertible element χ affiliated with AP such that

∆P χ = χ⊗ χ.

According to (1.8) δ̇ is a character. So is δ̇∗ or more generally δ̇n1−1(δ̇∗)n2−1 where n1, n2 are
integers. (We inserted −1 in the exponents to have better correspondence with the Gelfand
notation [3]). Using (1.14) we obtain

δ̇n1−1(δ̇∗)n2−1 = q−(n1+n2−2)J3 ⊗ zn1−n2 .

The reader should notice that the right hand side is well defined for any n1, n2 ∈ C provided
n1 − n2 is an integer.

Let
χ = q−(n1+n2−2)J3 ⊗ zn1−n2 = t2J3 ⊗ zn, (1.21)

where t = q−
1
2
(n1+n2−2) and n = n1 − n2. We shall prove (cf.Theorem 1.4) that (1.21) is a

character of P and that any character of P is of that form.
To abbreviate the notation we shall write χ = (n1, n2). Let us note that due to the spectral
condition (1.17) two pairs (n1, n2), (n′1, n′2) give rise to the same character if and only if

n1 − n′1 = n2 − n′2 =
2kπi

log q
for some k ∈ Z.
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In such a case we write (n1, n2) ≡ (n′1, n′2).

Clearly any character of the (quantum) group restricted to its subgroup is a character of
this subgroup. Our result says that any character of the parabolic group P is a product of
the characters of its subgroups: ̂SqU(2) and S1 and vice versa.

At first we describe non trivial characters of the quantum ̂SqU(2)-group.

Proposition 1.3
Let χd be a non-zero element of Aη

d. Then the following conditins are equivalent:
i) ∆dχd = χd ⊗ χd

ii) χd = (idd ⊗ φ)u for some nontrivial linear multiplicative functional φ : Ac −→C
iii) χd = t2J3 for some non-zero complex number t

Proof. i)⇒ ii). Let χd ∈ Aη
d. Then χd = (χs

d)s=0,1/2,1... where χs
d ∈ B(Hs). Since the matrix

elements of u = (us)s=0,1/2,1... form a linear basis of Ac there exists a linear functional φ on
Ac such that for any s : (id⊗ φ)us = χs

d. This means that any χd ∈ Aη
d is of the form

χd = (idd ⊗ φ)u.

For χd satisfying the character equation we get

(idd ⊗ idd ⊗ φ)u23u13 = (idd ⊗ idd ⊗ φ)(∆d ⊗ idc)u

= ∆d(idd ⊗ φ)u = ∆dχd = χd ⊗ χd

= (idd ⊗ φ)u⊗ (idd ⊗ φ)u.

Rewriting this equation in terms of matrix elements we have

φ(us1
klu

s2
mn) = φ(us2

mn)φ(us1
kl ).

It shows that φ is multiplicative.
ii)⇒ iii). We have to find all nontrivial linear multiplicative functionals on Ac.
Obviously φ(Ic) = 1. Applying φ to both sides of the relation [α∗c , αc] = (1− q2)γ∗c γc we get
φ(γc)φ(γ∗c ) = 0. Therefore φ(αc)φ(α∗c) = 1. Let t := φ(α∗c). Then t is a non-zero complex
number. Now using the relations αcγc = qγcαc, αcγ

∗
c = qγ∗c αc we get φ(γc) = 0 = φ(γ∗c ).

Then by (B.19) φ(us
kl) = δklt

2k and

χd = (idd ⊗ φ)u = t2J3 .

iii)⇒ i) This implication follows immediately from the formula ∆dJ3 = J3 ⊗ Id + Id ⊗ J3.
2

Now we can prove the main result of this section.
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Theorem 1.4
Let χ be a non-zero element of Aη

P . Then

(
∆P (χ) = χ⊗ χ

)
⇐⇒




χ = t2J3 ⊗ zn

where
t ∈ C, t 6= 0 and n ∈ Z


 .

Proof. ⇐ Let χ = t2J3 ⊗ zn then

∆P χ = (idd ⊗ σ̇−1 ⊗ idS1)(∆d ⊗∆S1)(t2J3 ⊗ zn) = t2J3 ⊗ σ̇−1(t2J3 ⊗ z)⊗ z

= t2J3 ⊗ [(z ⊗ Id)−IS1⊗2J3(z ⊗ t2J3)(z ⊗ Id)IS1⊗2J3 ]⊗ z = t2J3 ⊗ z ⊗ t2J3 ⊗ z

= χ⊗ χ

since operators (z ⊗ Id)IS1⊗2J3 and z ⊗ t2J3 commute.
⇒ We shall use the leg numbering notation. Applying idd ⊗ σ̇ ⊗ idS1 to both sides of the
character equation χ⊗ χ = ∆P (χ) we get:

u̇23 χ13 χ24 u̇∗23 = (∆d ⊗∆S1)χ. (1.22)

Let
χd := (idd ⊗ eS1)χ and χS1 := (ed ⊗ idS1)χ

be the restrictions of χ to the subgroups ̂SqU(2) and S1. Applying idd ⊗ idd ⊗ eS1 ⊗ eS1

and ed ⊗ ed ⊗ idS1 ⊗ idS1 to both sides of (1.22) we get

∆dχd = χd ⊗ χd and ∆S1χS1 = χS1 ⊗ χS1 .

This means that χd and χS1 are characters of the corresponding subgroups. On the other
hand applying idd ⊗ ed ⊗ eS1 ⊗ idS1 to (1.22) we get that

χ = χd ⊗ χS1 .

Any character χS1 of S1 is of the form χ = zn. By Proposition 1.3 χd = t2J3 and the
Statement follows.

2

2 Gelfand spaces

In this section we consider the representations of QLG induced by 1-dimensional representa-
tions (characters) of its parabolic subgroup P described in the previous section. They act
on spaces of “smooth functions” on QLG. For the convenience of the reader these spaces are
discussed in more detail in Appendix A.
An element a, affiliated with A = Ad ⊗Ac is said to be smooth if for any s = 0, 1/2, 1, . . . :

(πs ⊗ idc)a ∈ B(Hs)⊗Ac.
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The set of smooth elements will be denoted by A. It is clear that A is a *-subalgebra of Aη.

For any character χ of P the representation of QLG induced by χ acts by right shifts on
the space Dχ of smooth elements which transform under the left action of P according to the
representation χ :

Dχ := {a ∈ A : (π̇ ⊗ id)∆a = χ⊗ a } . (2.1)

Let us note that the equation
(π̇ ⊗ id)∆a = χ⊗ a (2.2)

coincides in the classical case with a(pg) = χ(p)a(g) for all p ∈ P and g ∈ G (cf.[1] p.473,
formula (1)).
Solving this equation we shall give very explicit description of the spaces Dχ (cf.Theorem
2.2). As we know by Theorem 1.4 any character of P is of the form χ = t2J3 ⊗ zn where
t ∈ C \ {0} and n ∈ Z. It turns out that the elements of Dt2J3⊗zn are of the form t2J3 ⊗ ac

where ac are elements of Ac satisfying the equation

(π̇c ⊗ idc)∆cac = zn ⊗ ac . (2.3)

The space of solutions of this equation is the carrier space of the representation of SqU(2)
induced by zn (from the subgroup S1 ⊂ SqU(2)). For reasons that will be clear later we shall
consider (2.3) in a more general setting.

Proposition 2.1
Let B be a smooth vector space. Then

{
bc ∈ Ac⊗̂B : (π̇c ⊗ idc ⊗ idB)(∆c ⊗ idB)bc = zn ⊗ bc

}
= Zn⊗̂B

where

Zn =

{
us

n
2

,k : s = |n|
2 , |n|2 + 1, |n|2 + 2, . . .

k = −s,−s + 1, . . . s

}linear span

. (2.4)

In particular the set of solutions of (2.3) coincides with (2.4).

Proof. We have

(π̇c ⊗ idc)∆cu
s
p,k = (π̇c ⊗ idc)

s∑

l=−s

us
p,l ⊗ us

l,k = z2p ⊗ us
p,k (2.5)

by (1.18). This implies that for any b ∈ B, bc := us
n
2

,k ⊗ b is a solution of

(π̇c ⊗ idc ⊗ idB)(∆c ⊗ idB)bc = zn ⊗ bc. (2.6)

On the other hand remembering that the set of all matrix elements us
p,k (s ∈ S, p, k =

−s,−s + 1, ...s) is a linear basis in Ac we see (cf.(A.1)) that any element bc ∈ Ac⊗̂B has the
unique decomposition of the form bc =

∑
s,p,k us

p,k ⊗ bs
p,k where the series is convergent in the

topology of Ac⊗̂B and the coefficients bs
p,k ∈ B are uniqely defined by bc. If bc satisfies (2.6)

then (2.5) shows that only the elements us
p,k with p = n

2 may enter the decomposition with
non-zero coefficients. Therefore bc ∈ Zn⊗̂B.

2

12



For a representation vc of SqU(2) the spin spectrum of vc is the set Spvc ⊂ S of all s ∈ S
such that us is contained in vc. We say that the spin spectrum is simple (multiplicity free) if
each us appears in vc at most once.

Let n be an integer and

Sn =
{ | n |

2
,
| n |
2

+ 1,
| n |
2

+ 2, ....

}
.

For any s ∈ Sn we set

Zs
n =

{
us

n
2

,k : k = −s,−s + 1, . . . s
}linear span

.

Then dimZs
n = 2s + 1. Since

∆cu
s
n
2

,k =
s∑

l=−s

us
n
2

,l ⊗ us
l,k

we see that
∆c(Zs

n) ⊂ Zs
n ⊗Ac

and
∆c(Zn) ⊂ Zn ⊗Ac = Zn⊗̂Ac

i.e. Zn, Zs
n (s ∈ Sn) are SqU(2)-invariant subspaces of Ac and Zs

n is the carrier space for the
irreducible representation of SqU(2) corresponding to the spin s. Clearly Zn =

∑⊕
s∈Sn

Zs
n.

This decomposition corresponds to the decomposition of the representation vc := ∆c|Zn of
SqU(2) on Zn into irreducible components. Therefore the spin spectrum of vc is simple and

Sp vc = Sn. (2.7)

Now we shall describe the Gelfand spaces.

Theorem 2.2
Let χ = t2J3 ⊗ zn (t is a complex non-zero number and n ∈ Z) be a character of P and B
be a smooth vector space. Then

{
b ∈ A⊗̂B : (π̇ ⊗ idA ⊗ idB)(∆⊗ idB)b = χ⊗ b

}
= t2J3 ⊗Zn⊗̂B.

In particular
Dχ = t2J3 ⊗Zn.

Proof. At first we notice that the equation

(π̇ ⊗ idA ⊗ idB)(∆⊗ idB)b = χ⊗ b (2.8)

is equivalent to

[∆d ⊗ (π̇c ⊗ idc)∆c ⊗ idB] b = t2J3 ⊗ [(σ̇ ⊗ idc ⊗ idB)(zn ⊗ b)] . (2.9)
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Indeed using the commutativity of (1.20) we obtain

(π̇ ⊗ idA ⊗ idB)(∆⊗ idB)b

= (idd ⊗ π̇c ⊗ idd ⊗ idc ⊗ idB)(idd ⊗ σ−1 ⊗ idc ⊗ idB)(∆d ⊗∆c ⊗ idB)b

= (idd ⊗ σ̇−1 ⊗ idc ⊗ idB)(idd ⊗ idd ⊗ π̇c ⊗ idc ⊗ idB)(∆d ⊗∆c ⊗ idB)b

= (idd ⊗ σ̇−1 ⊗ idc ⊗ idB) [∆d ⊗ (π̇c ⊗ idc)∆c ⊗ idB] b.

(2.10)

Inserting this result into (2.8) and applying to the both sides idd⊗ σ̇⊗ idc⊗ idB we get (2.9).
Equivalence of (2.8) and (2.9) follows from invertibility of σ̇.

Let b ∈ A⊗̂B satisfy (2.8). Applying idd ⊗ ed ⊗ idS1 ⊗ idc ⊗ idB to both sides of (2.9) and
using (1.12) we obtain

[idd ⊗ (π̇c ⊗ idc)∆c ⊗ idB] b = t2J3 ⊗ zn ⊗ (ed ⊗ idc ⊗ idB)b.

Remembering that (π̇c ⊗ idc)∆c has a trivial kernel we conclude that b is of the form b =
t2J3⊗ bc, where bc ∈ Ac⊗̂B and (π̇c⊗ idc⊗ idB)(∆c⊗ idB)bc = zn⊗ (ed⊗ idc⊗ idB)b = zn⊗ bc.
Proposition 2.1 shows now that that bc ∈ Zn⊗̂B. Conversely if b = t2J3⊗bc, where bc ∈ Zn⊗̂B
then (π̇c⊗ idc⊗ idB)(∆c⊗ idB)bc = zn⊗ bc by Proposition 2.1. The reader should notice that
u̇ = (Id ⊗ z)2J3⊗IS1 commute with t2J3 ⊗ zn. Therefore

t2J3 ⊗ zn = σ̇(zn ⊗ t2J3)

and remembering that t2J3 is a character of ̂SqU(2) one can easily verify that (2.9) holds.
2

The Gelfand spaces are a right invariant subspaces of A.

Theorem 2.3
Let χ be a character of P. Then

∆(Dχ) ⊂ Dχ⊗̂A.

Proof. Let a ∈ Dχ. Then a satisfies (2.2). Using coassociativity of ∆ one immediately
checks that b := ∆a ∈ A⊗̂A satisfies (2.8) with B replaced by A and by Theorem 2.2
∆a ∈ Dχ⊗̂A.

2

Let vχ := ∆|Dχ
. Then

vχ : Dχ −→ Dχ⊗̂A
is a smooth representation of QLG. This is the representation induced by χ. The space Dχ

(denoted by Dn1n2) in the classical setting appeared for the first time in the monograph [3]
by Gelfand and collaborators. To commemorate this fact we call the spaces Dχ the Gelfand
spaces.

14



Remark. Let us note that the set of all characters of the parabolic group P is an abelian
group with involution. Indeed, if χ is a character of P then χ = t2J3⊗zn and χ∗ := t

2J3⊗z−n

is a conjugate character. If χ′ = (t′)2J3 ⊗ zn′ is another character then χχ′ = (tt′)2J3 ⊗ zn+n′

is again a character and clearly χ′χ = χχ′. One can easily show that for x ∈ Dχ, x′ ∈ Dχ′

we have x∗ ∈ Dχ∗ , xx′ ∈ Dχ·χ′ and this structure on the set of Gelfand spaces reflects the
structure of the set of all characters. Moreover remembering that the comultiplcation ∆ is a
*-homomorphism one can check that the conjugation ∗ : Dχ −→ Dχ∗ and the multiplication
m : Dχ ⊗Dχ′ −→ Dχχ′ are intertwining maps.

At the end of this section we compute the invariants of vχ such as spin spectrum and the
values of the Casimir operators. We shall use Casimir operators of the form (C.16). The
corresponding Casimir operators for the representation vχ are obtained by restriction to the
Gelfand space Dχ and will be denoted by

C(vχ) = (id⊗Ψ)(∆|Dχ), C ′(vχ) = (id⊗Ψ′)(∆|Dχ). (2.11)

Any representation v of QLG may be restricted to SqU(2). We shall use the shortened
notation:

Sp v := Sp (v|SqU(2)) (2.12)

for the spin spectrum of the restricted representation.

Theorem 2.4
Let χ = q−(n1+n2−2)J3 ⊗ zn, (n1, n2 ∈ C, n = n1 − n2 ∈ Z) be the character of the

parabolic subgroup P and vχ be the induced representation of QLG acting on the Gelfand
space Dχ. Then

1. The spin spectrum of vχ is simple and coincides with Sn.

2. The Casimir operators are multiples of the identity

C(vχ) = cχ idDχ , C ′(vχ) = c′χ idDχ (2.13)

and cχ = −(qn1 + q−n1), c′χ = −(qn2 + q−n2).

Proof. The representation vχ restricted to SqU(2) is equivalent to vc = ∆c|Zn and the
Statement 1 follows immediately from (2.7).
To compute the Casimir operator C(vχ) (cf.(2.11) and (C.15)) we calculate C(vχ)a := (id ⊗
Ψ)vχ(a) for a ∈ Dχ ⊂ A. Remembering that the functional Ψ is in the convolution center of
the algebra A′ and using Proposition C.1 we get C(vχ)a = (Ψ⊗id)vχ(a). Since vχ(a) ∈ Dχ⊗A
we have to find Ψ|Dχ .

Let a = q−λJ3 ⊗ ac, where ac ∈ Zn and λ = n1 + n2 − 2. Using (B.22) we get

ψo|Zn = q
n
2 ec and ψ̄o|Zn = q−

n
2 ec.

By (B.27)

ψα(q−λJ3) = q−
λ
2 , ψα∗(q−λJ3) = q

λ
2 , ψγ(q−λJ3) = 0 = ψγ∗(q−λJ3)
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and it means that these functionals restricted to the one-dimensional subspace of Aη
d spanned

by q−λJ3 are multiples of the functional ed : ψα = q−
λ
2 ed, ψα∗ = q

λ
2 ed, ψγ = ψγ∗ = 0.

Therefore
Ψ|Dχ =

[
(1− q2)ψγ ⊗ ψ+ − qψα∗ ⊗ ψo − q−1ψα ⊗ ψ̄o

]
Dχ

= (−q
λ+n

2
+1 − q−

λ+n
2
−1) ed ⊗ ec = cχe

and
C(vχ)a = cχ(e⊗ id)∆a = cχ a.

In the same manner one shows that

Ψ′|Dχ =
[
(1− q2)ψγ∗ ⊗ ψ− − qψα∗ ⊗ ψ̄o − q−1ψα ⊗ ψo

]
Dχ

= c′χed ⊗ ec = c′χe

and C ′(vχ)a = c′χ(e⊗ id)∆a = c′χ a. The Statement 2 is proven.
2

Remark. Let us remind that * - operation is an involutive intertwining map on the set
of Gelfand spaces corresponding to the conjugation of the characters (Dχ)∗ = Dχ∗ . One can
easily check that for χ = (n1, n2) it is given by

(n1, n2)∗ = (n̄2, n̄1). (2.14)

Therefore we have cχ∗ = c′χ and c′χ∗ = c̄χ.

3 Invariant bilinear functionals on Gelfand spaces

We shall consider bilinear functionals on pairs of Gelfand spaces. Since the spaces carry the
representations of the quantum Lorentz group, the subset of invariant bilinear functionals is
distinguished. It turns out that for a given pair of spaces there exists at most one (up to a
scalar multiple) invariant functional. Moreover a non-zero invariant bilinear functional exists
only for special pairs of Gelfand spaces (cf. Theorem 4.9 and Definition 3.4).

We shall use the following notation. For a given character χ, (n1, n2) will denote the pair
of complex numbers related to χ via (1.21):

χ = q−(n1+n2−2)J3 ⊗ zn1−n2 = q−λJ3 ⊗ zn,

where
λ := n1 + n2 − 2 and n := n1 − n2.

The difference n must be real integer. Therefore the imaginary parts of n1 and n2 are
the same. They are defined mod( 2π

log q ) and we fix (n1, n2) assuming that

=n1 = =n2 ∈
[
0,

−2π

log q

[
. (3.1)
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The reader should notice that q < 1.
The corresponding Gelfand space is Dχ = q−λJ3 ⊗ Zn (cf. Theorem 2.2) and the induced
action vχ = ∆|Dχ of the quantum Lorentz group is

vχ(q−λJ3⊗ac) := (idd⊗σ−1⊗idc)(∆d⊗∆c)(q−λJ3⊗ac) = q−λJ3⊗
[
(σ−1 ⊗ idc)(q−λJ3 ⊗∆cac)

]
.

To abbreviate the notation the standard first factor q−λJ3 will often be omitted: Zn carries
the quantum Lorentz group representation

vλ(ac) := (σ−1 ⊗ idc)(q−λJ3 ⊗∆cac) (3.2)

and the isomorphism
Zn 3 ac −→ q−λJ3 ⊗ ac ∈ Dχ

intertwines vλ with vχ. To pay attention to this omition we shall speak about truncated no-
tation. In this sense vλ action on Zn is the truncated version of vχ action on Dχ.

Let χ and χ′ be characters of P. We shall use “prime” to denote the parameters related
to χ′ : λ′ := n′1 + n′2 − 2, n′ := n′1 − n′2, χ′ = q−λ′J3 ⊗ zn′ .

Gelfand spaces are countable dimensional. Therefore the projective tensor product coin-
cides with the algebraic one: Dχ⊗̂Dχ′ = Dχ ⊗ Dχ′ . Dχ ⊗ Dχ′ is subject to tensor product
action vχχ′ :

vχχ′ = vχ©> vχ′ = m̂(vχ ⊗ vχ′),

where m̂ is the multiplication map

m̂ : Dχ⊗̂A⊗̂Dχ′⊗̂A −→ (Dχ ⊗Dχ′)⊗̂A.

This is the continuous linear mapping such that

m̂(x⊗ a⊗ y ⊗ b) = x⊗ y ⊗ ab

for any x ∈ Dχ, y ∈ Dχ′ , a, b ∈ A. With leg numbering notation vχχ′ = (vχ)13 (vχ′)23.
Passing to level of Zn spaces we obtain the truncated version of the action vλλ′ : Zn ⊗

Zn′ −→ (Zn ×Zn′)⊗̂A, where

vλλ′ = vλ©> vλ′ = (vλ)13 (vλ′)23. (3.3)

We may identify bilinear functionals f on Dχ ×Dχ′ with linear functionals on Dχ ⊗Dχ′

and (using the truncated notation) with linear functionals on Zn ⊗Zn′

f(q−λJ3 ⊗ ac, q−λ′J3 ⊗ a′c) = f(q−λJ3 ⊗ ac ⊗ q−λ′J3 ⊗ a′c) = f(ac ⊗ a′c)

for any ac ∈ Zn, a′c ∈ Zn′ .
Let f be a linear functional on Zn ⊗Zn′ . We say that f is a vλλ′-invariant functional if

(f ⊗ idA)vλλ′(x⊗ y) = f(x⊗ y)IA (3.4)
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for any x ∈ Zn, y ∈ Zn′ . Equivalently one can say that f intertwines the quantum Lorentz
group action vλλ′ on Zn ⊗Zn′ and the trivial action on C.

Let vλλ′
c , vλλ′

d be the restrictions of vλλ′ to the subgroups SqU(2) and ̂SqU(2) :

vλλ′
c := (id⊗ (ed ⊗ idc))vλλ′ , vλλ′

d := (id⊗ (idd ⊗ ec))vλλ′ . (3.5)

Clearly f is an QLG-invariant functional if and only if it is vλλ′
c and vλλ′

d -invariant. Due to
this fact the problem of finding of all QLG-invariant functionals can be solved in two steps.

At the first step we consider SqU(2)-invariance.
Applying id⊗ (ed ⊗ idc) to both sides of (3.2) we see that for any a ∈ Zn

vλ
c (a) = ∆ca

i.e. vλ
c = ∆c |Zn . Therefore vλλ′

c is the natural action of SqU(2) on a tensor product Zn⊗Zn′ .
Using the leg numbering notation we have (cf.(3.3))

vλλ′
c (x⊗ y) = ∆c(x)13∆c(y)23

for any x ∈ Zn, y ∈ Zn′ . A linear functional f on Zn ⊗Zn′ is SqU(2)-invariant if

(f ⊗ idc)(∆c(x)13∆c(y)23) = f(x⊗ y)Ic. (3.6)

To describe SqU(2)-invariant functionals on Zn⊗Zn′ we recall the basic concepts concerning
SqU(2) group.

For any a ∈ Ac, φ, φ′ ∈ A′c we set (cf. e.g. [15] p.129-130; [16] p.626)

φ′ ∗ a := (idc ⊗ φ′)∆c(a),

a ∗ φ := (φ⊗ idc)∆c(a),

φ ∗ φ′ := (φ⊗ φ′)∆c

(3.7)

Then φ′ ∗ a, a ∗ φ ∈ Ac, φ ∗ φ′ ∈ A′c and

(φ′ ∗ φ)(a) = φ(a ∗ φ′) = φ′(φ ∗ a). (3.8)

If h is the Haar measure on SqU(2) then

h ∗ a = a ∗ h = h(a)Ic (3.9)

for any a ∈ Ac.

We briefly describe the graded structure of the algebra Ac.
Let k, l ∈ 1

2Z be any half-integers and (fz)z∈C be the family of multiplicative functionals in
A′c defined in [16], Theorem 5.6. We say that a ∈ Ac is a left-homogeneous element of degree
k if

a ∗ fz = q2kza (3.10)
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and a ∈ Ac is a right-homogeneous element of degree l if

fz ∗ a = q2lza. (3.11)

Clearly the set of left(right)-homogeneous elements of a given degree is a vector space. More-
over by Theorem 5.6,4o of [16] one can easily check that if a is a left(right)-homogeneous
element of the degree k (l respectively) then a∗ is a left(right)-homogeneous element of the
degree (-k) ((-l) respectively).

We say that a ∈ Ac is a homogeneous element of the degree (k,l) if it is a left-homogeneous
element of the degree k and a right-homogeneous element of the degree l. We denote by Jk,l

the vector space of homegeneous elements of degree (k, l). Then Jk,l
∗ = J−k,−l and from mul-

tiplicativity of fz it follows that Jk,l · Jk′,l′ ⊂ Jk+k′,l+l′ .
It is known (cf.Appendix B) that any matrix element us

kl is a homogeneous element of
degree (k, l). These elements form a linear basis of Ac. Therefore

( Jk,l 6= {0} ) ⇐⇒ ( k − l ∈ Z ).

Let k, l ∈ 1
2Z, k − l ∈ Z and

s(k, l) := max{| k |, | l |}. (3.12)

Then
Jk,l = {us

kl : s = s(k, l), s(k, l) + 1, s(k, l) + 2, ...}linear span. (3.13)

Moreover Zn =
∑⊕

l Jn
2

,l is the space of all left-homegeneous elements of the degree n
2 (cf.Proposition

2.1) and Ac =
∑⊕

k,l Jk,l.

By Theorem 1.2 of [15] the elements of the form

apnm = (αc)p(γc)n(γcγ
∗
c )m,

where p, n ∈ Z, m = 0, 1, 2, ... ((αc)p denotes αp
c for p = 0, 1, 2, 3, ... and (α∗c)−p for

p = −1,−2, .... The same rule applies to (γc)n.) also form a linear basis of Ac consisting
of homogeneous elements since they are products of the matrix elements of the fundamental
representation. It is clear that apmn is of degree (1

2(−p + m), 1
2(−p−m)).

For k, l ∈ 1
2Z, k − l ∈ Z and m = 0, 1, 2... we set

x
(m)
2k,2l := (αc)−(k+l)(γc)k−l(γcγ

∗
c )m. (3.14)

Then
Jk,l = {x(m)

2k,2l : m = 0, 1, 2, ...}linear span. (3.15)

Let ψ ∈ A′c. We say that ψ is supported by Jk,l if ψ vanishes on Jm,n : Jm,n ⊂ kerψ for
all (m,n) 6= (k, l). For example the Haar functional h is supported by J0,0 because

h ((αc)p(γc)n(γcγ
∗
c )m) = δp0 δn0

1− q2

1− q2(m+1)
, (3.16)

(cf.[16, page 660]).
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We shall use the bimodule structure of A′c. For any a, b ∈ Ac and φ ∈ A′c, b φ a is the
linear functional such that

(b φ a)(x) := φ(axb)

for any x ∈ Ac.
One can easily prove

Lemma 3.1

{ (bh) ∗ a : a ∈ Zn, b ∈ Zn′ }linear span =





Jn
2

,−n′
2

for n = n′(mod2)

{0} for n 6= n′(mod2)
. (3.17)

Proof. Indeed setting a = us
n
2

j (s ∈ Sn, j = −s, ...s) and b = us′
n
2
′l (s′ ∈ Sn′ , l = −s′, ...s′) we

get

(bh) ∗ a = (idc ⊗ h)∆c(a)(Ic ⊗ b) =
s∑

p=−s

us
n
2

ph(us
pju

s′
n
2
′l).

Using the orthogonality relations [16, Theorem 5.7] and (B.21) we have

h(us
iju

s′
kl) = δss′δi,−kδj,−l(−1)k−lq−(k+l) q2s 1− q2

1− q2(2s+1)
.

Therefore

(bh) ∗ a = δss′δj,−l(−1)
n
2
′−lq−(n

2
′+l)q2s 1− q2

1− q2(2s+1)
us

n
2

,−n
2
′

and the result follows by (2.4) and (3.13).
2

We shall formulate the main result concerning the SqU(2)-invariant functionals.

Proposition 3.2
Let n, n′ ∈ Z and f be a SqU(2) invariant functional on Zn ⊗Zn′ .
Then there exists the unique linear functional ψ ∈ A′c supported by Jn

2
,−n′

2

such that

f(a⊗ b) = ψ((bh) ∗ a) (3.18)

for any a ∈ Zn, b ∈ Zn′ .
Conversely for any linear functional ψ ∈ A′c, formula (3.18) defines a SqU(2)-invariant
functional on Zn ⊗Zn′ .

Remark 1. Equivalently the right hand side of (3.18) may be written as h((a ∗ ψ)b).
Remark 2. Any SqU(2)-invariant linear functional on Ac ⊗ Ac defines by restriction an

invariant functional on Zn ⊗ Zn′ . Conversely the right-hand side of (3.18) is meaningfull for
any a, b ∈ Ac and gives the extension of f to the (∆c©> ∆c)-invariant functional on the whole
Ac ⊗Ac. If ψ is supported by Jn

2
,−n′

2

then the extension restricted to Zm ⊗Zm′ vanishes for

(m,m′) 6= (n, n′).
On the other hand for any m, m′ the space Zm ⊗ Zm′ is SqU(2)-invariant and Ac ⊗ Ac =
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∑⊕
m,m′ Zm ⊗ Zm′ . Putting f(a ⊗ b) = 0 whenever a ∈ Zm, b ∈ Zm′ and (m, m′) 6= (n, n′) we

extend the left-hand side of (3.18) to the SqU(2)-invariant functional on the whole Ac⊗Ac. We
call this extension the natural one and denote it by the same letter. Therefore the support
property of ψ ensures that both extensions coincide and the formula (3.18) holds for any
a, b ∈ Ac.

Proof: The uniqueness of the functional ψ follows immediately from (3.17).
For any x, y ∈ Ac we set

W (x⊗ y) := ∆c(x)(Ic ⊗ y) (3.19)

By [16, Theorem 4.9] W : Ac ⊗ Ac −→ Ac ⊗ Ac is a bijective linear map (denoted by s′ in
[16]).

Let ic denote the trivial action of SqU(2) on Ac : ic(x) = x ⊗ Ic for any x ∈ Ac. Using
the coassociativity of ∆c one can easily check that

(W ⊗ idc)(∆c©> ∆c) = (ic©> ∆c)W (3.20)

i.e. W is an intertwining map for the ∆c©> ∆c and ic©> ∆c actions of SqU(2) on Ac ⊗Ac.
Assume that f is a SqU(2) invariant functional on Zn ⊗Zn′ . Denoting by the same letter

its natural extension to a (∆c©> ∆c)-invariant functional on Ac ⊗Ac we see that f ◦W−1 is
the (ic©> ∆c)-invariant functional on Ac ⊗Ac and for any a ∈ Ac the linear functional

Ac 3 b −→ f ◦W−1(a⊗ b) ∈ C (3.21)

is ∆c-invariant. Therefore it is a multiple of the Haar functional h :

f ◦W−1(a⊗ b) = ψ(a)h(b) (3.22)

where the coefficient ψ(a) depends linearly on a ∈ Ac : ψ ∈ A′c. We have f ◦W−1 = ψ ⊗ h
and

f = (ψ ⊗ h) ◦W. (3.23)

Now (3.18) follows easily: for any a ∈ Zn and b ∈ Zn′ we have

f(a⊗ b) = (ψ ⊗ h)W (a⊗ b) = (ψ ⊗ h)(∆c(a)[Ic ⊗ b]) = h((a ∗ ψ)b).

We have to find the support of the functional ψ. Inserting in (3.22) b = Ic we get

ψ(a) = f ◦W−1(a⊗ Ic).

Taking into account the formula (4.36) of [16] we get

ψ(a) = f ◦ (idc ⊗ κc) ◦∆c(a),

where κc is the co-inverse related to SqU(2).
If a = us

m
2

,−m′
2

, then using (5.5) of [16] we obtain

(idc ⊗ κc)∆c(a) =
s∑

p=−s

us
m
2

,p ⊗ (us
−m′

2
,p
)∗.
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It shows that (idc ⊗ κc)∆c(a) ∈ Zm ⊗ Zm′ . If (m, m′) 6= (n, n′) then f |Zm⊗Zm′ = 0 and
ψ(a) = 0. It means that ψ is supported by Jn

2
,−n′

2

.

Now let ψ ∈ A′c. Then ψ⊗h intertwines (ic©> ∆c)-action on Ac⊗Ac with the trivial action
of SqU(2) on C. Consequently (ψ⊗ h) ◦W intertwines (∆c©> ∆c)-action on Ac⊗Ac with the
trivial action on C. In other words (ψ⊗ h) ◦W is a SqU(2)- invariant functional on Ac ⊗Ac.
A simple computation shows that (ψ ⊗ h) ◦W restricted to Zn ⊗Zn′ coincides with (3.18):

(ψ ⊗ h)W (a⊗ b) = (ψ ⊗ h) (∆c(a)(Ic ⊗ b)) = (ψ ⊗ b · h)∆ca = h((a ∗ ψ)b)

for any a ∈ Zn and b ∈ Zn′ .
2

Now we investigate the ̂SqU(2)-invariance.
We know that vλλ′

d is a linear map

vλλ′
d : Zn ⊗Zn′ −→ (Zn ⊗Zn′)⊗̂Aη

d =
∑

s∈S

⊕Zn ⊗Zn′ ⊗B(Hs).

Therefore vλλ′
d is a collection of maps {(vλλ′

d )s : s ∈ S} where (vλλ′
d )s : Zn ⊗ Zn′ −→

Zn ⊗ Zn′ ⊗ B(Hs) is the s-component of vλλ′
d . Using the canonical basis of B(Hs) one may

identify elements of B(Hs) with (2s + 1)× (2s + 1) matrices with complex entries. Therefore
(
vλλ′
d

)s
=

((
vλλ′
d

)s

ab

)
a,b=−s,−s+1,...s

,

where
(
vλλ′
d

)s

ab
are linear maps acting on Zn ⊗Zn′ .

Clearly (
vλλ′
d

)s

ab
= (id⊗ ξs

ab)v
λλ′
d , (3.24)

where ξs
ab are linear functionals on Aη

d considered in Appendix B.
A linear functional f : Zn ⊗Zn′ −→ C is vλλ′

d -invariant if and only if

(f ⊗ idd)vλλ′
d (x⊗ y) = f(x⊗ y)Id (3.25)

It means that
(f ⊗ ξ)vλλ′

d (x⊗ y) = f(x⊗ y)ξ(Id) (3.26)

for all ξ ∈ (Aη
d)
′. Remembering that vλλ′

d is a representation one can easily show that the set
of functionals ξ satisfying (3.26) is closed under convolution product. Therefore it is enough

to verify it for functionals ξ = ξ
1
2
ab, (a, b = ±1

2) (cf. Appendix B). It shows that (3.25) is
equivalent to

(f ⊗ ξ
1
2
ab)v

λλ′
d (x⊗ y) = f(x⊗ y)ξ

1
2
ab(Id). (3.27)

Clearly ξ
1
2
ab(Id) = δab. Formula (3.24) shows that

(f ⊗ ξ
1
2
ab)v

λλ′
d = f ◦ (vλλ′

d )
1
2
ab.
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Combining this result with (3.27) we see that f is ̂SqU(2) invariant if and only if

f ◦ (vλλ′
d )

1
2
ab = δab f (3.28)

for any a, b = ±1
2 .

Now we look at vλλ′
d in more detail.

Applying id⊗ (idd ⊗ ec) to both sides of (3.2) we get

vλ
d (x) = σ−1(q−λJ3 ⊗ x) = τ [u∗(q−λJ3 ⊗ x)u ]

for any x ∈ Zn. A similar formula holds for vλ′
d . Therefore using (3.3)

vλλ′
d (x⊗ y) = {τ [ u∗(q−λJ3 ⊗ x)u ] }13{τ [ u∗(q−λ′J3 ⊗ y)u ] }23

for any x ∈ Zn, y ∈ Zn′ and

(vλλ′
d )s(x⊗ y) = {τ [ (us)∗(q−λJs

3 ⊗ x)us ] }13{τ [ (us)∗(q−λ′Js
3 ⊗ y)us ] }23.

Inserting s = 1
2 and rewriting the formula in terms of matrix elements we get

(vλλ′
d )

1
2
ab(x⊗ y) =

∑

mkl

q−kλ−lλ′(u
1
2
ka)

∗xu
1
2
km ⊗ (u

1
2
lm)∗yu

1
2
lb. (3.29)

Remembering that (vλλ′
d )

1
2
ab is a linear mapping acting on Zn ⊗Zn′ we conclude that

∑
mkl q

−kλ−lλ′(u
1
2
ka)

∗xu
1
2
km ⊗ (u

1
2
lm)∗yu

1
2
lb ∈ Zn ⊗ Zn′ for any x ∈ Zn and y ∈ Zn′ . Comparing

(3.28) with (3.29) we obtain the following result

Proposition 3.3
Let f be a functional on Zn ⊗Zn′ . f is vλλ′

d -invariant if and only if

∑

mkl

q−kλ−lλ′f((u
1
2
ka)

∗xu
1
2
km ⊗ (u

1
2
lm)∗yu

1
2
lb) = f(x⊗ y)δab (3.30)

for any x ∈ Zn, y ∈ Zn′ and a, b = ±1
2 . The summation is over all m, k, l ∈ {1

2 ,−1
2}.

Let f be vλλ′-invariant functional on Zn ⊗Zn′ . Then f satisfies (3.30) and is of the form
(3.18) where ψ is a linear functional supported by Jn

2
,−n′

2

. Then for any x, y ∈ Ac

ψ

(∑

klm

q−kλ−lλ′
(

(u
1
2
lm)∗yu

1
2
lb · h

)
∗

(
(u

1
2
ka)

∗xu
1
2
km

))
= ψ((yh) ∗ x)δab. (3.31)

Indeed if x ∈ Zp and y ∈ Zp′ , then (u
1
2
ka)

∗xu
1
2
km ∈ Zp, (u

1
2
lm)∗yu

1
2
lb ∈ Zp′ and by (3.17) the

arguments of ψ in (3.31) belong to J p
2
,− p′

2

. If (p, p′) 6= (n, n′) then both sides of (3.31) vanish
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due to the support property of ψ. If (p, p′) = (n, n′) then (3.31) follows immediately from
(3.18). Conversely if ψ is a linear functional on Ac supported by J p

2
,− p′

2

and satisfies (3.31)

then the functional f on Zn ⊗Zn′ inntroduced by (3.18) is vλλ′
d -invariant.

We shall use Sweedler notation ∆cx = x(1) ⊗ x(2), yh ∗ x = x(1) h(x(2)y). We know that

u
1
2 is unitary:

∑
m

u
1
2
pm(u

1
2
lm)∗ = δpl Ic. Using this relation we compute

∑
m

(
(u

1
2
lm)∗yu

1
2
lb · h

)
∗

(
(u

1
2
ka)

∗xu
1
2
km

)
=

∑
mrp

(u
1
2
kr)

∗x(1)u
1
2
kp h

(
(u

1
2
ra)∗x(2)u

1
2
pm(u

1
2
lm)∗yu

1
2
lb

)

=
∑
r

(u
1
2
kr)

∗x(1)u
1
2
kl h

(
(u

1
2
ra)∗x(2)yu

1
2
lb

)

and ∑

klm

q−kλ−lλ′
(

(u
1
2
lm)∗yu

1
2
lb · h

)
∗

(
(u

1
2
ka)

∗xu
1
2
km

)
= Ωab(x(1) ⊗ x(2)y), (3.32)

where Ωab : Ac ⊗Ac → Ac is the linear map such that

Ωab(x⊗ y) :=
∑

klr

q−kλ−lλ′(u
1
2
kr)

∗xu
1
2
kl h

(
(u

1
2
ra)∗yu

1
2
lb

)
. (3.33)

Therefore (3.31) is equivalent to

ψ
(
Ωab(x(1) ⊗ x(2)y)

)
= ψ

(
(id⊗ h)(x(1) ⊗ x(2)y)

)
δab. (3.34)

According to (3.19), x(1)⊗x(2)y = W (x⊗y). Remembering that W maps Ac⊗Ac onto Ac⊗Ac

we see that (3.34) is equivalent to

ψ (Ωab(x⊗ y)) = (ψ ⊗ h)(x⊗ y)δab.

This equation combined with (3.33) leads to the following definition

Definition 3.4
Any functional ψ ∈ A′c supported by Jn

2
,−n′

2

and such that

∑

klr

q−kλ−lλ′ψ

(
(u

1
2
kr)

∗xu
1
2
kl

)
h

(
(u

1
2
ra)∗yu

1
2
lb

)
= ψ(x) · h(y) δab (3.35)

for any x, y ∈ Ac and any a, b = ±1
2 is called a (χ, χ′)-spherical functional.

We say that a pair (χ, χ′) of characters is admissible whenever there exists a non-zero (χ, χ′)-
spherical functional.

Therefore we have proved (in the complete notation)

24



Theorem 3.5
The linear functional f on Dχ ⊗ Dχ′ is vχχ′-invariant if and only if there exists a (χ, χ′)-
spherical functional ψ ∈ A′c such that

f(q−λJ3 ⊗ a⊗ q−λ′J3 ⊗ b) = ψ((bh) ∗ a)

= h((a ∗ ψ)b)

for any a ∈ Zn and b ∈ Zn′ . In particular Dχ×Dχ′ carries a non-zero invariant bilinear form
if and only if the pair (χ, χ′) is admissible.

The equation (3.35) characterizing (χ, χ′)-spherical functionals is still very complicated.
It involves two variables a, b running over Ac. The following Lemma introduces some simpli-
fication.

Lemma 3.6
Let ψ ∈ A′c. Then the following conditions are equivalent
i) ψ satisfies the equations (3.35),
ii)

ψ(αcxγc) = q1+λψ(γcxαc)

ψ(γ∗c xα∗c) = q1+λψ(α∗cxγ∗c )

ψ(qλα∗cxαc + γ∗c xγc) = q
1
2
(λ−λ′)−2ψ(x)

ψ(q−λαcxα∗c + q2γcxγ∗c ) = q
1
2
(λ′−λ)+2ψ(x)

(3.36)

for any x ∈ Ac.

Proof: To make the notation shorter we replace the indices −1
2 , 1

2 by −, + respectively.
For any a, b, l, r ∈ {−, +} and x, y ∈ Ac we set

Lrl(x) = q−lλ′ψ




∑

k=± 1
2

q−kλ(u
1
2
kr)

∗xu
1
2
kl


 , (3.37)

hlbra(y) = h

(
(u

1
2
ra)∗yu

1
2
lb

)
.

Then Lrl and hlbra = u
1
2
lb · h · (u

1
2
ra)∗ are linear functionals on Ac. Equations (3.35) take the

form ∑

rl

Lrl(x) hlbra(y) = δab ψ(x) h(y). (3.38)
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All summands are presented in Table 1.

Table 1

l b r a u
1
2
lb u

1
2
ra hlbra Lrl l b r a u

1
2
lb u

1
2
ra hlbra Lrl

−−−− αc αc αc · h · α∗c L−− −+−+ −qγ∗c −qγ∗c q2γ∗c · h · γc L−−
−−+− αc γc αc · h · γ∗c L+− −+ ++ −qγ∗c α∗c −qγ∗c · h · αc L+−
+−−− γc αc γc · h · α∗c L−+ + +−+ α∗c −qγ∗c −qα∗c · h · γc L−+

+−+− γc γc γc · h · γ∗c L++ + + ++ α∗c α∗c α∗c · h · αc L++

−+−− −qγ∗c αc −qγ∗c · h · α∗c L−− −−−+ αc −qγ∗c −qαc · h · γc L−−
−+ +− −qγ∗c γc −qγ∗c · h · γ∗c L+− −−++ αc α∗c αc · h · αc L+−
+ +−− α∗c αc α∗c · h · α∗c L−+ +−−+ γc −qγ∗c −qγc · h · γc L−+

+ + +− α∗c γc α∗c · h · γ∗c L++ +−++ γc α∗c γc · h · αc L++

At first we shall show that equations (3.38) imply that

L−+ = 0 = L+−. (3.39)

Indeed taking (a, b) = (+,−) in (3.38) we get

L−−(x) h−−−+(y) + L++(x)h+−++(y) + L−+(x) h+−−+(y) + L+−(x) h−−++(y) = 0.

Putting y = (γ∗c )2 and using (3.16) we get

h−−−+((γ∗c )2) = h+−++((γ∗c )2) = h−−++((γ∗c )2) = 0,

h+−−+((γ∗c )2) = −q(1− q2)(1− q6)−1 6= 0.

Therefore L−+ = 0. Putting y = (α∗c)2 we get in the same manner that the only nonzero
coefficient is

h−−++((α∗c)2) = h(αcα
∗
cα
∗
cαc) = h((Ic − q2γcγ

∗
c )(Ic − γ∗c γc)) = q2(1− q2)(1− q6)−1

and L+− = 0.
Due to (3.39), the sum on the left hand side of (3.38) reduces to two terms. This way we
showed that the equations (3.38) are equivalent to

L+− = 0 = L−+,

L−− ⊗ h−+−− + L++ ⊗ h+++− = 0,

L−− ⊗ h−−−+ + L++ ⊗ h+−++ = 0,

L−− ⊗ h−−−− + L++ ⊗ h+−+− − ψ ⊗ h = 0,

L−− ⊗ h−+−+ + L++ ⊗ h++++ − ψ ⊗ h = 0.

(3.40)
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Now using the fact that h(ab) = h(b(f1 ∗ a ∗ f1)) (cf. e.g. [16], (5.20) or [19], (2.21)) and
f1 ∗ us

kl ∗ f1 = q2(k+l)us
kl (us

kl is a homogeneous element of degree (k, l)) we obtain

h · αc = q−2αc · h, h · α∗c = q2α∗c · h, h · γc = γc · h, h · γ∗c = γ∗c · h.

Then
h−+−− = −qγ∗c · h · α∗c = −q3γ∗c α∗c · h = −q4α∗cγ∗c · h = −q4(α∗c · h · γ∗c ) = −q4h+++−.

In the same manner we get
h−−−+ = −qαc · h · γc = −qαcγc · h = −q2γcαc · h = −q4(γc · h · αc) = −q4h+−++

and
h−−−− = αc · h · α∗c = q2αcα

∗
c · h = q2(Ic − q2γcγ

∗
c ) · h = q2h − q4h+−+−,

h++++ = α∗c · h · αc = q−2α∗cαc · h = q−2(Ic − γcγ
∗
c ) · h = q−2h − q−4h−+−+.

Therefore the last four equations in (3.40) take the form

(L++ − q4L−−)⊗ h+++− = 0,

(L++ − q4L−−)⊗ h+−++ = 0,

(L++ − q4L−−)⊗ h+−+− + (q2L−− − ψ)⊗ h = 0,

(L−− − q−4L++)⊗ h−+−+ + (q−2L++ − ψ)⊗ h = 0.

Having in mind that h+++−, h+−++ are non-zero functionals we see that equations (3.35) are
equivalent to

L+− = 0 = L−+,

L−− = q−2ψ, L++ = q2ψ.
(3.41)

In particular L++ = q4L−−.
The values of Lrl (cf.(3.37)) corresponding to all possible choices r, l = ±1

2 are presented in
Table 2.

Table 2

r l u
1
2
+,r u

1
2
+,l u

1
2−,r u

1
2
−,l Lrl(x)

+− α∗c γc −qγ∗c αc q
1
2
λ′ψ(q−

1
2
λαcxγc − q1+ 1

2
λγcxαc)

−+ γc α∗c αc −qγ∗c q−
1
2
λ′ψ(q−

1
2
λγ∗c xα∗c − q1+ 1

2
λα∗cxγ∗c )

−− γc γc αc αc q
1
2
λ′ψ(q−

1
2
λγ∗c xγc + q

1
2
λα∗cxαc)

++ α∗c α∗c −qγ∗c −qγ∗c q−
1
2
λ′ψ(q−

1
2
λαcxα∗c + q2+ 1

2
λγcxγ∗c )

(3.42)
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Now we see that the equations (3.41) coincide with (3.36). Therefore (3.35) and (3.36) are
equivalent and this ends the proof.

2

Now we are ready to formulate the result which allows to select the pairs of Gelfand spaces
with non-zero Lorentz invariant bilinear functionals.

Lemma 3.7
Let ψ ∈ A′c. Then the following conditions are equivalent
i) ψ is a (χ, χ′)- spherical functional;
ii) ψ is supported by Jn

2
,−n′

2

and for any x ∈ Ac :

ψ(αcx) = q
1
2
(λ+λ′)+2ψ(xαc)

ψ(α∗cx) = q−
1
2
(λ+λ′)−2ψ(xα∗c)

ψ(γcx) = q−
1
2
(λ−λ′)ψ(xγc)

ψ(γ∗c x) = q
1
2
(λ−λ′)ψ(xγ∗c )

(3.43)

In particular
ψ(γcγ

∗
c x) = ψ(xγcγ

∗
c ). (3.44)

Proof: We have to show that equations (3.43) are equivalent to (3.36). By straightforward
calculation we get that (3.43) implies (3.36). Conversely assume (3.36). By the second
equation of (3.36) we have

ψ(γ∗c xα∗cγc) = q−1ψ(γ∗c xγcα
∗
c) = qλψ(α∗cxγcγ

∗
c ).

Inserting x → xα∗c in the third equation of (3.36) and using above equality we obtain on the
left hand side

ψ(qλα∗cxα∗cαc + γ∗c xα∗cγc) = ψ(qλα∗cx[Ic − γ∗c γc] + q−1γ∗c xγcα
∗
c)

= qλψ(α∗cx[Ic − γ∗c γc] + α∗cxγcγ
∗
c ) = qλψ(α∗cx).

Therefore
qλψ(α∗cx) = q

1
2
(λ−λ′)−2ψ(xα∗c).

Clearly this is equivalent to the second equation of (3.43). In the same manner inserting
x → αcx in the third equation of (3.36) and using the first one we get

q
1
2
(λ−λ′)−2ψ(αcx) = ψ(qλα∗cαcxαc + γ∗c αcxγc) = ψ(qλα∗cαcxαc + q−1αcγ

∗
c xγc)

= qλψ(α∗cαcxαc + γ∗c γcxαc) = qλψ(xαc)
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and this is the first equation of (3.43). Combining this two equations we have ψ(α∗cαcx) =
ψ(xα∗cαc) and since γ∗c γc = Ic − α∗cαc this proves (3.44).
Now inserting x → α∗cx in the first equation of (3.36) we get on left hand side

ψ(αcα
∗
cxγc) = ψ([Ic − q2γcγ

∗
c ]xγc) = ψ(xγc)− q2ψ(γ∗c γcxγc)

and on the right hand side using the third equation of (3.36)

q1+λψ(γcα
∗
cxαc) = q2qλψ(α∗cγcxαc) = q2[q

1
2
(λ−λ′)−2ψ(γcx)− ψ(γ∗c γcxγc)]

= q
1
2
(λ−λ′)ψ(γcx)− q2ψ(γ∗c γcxγc).

Comparing both sides we get the third equation of (3.43). Inserting x → xαc in the second
equation of (3.36) and using again the third equation of (3.36) we prove the fourth equality
in (3.43).

2

Until this point we made our computations for arbitrary χ and χ′. In the further inves-
tigations our methods will depend on specific relations between χ and χ′. We shall have to
consider separately different classes of pairs (χ, χ′). It will be done in the next Section.

4 Admissible pairs of Gelfand spaces

We continue the investigation of bilinear invariant functionals on Gelfand spaces.
Since the coefficients on the right hand side of (3.43) are non-zero for any λ, λ′ therefore for
any a ∈ {αc, α

∗
c , γc, γ

∗
c } and x ∈ Ac we have that ψ(ax) = 0 if and only if ψ(xa) = 0. Let us

also note that it is enough to verify the relations (3.43) only for homogeneous x ∈ Ac. In such
a case ax and xa are homogeneous elements of the same degree. Due to the support property
of ψ, (3.43) gives non-trivial conditions only if ax, xa ∈ Jn

2
,−n′

2

. Let us remind (cf.(3.15),

(3.14)) that

Jn
2

,−n′
2

=
{
(αc) 1

2
(n′−n)(γc) 1

2
(n+n′)(γcγ

∗
c )m : m = 0, 1, 2, ...

}linear span
. (4.1)

Lemma 4.1
Let ψ ∈ A′c be a (χ, χ′)-spherical functional.
Then

1o n1 6= n′1 =⇒ ψ(xγc) = ψ(γcx) = 0 for any x ∈ Ac,

2o n2 6= n′2 =⇒ ψ(xγ∗c ) = ψ(γ∗c x) = 0 for any x ∈ Ac,

3o χ 6= χ′ =⇒ ψ(xγcγ
∗
c ) = ψ(γcγ

∗
c x) = 0 for any x ∈ Ac.
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Proof: Ad 1o. We may assume that x ∈ Ac is a homogeneous element such that xγc ∈
Jn

2
,−n′

2

. Then in view of (4.1) we have that

γcx = q
1
2
(n−n′)xγc

and by the third equation of (3.43) we have

ψ(xγc) = q
1
2
(λ−λ′)ψ(γcx) = q

1
2
(λ−λ′)q

1
2
(n−n′) ψ(xγc).

Since 1
2(λ + n) = 1

2(n1 + n2 − 2 + n1 − n2) = n1 − 1 and 1
2(λ′ + n′) = n′1 − 1 we get

(1− qn1−n′1) ψ(xγc) = 0.

Note that qn1−n′1 = 1 if and only if <n1 = <n′1 and =n1 = =n′1 (mod( 2π
log q )). Since =n1, =n′1 ∈

[0, −2π
log q [ the last condition is equivalent to =n1 = =n′1. Therefore qn1−n′1 = 1 if and only if

n1 = n′1 and this proves 1o.
Ad 2o. We may assume that x ∈ Ac is a homogeneous element such that xγ∗c ∈ Jn

2
,−n′

2

.

Then using again (4.1) we have
γ∗c x = q

1
2
(n−n′)xγ∗c

and using the fourth equation of (3.43) we obtain

ψ(xγ∗c ) = q−
1
2
(λ−λ′)ψ(γ∗c x) = q

1
2
(λ′−λ)q

1
2
(n−n′) ψ(xγ∗c ).

Now 1
2(λ− n) = 1

2(n1 + n2 − 2− n1 + n2) = n2 − 1 and 1
2(λ′ − n′) = n′2 − 1. Therefore

(1− qn2−n′2)ψ(xγ∗c ) = 0

and 2o follows. Combining 1o and 2o we get 3o.
2

In the further analysis some pairs of characters play a distinguished role.

Definition 4.2
Let χ = (n1, n2), χ′ = (n′1, n′2) be characters of the parabolic group n := n1 − n2 and
n′ := n′1 − n′2.
We say that (χ, χ′) is a singular pair whenever

1o. 1
2<(n1 + n′1) and 1

2<(n2 + n′2) are non− negative integers,

2o. 1
2=(n1 + n′1) = 1

2=(n2 + n′2) ∈ {0, −π
log q}.

If (χ, χ′) is a singular pair then we set

mχχ′ := min
{

1
2
<(n1 + n′1),

1
2
<(n2 + n′2)

}
. (4.2)
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Remark. mχχ′ is a real number for any pair (χ, χ′). Since 1
2<(n1 + n′1) − 1

2<(n2 + n′2) =
1
2(n + n′) therefore if (χ, χ′) is singular then n = n′(mod(2)). Conversely if n = n′(mod(2))
then mχχ′ is a non-negative integer if and only if 1

2<(n1 + n′1) and 1
2<(n1 + n′1) are non-

negative integers.
It is also obvious that 1

2=(n1 + n′1) = 1
2=(n2 + n′2) for any (χ, χ′). Due to our choice of the rep-

resentatives n1, n2, n′1, n′2, their imaginary parts belong to [0, −2π
log q [. Therefore 1

2=(n1 + n′1) =
0 if and only if =n1 = =n′1 = 0 = =n2 = =n′2. Also 1

2=(n1 + n′1) = 1
2=(n2 + n′2) = −π

log q if and
only if =n′1 = −=n1 (mod( 2π

log q )) and =n′2 = −=n2 (mod( 2π
log q )).

The following result reveals the meaning of the ”singular pair”.

Lemma 4.3
Let χ = (n1, n2), χ′ = (n′1, n′2) be characters of the parabolic group such that n = n′(mod(2)).
Then 

 (χ, χ′)

is a singular pair


 ⇐⇒


 q

1
2
(λ+λ′+4−|n+n′|)−2m = 1

for some m ∈ {0, 1, 2, ...}


 .

The nonnegative integer m appearing on the right hand side of the above equivalence coincides
with mχχ′ .

Proof: Since

1
4(λ + λ′ + 4− |n + n′|) = 1

4(n1 + n′1 + n2 + n′2 − |n1 + n′1 − n2 − n′2|)

=





1
2(n1 + n′1) for n + n′ ≤ 0

1
2(n2 + n′2) for n + n′ ≥ 0

(4.3)

we have
1
4<(λ + λ′ + 4− |n + n′|) = mχχ′ ,

1
4=(λ + λ′ + 4− |n + n′|) = 1

2=(n1 + n′1).
(4.4)

Now
q

1
2
(λ+λ′+4−|n+n′|)−2m = q2(mχχ′−m)+i=(n1+n′1)

and
q2(mχχ′−m)+i=(n1+n′1) = 1

is possible if and only if m = mχχ′ and =(n1 + n′1) ∈ {0, −2π
log q} and this proves the lemma.

2

Let us remind that for m ∈ {0, 1, 2, ...} by x
(m)
n,−n′ we denoted the element of the linear basis

of Jn
2

,−n′
2

:

x
(m)
n,−n′ := (αc) 1

2
(n′−n)(γc) 1

2
(n+n′)(γcγ

∗
c )m (4.5)

cf.(4.1) and (3.14).
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Lemma 4.4
Let (χ, χ′) be an admissible pair of characters and ψ be a non-zero (χ, χ′)-spherical functional.
Assume that n 6= n′. Then (χ, χ′) is singular and

ψ
(
x

(m)
n,−n′

)
6= 0 ⇐⇒ m = mχχ′ . (4.6)

Proof: We know that n = n′(mod(2)). It is sufficient to consider two cases: n′ > n and
n′ < n.

If n′ > n, then n′ − n ≥ 2 and by (4.5) and the first equation of (3.43) we have

ψ
(
x

(m)
n,−n′

)
= ψ

(
αc(αc) 1

2
(n′−n−2)(γc) 1

2
(n+n′)(γcγ

∗
c )m

)

= q
1
2
(λ+λ′)+2 ψ

(
(αc) 1

2
(n′−n−2)(γc) 1

2
(n+n′)(γcγ

∗
c )mαc

)

= q
1
2
(λ+λ′)+2q−2m− 1

2
|n+n′| ψ

(
x

(m)
n,−n′

)
.

Therefore (
1− q

1
2
(λ+λ′+4−|n+n′|)−2m

)
ψ

(
x

(m)
n,−n′

)
= 0. (4.7)

We shall prove that the same relation holds for n′ < n. In this case n′ − n ≤ −2. By (4.5)
and the second equation of (3.43) we have

ψ
(
x

(m)
n,−n′

)
= ψ

(
α∗c(αc) 1

2
(n′−n+2)(γc) 1

2
(n+n′)(γcγ

∗
c )m

)

= q−
1
2
(λ+λ′)−2 ψ

(
(αc) 1

2
(n′−n+2)(γc) 1

2
(n+n′)(γcγ

∗
c )mα∗c

)

= q−
1
2
(λ+λ′)−2q2m+ 1

2
|n+n′| ψ

(
x

(m)
n,−n′

)

and (4.7) follows. Remembering that ψ is a non-zero functional supported by Jn
2

,−n′
2

and that

elements (4.5) form a linear basis of Jn
2

,−n′
2

we see that the equation

q
1
2
(λ+λ′+4−|n+n′|)−2m = 1 (4.8)

is satisfied by a non-negative integer m. Now Lemma 4.3 shows that (χ, χ′) is singular. Re-
membering that m = mχχ′ is the only solution of (4.8) and using (4.7) we get (4.6).

2

Remark. Using (4.3) one can immediately check that

1
2(n + n′) + mχχ′ =





1
2<(n1 + n′1) for n + n′ ≥ 0

1
2<(n2 + n′2) for n + n′ ≤ 0.

Therefore
x

(mχχ′ )
n,−n′ = (αc) 1

2
(n′−n)(γc)

1
2
<(n1+n′1)(γ∗c )

1
2
<(n2+n′2). (4.9)
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To describe all admissible pairs (χ, χ′) of characters we shall consider four cases:

1o n1 = n′1 and n2 = n′2,

2o n1 = n′1 and n2 6= n′2,

3o n1 6= n′1 and n2 = n′2,

4o n1 6= n′1 and n2 6= n′2.

In the first case we have the following result

Proposition 4.5
Let χ = χ′ = (n1, n2) be a character of the parabolic group. Then

1. If (χ, χ′) is not a singular pair then q−(n1+n2)+|n1−n2|+2m 6= 1 for m = 0, 1, 2, ... and
any (χ, χ′)-spherical functional is proportional to the one given by the formula

ψ
(
x(m)

rs

)
=





1− q−(n1+n2)+|n1−n2|

1− q−(n1+n2)+|n1−n2|+2m
for (r, s) = (n,−n)

0 otherwise.

(4.10)

2. If (χ, χ′) is a singular pair then q−(n1+n2)+|n1−n2|+2m = 1 for m = mχχ (cf.4.2) and any
(χ, χ′)-spherical functional is proportional to the one given by the formula

ψ
(
x(m)

rs

)
=





1 for (r, s) = (n,−n) and m = mχχ

0 otherwise.
(4.11)

In particular the pair (χ, χ) is always admissible.

Proof. Let ψ be a (χ, χ)-sperical functional. Then ψ is supported by Jn
2

,−n
2

and

ψ
(
x(m)

rs

)
= 0 (4.12)

for (r, s) 6= (n,−n). For χ = χ′ the equations (3.43) reduce to

ψ(αcx) = qn1+n2ψ(xαc),

ψ(α∗cx) = q−(n1+n2)ψ(xα∗c),

ψ(γcx) = ψ(xγc),

ψ(γ∗c x) = ψ(xγ∗c )

(4.13)
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for any x ∈ Ac.

It is sufficient to verify these relations for x = x
(m)
rs . Elements γcx and xγc belong to the

support of ψ only if (r−1, s+1) = (n,−n). In this case r+s = 0, r−s = 2n, x = (γc)n(γcγc)∗

and γcx = xγc. It shows that (4.13.III) (i.e. the third equation of (4.13)) is automatically
satisfied. In the similar way one verifies (4.13.IV).

Now we insert x = x
(m)
rs into (4.13.I). Elements αcx and xαc belong to the support of ψ

only if (r − 1, s − 1) = (n,−n). Then r + s = 2, r − s = 2n and x = α∗cx
(m)
n,−n. We compute

then

xαc = α∗cx
(m)
n,−nαc = q−(|n|+2m)α∗cαcx

(m)
n,−n = q−(|n|+2m)(Ic − γcγ

∗
c )x(m)

n,−n

= q−(|n|+2m)(x(m)
n,−n − x

(m+1)
n,−n )

and
αcx = αcα

∗
cx

(m)
n,−n = (Ic − q2γcγ

∗
c )x(m)

n,−n = x
(m)
n,−n − q2x

(m+1)
n,−n .

Now (4.13.I) takes the form

q−(n1+n2)ψ
(
x

(m)
n,−n

)
− q−(n1+n2)+2ψ

(
x

(m+1)
n,−n

)
= q−(|n|+2m)

(
ψ

(
x

(m)
n,−n

)
− ψ

(
x

(m+1)
n,−n

))
.

This is equivalent to
(
1− q−(n1+n2)+|n|+2m

)
ψ

(
x

(m)
n,−n

)
−

(
1− q−(n1+n2)+|n|+2(m+1)

)
ψ

(
x

(m+1)
n,−n

)
= 0. (4.14)

for m = 0, 1, 2, ....
In a similar way we analyze equation (4.13.II). Let x = x

(m)
rs . Elements α∗cx and xα∗c

belong to the support of ψ only if (r + 1, s + 1) = (n,−n). Then r + s = −2, r − s = 2n and
x = αcx

(m)
n,−n. Therefore

xα∗c = αcx
(m)
n,−nα∗c = q|n|+2mαcα

∗
cx

(m)
n,−n = q|n|+2m

(
Ic − q2γcγ

∗
c

)
x

(m)
n,−n

= q|n|+2mx
(m)
n,−n − q|n|+2(m+1)x

(m+1)
n,−n

and
α∗cx = α∗cαcx

(m)
n,−n = (Ic − γcγ

∗
c ) x

(m)
n,−n = x

(m)
n,−n − x

(m+1)
n,−n .

Now (4.13.II) means that

ψ
(
x

(m)
n,−n

)
− ψ

(
x

(m+1)
n,−n

)
= q−(n1+n2)+|n|+2mψ

(
x

(m)
n,−n

)
− q−(n1+n2)+|n|+2(m+1)ψ

(
x

(m+1)
n,−n

)
,

which again is equivalent to (4.14). Clearly the equation (4.14) is satisfied if and only if
(
1− q−(n1+n2)+|n|+2m

)
ψ

(
x

(m)
n,−n

)
= C, (4.15)

where C is a complex constant independent of m. This way we showed that ψ is a (χ, χ)-
spherical functional if and only if it satisfies (4.12) and (4.15).
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Inserting χ′ = χ in Lemma 4.3 we see that (χ, χ) is not singular if and only if q−(n1+n2)+|n|+2m 6=
1 for all m = 0, 1, 2, ... In this case

ψ(x(m)
n,−n′) =

C
1− q−(n1+n2)+|n1−n2|+2m

and Statement 1 follows.
If (χ, χ) is singular then the first factor in (4.15) vanishes for m = mχχ. Therefore C =

0, ψ(x(m)
n,−n′) 6= 0 only for m = mχχ and Statement 2 follows.

2

In the second case

Proposition 4.6
Let χ = (n1, n2), χ′ = (n′1, n′2) be characters of the parabolic group. Assume that n1 =
n′1, n2 6= n′2. Then (χ, χ′) is admissible if and only if

<n1 ∈ {0, 1, 2, ...}, =n1 ∈ {0, −π
log q}, n′2 = −n2 (mod( 2πi

log q )).

In this case any (χ, χ′)-spherical functional is proportional to the one given by the formula

ψ
(
x(m)

rs

)
=





1 for (r, s) = (n,−n′) and m = 0

0 otherwise.
(4.16)

Remark. Let us note that <n1 ∈ {0, 1, 2, ...} implies that <n2 is an integer (for n = n1−n2

must be an integer).

Proof. In the present case n 6= n′. Assume that (χ, χ′) is admissible. Then by Lemma
4.4 the pair (χ, χ′) is singular. In particular (cf. Definition 4.2) <n1 ∈ {0, 1, 2, ...} and
=n1 ∈ {0, −π

log q}.
We assumed that n2 6= n′2. Let ψ be a non-zero (χ, χ′)-spherical functional. By Statement

2 of Lemma 4.1 and formula (4.5)

ψ
(
x

(m)
n,−n′

)
= ψ

(
(αc) 1

2
(n′−n)(γc) 1

2
(n+n′)(γcγ

∗
c )m

)
= 0 (4.17)

for m 6= 0 and n + n′ < 0. Therefore n + n′ ≥ 0, <(n1 + n′1) ≥ <(n2 + n′2) and by definition
(4.2)

mχχ′ = 1
2<(n2 + n′2).

On the other hand, comparing (4.17) with (4.6) we get mχχ′ = 0. Therefore <n′2 = −<n2.
Moreover =n′2 = =n′1 = =n1 = =n2 ∈ {0, −π

log q} and =n2 = −=n2 (mod( 2π
log q )). Therefore

n′2 = −n2 (mod( 2πi
log q )). Relation (4.6) shows that ψ is proportional to the functional (4.16).

This proves the “only if” part of the proposition.
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To prove the converse it is sufficient that to show that (4.16) is a (χ, χ′)-spherical func-
tional. Clearly this functional is supported by Jn

2
,−n′

2

In the present case relations (3.43) take
the form

ψ(αcx) = q
1
2
(n+n′)ψ(xαc),

ψ(α∗cx) = q−
1
2
(n+n′)ψ(xα∗c),

ψ(γcx) = q
1
2
(n−n′)ψ(xγc),

ψ(γ∗c x) = q−
1
2
(n−n′)ψ(xγ∗c ).

(4.18)

Formula (4.16) implies that ψ(xγ∗c y) = 0 for any x, y ∈ Ac. Consequently ψ(xαcα
∗
cy) =

ψ(xy) = ψ(xα∗cαcy). Now one can easily verify that (4.18) holds.
2

In the third case we get

Proposition 4.7
Let χ = (n1, n2), χ′ = (n′1, n′2) be characters of the parabolic group. Assume that n1 6=
n′1, n2 = n′2. Then (χ, χ′) is admissible if and only if

<n2 ∈ {0, 1, 2, ...}, =n2 ∈ {0, −π
log q}, n′1 = −n1 (mod( 2πi

log q )).

In this case then any (χ, χ′)-spherical functional is proportional to the one given by the formula

ψ(x(m)
rs ) =





1 for (r, s) = (n,−n′) and m = 0

0 otherwise.
(4.19)

Proof. This case is in a sense a mirror immage of the previous one and the proof is
essentialy the same. We indicate the most important changes only. Assume that (χ, χ′) is
admissible. As before it must be singular. In particular (cf. Definition 4.2) <n2 ∈ {0, 1, 2, ...}
and =n2 ∈ {0, −π

log q}.
In the present case n1 6= n′1. Assume that ψ is a non-zero (χ, χ′)-spherical functional. By

Statement 1 of Lemma 4.1 and (4.5)

ψ
(
x

(m)
n,−n′

)
= ψ

(
(αc) 1

2
(n′−n)(γc) 1

2
(n+n′)(γcγ

∗
c )m

)
= 0 (4.20)

for m 6= 0 and n + n′ > 0. Therefore n + n′ ≤ 0, <(n1 + n′1) ≤ <(n2 + n′2) and by definition
(4.2)

mχχ′ = 1
2<(n1 + n′1).

Repeating the arguments used in the previous proof we see that mχχ′ = 0, n′1 = −n1 (mod( 2πi
log q ))

and relation (4.6) shows that ψ is proportional to the functional (4.19).
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Instead of (4.18) we have relations

ψ(αcx) = q−
1
2
(n+n′)ψ(xαc),

ψ(α∗cx) = q
1
2
(n+n′)ψ(xα∗c),

ψ(γcx) = q−
1
2
(n−n′)ψ(xγc),

ψ(γ∗c x) = q
1
2
(n−n′)ψ(xγ∗c ).

(4.21)

Formula (4.20) implies that ψ(xγcy) = 0 and ψ(xαcα
∗
cy) = ψ(xy) = ψ(xα∗cαcy) (notice that

in this case n + n′ ≤ 0). Using this formulae one can easily verify that the functional (4.19)
satisfies (4.21).

2

Now we consider the last case.

Proposition 4.8
Let χ = (n1, n2), χ′ = (n′1, n′2) be characters of the parabolic group. Assume that n1 6= n′1
and n2 6= n′2. Then (χ, χ′) is admissible if and only if χ′ ≡ −χ.
i.e.

n′1 = −n1 (mod( 2πi
log q )), n′2 = −n2 (mod( 2πi

log q )).

In this case any (χ, χ′)-spherical functional is proportional to the one given by the formula

ψ(x(m)
rs ) =





1 for (r, s) = (n, n) and m = 0

0 otherwise.
(4.22)

Proof. Assume that (χ, χ′) is admissible and ψ is a non-zero (χ, χ′)-spherical functional.
Since n1 6= n′1, n2 6= n′2 then by Statements 1 and 2 of Lemma 4.1 and formula (4.5)

ψ
(
x

(m)
n,−n′

)
= ψ

(
(αc) 1

2
(n′−n)(γc) 1

2
(n+n′)(γcγ

∗
c )m

)
= c δn+n′,0δm,0 (4.23)

for some non-zero complex number c. Remembering that ψ 6= 0 we get n + n′ = 0, i.e.

n1 + n′1 = n2 + n′2 (4.24)

and (for m = 0) c = ψ((αc) 1
2
(n′−n)) is the only non-zero value.

Let us consider two cases. If n 6= 0, then n 6= n′ and by Lemma 4.4 (χ, χ′) is a singular
pair. Comparing (4.23) with (4.6) we get mχχ′ = 0.

If n = 0, then n′ = 0 and ψ(Ic) = c 6= 0. Remembering that ψ(γcγ
∗
c ) = 0 ( by (4.23)) we

obtain
ψ(αcα

∗
c) = ψ(Ic) = ψ(α∗cαc).
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Using the first equation of (3.43) we get

ψ(αcα
∗
c) = q

1
2
(λ+λ′)+2ψ(α∗cαc) = q

1
2
(λ+λ′)+2ψ(αcα

∗
c).

Therefore (1 − q
1
2
(λ+λ′)+2) c = 0 and 1 − q

1
2
(λ+λ′)+2 = 0. Remembering that n + n′ = 0 and

using Lemma 4.3 we see that (χ, χ′) is a singular pair and mχχ′ = 0. Therefore both cases
lead to the same conclusion.

Using Definition 4.2 and taking into account (4.24) we get

<(n1 + n′1) = <(n2 + n′2) = 0,

=(n1 + n′1) = =(n2 + n′2) ∈ {0, −2π
log q}.

Relation (4.23) shows that the functional ψ is proportional to the one given by (4.22). This
proves the the “only if” part of the proposition.

To prove the converse let us assume that χ′ ≡ −χ. Then

n′ = −n, 1
2(λ + λ′) + 2 = 0 (mod( 2πi

log q )), 1
2(λ− λ′) = n1 + n2 (mod( 2πi

log q ))

and the equations (3.43) reduce to

ψ(αcx) = ψ(xαc),

ψ(α∗cx) = ψ(xα∗c),

ψ(γcx) = q−(n1+n2)ψ(xγc),

ψ(γ∗c x) = qn1+n2ψ(xγ∗c ).

(4.25)

Observing that the functional (4.22) coincides with counit ec on the space Jn
2

, n
2

one can
easily verify that (4.22) satisfies (4.25). Therefore (4.22) is a (χ,−χ)-spherical functional and
(χ,−χ) is an admissible pair.

2

Now we are able to compile the list of all admissible pairs of characters.

Theorem 4.9
Let χ = (n1, n2), χ′ = (n′1, n′2) be characters of the parabolic group. Assume that (χ, χ′) is
an admissible pair. Then we have four possibilities
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1o χ′ = χ,

2o χ′ ≡ −χ (i.e. n′1 = −n1 (mod( 2πi
log q )) and n′2 = −n2 (mod( 2πi

log q )),

3o χ =
(
p1 − ε πi

log q , p2 − ε πi
log q

)
, χ′ =

(
p1 − ε πi

log q , −p2 − ε πi
log q

)
,

where p1 ∈ {0, 1, 2, ...}, p2 ∈ {±1,±2, ...} and ε = 0, 1,

4o χ =
(
p1 − ε πi

log q , p2 − ε πi
log q

)
, χ′ =

(
−p1 − ε πi

log q , p2 − ε πi
log q

)
,

where p1 ∈ {±1,±2, ...}, p2 ∈ {0, 1, 2, ...} and ε = 0, 1.

Conversely in any such case the pair (χ, χ′) is admissible.
For any admissible pair (χ, χ′) the set of (χ, χ′)-spherical functionals is one dimensional.

Remark. Case 2o in the above list besides the pairs considered in Proposition 4.8 contains
two pairs of the for (χ, χ) where χ = (0, 0) or χ = ( −πi

log q , −πi
log q ). It means that cases 1o and 2o

of the list are not disjoint.

We would like to stress the distinguished role of the case χ′ ≡ −χ. In this case the (χ, χ′)-
spherical functional restricted to Zn coincides with the counit ec. Indeed ec and ψ applied to
x

(m)
nk = (αc)− 1

2
(n+k)(γc) 1

2
(n−k)(γcγ

∗
c )m give δnkδm0 for m = 0, 1, 2.... Therefore a∗ψ = a∗ec = a

for any a ∈ Zn. Proposition 3.5 shows now that any Lorentz invariant linear form on Dχ⊗D−χ

is a complex multiple of the linear form (in truncated notation)

Zn ⊗Z−n 3 (a⊗ b) −→ h(ab) ∈ C. (4.26)

This form is non-degenerate: h(ab) = 0 for all b ∈ Z−n (a ∈ Zn respectively) implies
a = 0 (b = 0 respectively). This fact follows from the faithfulness oh the Haar measure on Ac

(cf.[16], Statement 5 of Theorem 4.2).
Let us note that for χ = (n1, n2) and χ′ = (n′1, n′2) their product is given by χ · χ′ ≡

(n1 +n′1−1, n2 +n′2−1). In particular χ · (−χ) ≡ (−1,−1). Remembering that multiplication
map m : Dχ ⊗ D′

χ −→ Dχχ′ intertwines the actions of quantum Lorentz group and taking
into account the formula (4.26) we expect that the Haar measure considered on the Gelfand
space D(−1,−1) is a Lorentz invariant linear functional. This is the case. In fact we can prove
a stronger result which seems to be important in itself.

Proposition 4.10
The functional

D(−1,−1) 3 q4J3 ⊗ a −→ h(a) ∈ C (4.27)

is the only (up to a complex coefficient) Lorentz invariant linear functional on D(−1,−1).
Moreover D(−1,−1) is the only Gelfand space admitting a non-zero Lorentz invariant linear
functional.
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Proof: Let n1 = n2 = 1. Then λ = 0 and n = 0. Therefore D(1,1) = Id ⊗Z0 and I = Id ⊗ Ic ∈
D(1,1). Clearly I is a Lorentz invariant element. Inserting in (4.26) n = 0 and a = Ic we get
the Lorentz invariance of (4.27).

Assume now that φ is a non-zero Lorentz invariant functional on D(n1,n2). Remembering
that the multiplication map intertwines the action of the quantum Lorentz group on Gelfand
spaces we see that ((0, 0), (n1 + 1, n2 + 1) is an admissible pair of characters. Indeed, D(0,0) ·
D(n1+1,n2+1) ⊂ D(n1,n2) and (we use the truncated notation) the linear functional

f : Z0 ⊗Zn 3 a⊗ b −→ φ(ab) ∈ C

is the invariant one. It is a non-zero functional because f(Ic⊗b) = φ(b) and φ 6= 0. Inspecting
the list of all admissible pairs (cf.Theorem 4.9) we see that χ = (0, 0) is the only character
such that the pair ((0, 0), χ) is admissible. Therefore n1 = −1, n2 = −1. Moreover in this
case the invariant linear functional is given by (4.26). Therefore φ must be a multiple of h|Z0 .

2

Remark 4.11

One can easily show that D(1,1) is the only Gelfand space containing a non-zero Lorentz
invariant element. D(1,1) = Id ⊗ Z0 is a ∗-algebra isomorphic to Z0. Its C∗-completion (cf.
Proposition 2.1 and [9, page 200])

Z0 = { a ∈ Ac : (π̇c ⊗ idc)∆c(a) = IS1 ⊗ a }

is the algebra of “all continuous functions” on Podleś sphere S2
q := S1\SqU(2) . Therefore v(1,1)

describes the action of QLG on Podleś sphere. It is the quantum deformation of the well
known action of SL(2,C) on the Riemann sphere S2. SL(2,C) is the two-fold covering of the
group of all bi-holomorphic isomorphisms of S2.

5 Intertwining operators.

In this section we consider the equivalence and irreducibility of the representations of the
quantum Lorentz group on Gelfand spaces. To this end we shall investigate intertwining
operators for the corresponding actions.

Let χ = (n1, n2) and χ′ = (n′1, n′2) be the characters of the parabolic subgroup P of the
quantum Lorentz group, n = n1 − n2, n′ = n′1 − n′2 and T : Dχ −→ Dχ′ be a linear operator.
We say that T intertwines vχ and vχ′ if

vχ′ ◦ T = (T ⊗ id) ◦ vχ. (5.1)

The set of all intertwiners will be denoted by Mor(χ, χ′). Clearly Mor(χ, χ′) is a complex
vector space. We shall prove that dimMor(χ, χ′) ≤ 1 for any χ and χ′. In particular for
χ = χ′, dim Mor(χ, χ) = 1 and Mor(χ, χ) = {λ idDχ : λ ∈ C }. It shows that the repre-
sentation of quantum Lorentz group on any Gelfand space is irreducible. In this context the
irreducibility means that the representation does not split into a direct sum of non trivial
subrepresentations. In particular the space of an irreducible representation may contain a
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non-trivial invariant subspace but if this is the case the irreducibility exludes the existence of
an invariant complementary subspace.

Clearly the operator T = 0 acting from Dχ into Dχ′ is an intertwiner for any characters
χ and χ′. Moreover for every χ any multiple of identity acting on Dχ is an intertwiner. All
other intertwiners are called nontrivial. Only exceptional pairs (χ, χ′) admit nontrivial in-
tertwining operators. We shall describe all such pairs. As in the previous section we shall
mainly use the truncated notation. In particular a linear operator T : Zn −→ Zn′ such that
vλ′ ◦ T = (T ⊗ id) ◦ vλ is a truncated version of an intertwiner.

Proposition 5.1
Let D, D′, D′′ be Gelfand spaces and v, v′, v′′ be the corresponding actions of quantum Lorentz
group and f : D′ ⊗ D −→ C be v′©> v - invariant linear functional. Assume that f is left
non-degenerate i.e. x′ = 0 is the only element of D′ such that f(x′ ⊗ x) = 0 for all x ∈ D.
Then for any linear map T : D′′ −→ D′,

(
f ◦ (T ⊗ idD) is v′′©> v − invariant

) ⇐⇒ (
T intertwines v′′ with v′

)
.

Proof. The implication ⇐ is obvious. We shall prove the converse.
For any x ∈ D and a ∈ A we set

ṽ(x⊗ a) := v(x)(I ⊗ a).

One can check that above formula defines a linear continuous map acting on D⊗̂A. This map
is invertible, the inverse map is given by the formula

ṽ−1 := (idD ⊗ κ)ṽ,

where κ is the coinverse related to QLG. A functional f : D −→ C is v - invariant if and only
if

(f ⊗ id)ṽ = f ⊗ id.

We shall apply the above concepts to the tensor product v′©> v acting on D′ ⊗ D, v′©> v :
D′⊗D −→ D′⊗̂D⊗̂A. Then (v′©> v)̃ is a linear continuous invertible map acting on D′⊗̂D⊗̂A.
Using the leg-numbering notation we have

(v′©> v)̃ = ṽ′13ṽ23.

We assumed that f is v′©> v - invariant. Therefore

f12 ◦ ṽ′13 ◦ ṽ23 = f12.

In the above formula ṽ′13 and ṽ23 are linear operators acting on D′⊗̂D⊗̂A, whereas f12 maps
D′⊗̂D⊗̂A into A. Assume that f ◦ (T ⊗ id) is v′′©> v - invariant. Then

f12 ◦ T1 ◦ ṽ′′13 ◦ ṽ23 = f12 ◦ T1.

Combining this formula with the previous one we get

f12 ◦ T1 ◦ ṽ′′13 ◦ ṽ23 = f12 ◦ ṽ′13 ◦ ṽ23 ◦ T1.
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Clearly the operators ṽ23 and T1 commute. Remembering that ṽ23 is invertible we obtain

f12 ◦ T1 ◦ ṽ′′13 = f12 ◦ ṽ′13 ◦ T1

and (f is left non-degenerate!) T1 ◦ ṽ′′13 = ṽ′13 ◦ T1. This shows that T intertwines v′′ and v′.
2

Let χ = (n1, n2) and χ′ = (n′1, n′2) be characters of the parabolic subgroup. We shall use
Proposition 5.1 in the following context

D = Dχ′ , v = vχ′ ,
D′ = D−χ′ , v′ = v−χ′ ,
D′′ = Dχ , v′′ = vχ

and f is the only non-degenerate (in both variables) v−χ′©> vχ′ - invariant functional on
D−χ′ ⊗Dχ′ :

f
(
q(n′1+n′2+2)J3 ⊗ a⊗ q−(n′1+n′2−2)J3 ⊗ b

)
= h(ab) (5.2)

for any a ∈ Z−n′ and b ∈ Zn′ (cf.(4.26)).
Let ψ ∈ A′c be a linear functional supported by Jn

2
,−n′

2

. For any a ∈ Zn we set

Tψ

(
q−(n1+n2−2)J3 ⊗ a

)
= q(n′1+n′2+2)J3 ⊗ (a ∗ ψ). (5.3)

Then Tψ is a linear map acting from Dχ into D−χ′ . Indeed using the truncated notation:

us
n
2

,k ∗ ψ = (ψ ⊗ idc)∆c(us
n
2

,k) =
∑

l(ψ ⊗ idc)(us
n
2

,l ⊗ us
l,k)

=





0 if s < |n′|
2

ψ

(
us

n
2

,−n′
2

)
us
−n′

2
,k
∈ Z−n′ if s ≥ |n′|

2 .

(5.4)

According to the Theorem 3.5 any vχ©> vχ′ - invariant functional on Dχ ⊗ Dχ′ is of the
form

f ′
(
q−(n1+n2−2)J3 ⊗ a⊗ q−(n′1+n′2−2)J3 ⊗ b

)
= h((a ∗ ψ)b)

= f
(
Tψ(q−(n1+n2−2)J3 ⊗ a)⊗ q−(n′1+n′2−2)J3 ⊗ b

) (5.5)

for any a ∈ Zn and b ∈ Zn′ . In the above formula ψ is a (χ, χ′) - spherical functional on Ac.

Now using Proposition 5.1 we obtain
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Theorem 5.2
Let χ, χ′ be the characters of the parabolic subgroup of the quantum Lorentz group. Then

Mor(χ,−χ′) =
{

Tψ : ψ is a (χ, χ′)− spherical functional on Ac
}

.

In particular

dimMor(χ,−χ′) =





1 if (χ, χ′) is an admissible pair

0 otherwise.

We know that for any χ, the pair (χ,−χ) is admissible and (cf. previous section) any
(χ,−χ) - spherical functional ψ is a multiple of ec restricted to Jn

2
, n
2
. Therefore in this case

Tψ is a multiple of the identity map. We shall prove that also in a generic case an intertwiner
Tψ : Dχ −→ D−χ′ is an isomorphism. The exceptions will be described.

Let ψ be a (χ, χ′)-spherical functional. The set

Spψ :=
{

s ∈ Sp vχ ∩ Sp vχ′ : ψ

(
us

n
2

,−n′
2

)
6= 0

}

will be called the spin-support of ψ. Using (5.4) one can easily verify that (still using the
truncated notation)

kerTψ =

{
us

n
2

,k :
k = −s,−s + 1, ..., s;

s ∈ Sp vχ \ Sp ψ

}linear span

,

ImTψ =

{
us
−n′

2
,l

:
l = −s,−s + 1, ..., s;

s ∈ Sp ψ

}linear span

.

(5.6)

In particular Tψ is injective iff Spψ = Sp vχ and surjective iff Spψ = Sp vχ′ . Tψ is invertible
iff Sp vχ = Sp vχ′ = Sp ψ.

As in the classical case (cf. [3]) we introduce the concept of positive integer point.

Definition 5.3
We call a character χ of the parabolic group a positive integer point whenever

χ = (n1, n2) =
(

p1 − ε
πi

log q
, p2 − ε

πi

log q

)
(5.7)

for some p1, p2 ∈ {1, 2, 3, ...} and ε = 0, 1.

For an positive integer point χ of the form (5.7) we shall consider closed subspaces Eχ ⊂ Dχ

and F−χ ⊂ D−χ. In truncated notation

Eχ :=
{

us
n
2

,k : k = −s,−s + 1, ..., s; s =
|p1 − p2|

2
, ...,

p1 + p2

2
− 1

}linear span

(5.8)
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and

F−χ :=
{

us
−n

2
,l : l = −s,−s + 1, ..., s; s =

p1 + p2

2
,
p1 + p2

2
+ 1, ...

}linear span

,
(5.9)

where n = n1 − n2 = p1 − p2. One can check that

codimF−χ = dimEχ = p1p2.

Let us consider admisible pairs of the form (χ, χ).

Lemma 5.4
Let χ be a character of the parabolic subgroup and ψ be a non-zero (χ, χ) -spherical functional.
Then
1o


 Tψ : Dχ −→ D−χ)

is an isomorphism


 ⇐⇒

(
χ and (−χ) are not positive integer points

)
.

2o. If χ is a positive integer point then

kerTψ = Eχ, ImTψ = F−χ. (5.10)

3o. If (−χ) is a positive integer point then

kerTψ = Fχ, ImTψ = E−χ. (5.11)

Proof. Let χ = (n1, n2) and n = n1 − n2. In the considered case (cf.B.19)

us
n
2

,−n
2

=
q−|n|(s−

|n|
2

)

[|n|]q!
[s + |n|

2 ]q!

[s− |n|
2 ]q!

×
s− |n|

2∑

j=0

(q2(−s+
|n|
2

); q2)j(q2(s+
|n|
2

+1); q2)j

(q2(|n|+1; q2)j(q2; q2)j
(q2γ∗c γc)j ·





γn
c if n ≥ 0

(−qγ∗c )|n| if n < 0.
(5.12)

Suppose that (χ, χ) is a non-singular pair and that Spψ is a proper subset Sp vχ (i.e. Tψ is
not an isomorphism). Then we may assume that ψ is given by the formula (4.10). It means
that

ψ ((γ∗c γc)m(γc)n) =
1− q2zn

1− q2(m+zn)

where

zn :=
1
2
(|n1 − n2| − (n1 + n2)) =




−n2 if n ≥ 0

−n1 if n < 0
.
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Applying ψ to both sides of (5.12) and using Lemma B.2 we obtain after simple algebraic
transformations

ψ
(
us

n
2

,−n
2

)
= q−(n1+n2)(s− |n|

2
)
(q2(|n|−zn+1); q2)

s− |n|
2

(q2(zn+1); q2)
s− |n|

2

·




1 if n ≥ 0

(−q)|n| if n < 0.
(5.13)

In particular

ψ

(
u
|n|
2

n
2

,−n
2

)
=





1 for n ≥ 0

(−q)|n| for n < 0

and is different from zero. Therefore |n|
2 ∈ Sp ψ and by virtue of (5.13) s ∈ Spψ if and only if

(
q2(|n|−zn+1); q2

)
s− |n|

2

6= 0. (5.14)

Let s0 be the minimal element of Sp vχ \ Sp ψ. Then s0 − |n|
2 is a positive integer and

q2(
|n|
2
−zn+s0) = 1. (5.15)

Solving the equation (5.15) we get s0 = −1
2(n1 + n2) mod( πi

log q ). Noting that n1 − n2 = n we
obtain n1 = −p1 − ε πi

log q , n2 = −p2 − ε πi
log q where ε ∈ {0, 1}, p1 = s0 − n

2 and p2 = s0 + n
2 .

Remembering that s0− |n|
2 is a positive integer we conclude that p1 and p2 are positive integers.

It means that (−χ) is a positive integer point.
Conversely if (−χ) = (p1 − ε πi

log q , p2 − ε πi
log q ) is a positive integer point then the condition

1o of Definition 4.2 is violated for the pair (χ, χ). Therefore (χ, χ) is not singular. Moreover
s0 = 1

2(p1 + p2) satisfies the equation (5.15) and s0 − |n|
2 = min(p1, p2) is a positive integer.

Therefore s0 ∈ Sp vχ \ Spψ and Spψ is a proper subset of Sp vχ. Using (5.15) one can easily
show that (5.14) is satisfied if and only if s < s0. Therefore

Sp ψ =
{ |n|

2
,
|n|
2

+ 1, ...
p1 + p2

2
− 1

}

and using (5.6) we obtain relation (5.11). Moreover we have showed that

 (χ, χ) is not singular and

Tψ is not an isomorphism


 ⇐⇒

(
(−χ) is a positive integer point

)
. (5.16)

Now suppose that (χ, χ) is a singular pair and that Spψ is a proper subset Sp vχ. Then
(cf.Definition 4.2)

χ = (n1, n2) = (p1 − ε
πi

log q
, p2 − ε

πi

log q
), (5.17)

where p1, p2 ∈ {0, 1, 2, ...}. In this case mχχ = min{p1, p2} and

x
(mχχ)
n,−n = (γc)n(γcγ

∗
c )mχχ . (5.18)
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We may assume that the (χ, χ)-spherical functional ψ is given by the formula (4.11). Let
s = |n|

2 + m, where m is a non-negative integer. s ∈ Sp ψ if and only if ψ(us
n
2

,−n
2
) 6= 0. This is

the case if and only if the basis element (5.18) does appear on the right hand side of (5.12)
i.e. iff m ≥ mχχ. It shows that

Sp ψ =
{ |n|

2
+ mχχ,

|n|
2

+ mχχ + 1, ...

}
. (5.19)

Remembering that Spψ is a proper subset of Sp vχ we conclude that mχχ > 0. Therefore
p1 > 0, p2 > 0 and (5.17) shows that χ is a positive integer point. Conversely if χ is a
positive integer point then we have (5.17) with p1, p2 = 1, 2, 3, .... Then (χ, χ) is singular,
mχχ = min{p1, p2} > 0 and |n|

2 6∈ Sp ψ. It shows that Spψ is a proper subset of Sp vχ. The
reader should notice that the first element of (5.19) equals 1

2(p1 + p2). Using (5.19) and (5.6)
we obtain relation (5.10). Moreover we have shown that


 (χ, χ) is singular and

Tψ is not an isomorphism


 ⇐⇒

(
χ is a positive integer point

)
. (5.20)

Now combining (5.16) and (5.20) we get Statement 1o.
2

Now we consider the third case (cf.Propostion 4.6 ) of admisible pairs. For this case we have

Lemma 5.5
Let p1 ∈ {0, 1, 2, ...}, p2 ∈ {1, 2, ...}, ε = 0, 1 and

χ = (n1, n2) :=
(

p1 − ε
πi

log q
, p2 − ε

πi

log q

)
, χ′ = (n′1, n

′
2) :=

(
p1 − ε

πi

log q
, −p2 − ε

πi

log q

)

be characters of the parabolic subgroup. Then (χ, χ′) and (χ′χ) are admissible pairs. Let ψ
be a non-zero (χ, χ′) -spherical functional and ψ′ be a non-zero (χ′, χ) -spherical functional.
Then
1o 

 Tψ : Dχ −→ D−χ′

is an isomorphism


 ⇐⇒

(
χ is not a positive integer point

)
.

If χ is a positive integer point then Tψ is a surjective map and

kerTψ = Eχ.

2o 
 Tψ′ : Dχ′ −→ D−χ

is an isomorphism


 ⇐⇒

(
χ is not a positive integer point

)
.

If χ is an integer point then Tψ′ is an injective map and

ImTψ′ = F−χ.
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Remark: Clearly χ is a positive integer point if and only if p1 6= 0.
Proof. In the present case n = n1−n2 = p1−p2, n′ = n′1−n′2 = p1 +p2 > 0. Clearly |n| ≤ n′.
Therefore Sp vχ′ ⊆ Sp vχ. The equality holds if and only if |n| = n′. This is equivalent to
p1 = 0. We may assume that ψ is given by (4.16). Using (B.19) we get

ψ

(
us

n
2

,−n′
2

)
=

q−
1
2
(n+n′)(s−n

2
)

[n+n′
2 ]q!

√√√√ [s + n
2 ]q![s + n′

2 ]q!
[s− n

2 ]q![s− n′
2 ]q!

6= 0.

Therefore Sp vχ′ = Spψ and Tψ is surjective. Tψ is an isomorphism only if p1 = 0. If p1 > 0
then

Sp vχ \ Sp vχ′ =
{ |n|

2
,
|n|
2

+ 1, ...,
n′

2
− 1

}

and using (5.6) we see that the kernel of Tψ coincides with (5.8). This proves Statement 10.
The proof of 20 is similar. In this case we may assume that ψ′ is given by (4.16) with

(n,−n′) replaced by (n′,−n). Again using (B.19) one can show that no coefficient ψ′(us
n′
2

,−n
2

)

vanishes. Remembering that n′ ≥ |n| we see that Spψ′ = Spvχ′ and Tψ′ is injective. Tψ′ is an
isomorphism only if |n| = n′. This is equivalent to p1 = 0. If p1 > 0 then by (5.6) the image
of Tψ′ coincides with (5.9). The Statement 20 is proved.

2

Using Proposition 4.7 by the similar argumentation we consider the fourth case of admis-
sible pairs. We state the result only.

Lemma 5.6
Let p1 ∈ {1, 2, ...}, p2 ∈ {0, 1, 2, ...}, ε = 0, 1 and

χ = (n1, n2) :=
(

p1 − ε
πi

log q
, p2 − ε

πi

log q

)
, χ′′ = (n′′1, n

′′
2) :=

(
−p1 − ε

πi

log q
, p2 − ε

πi

log q

)

be characters of the parabolic subgroup. Then (χ, χ′′) and (χ′′, χ) are admissible pairs. Let ψ
be a non-zero (χ, χ′′) -spherical functional and ψ′′ be a non-zero (χ′′, χ) -spherical functional.
Then
1o 

 Tψ : Dχ −→ D−χ′′

is an isomorphism


 ⇐⇒

(
χ is not a positive integer point

)
.

If χ is an integer point then Tψ is a surjective map and

kerTψ = Eχ.

2o 
 Tψ′′ : Dχ′′ −→ D−χ

is an isomorphism


 ⇐⇒

(
χ is not a positive integer point

)
.
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If χ is an integer point then Tψ′′ is an injective map and

ImTψ′ = F−χ.

Remark 1: Clearly in this case χ is a positive integer point if and only if p2 6= 0.

Remark 2: According to Lemmas 5.4, 5.5 and 5.6 for a character χ being an integer point
the subspaces Eχ of Dχ and F−χ of D−χ are kernels or images of some intertwiners. One
can see that as in the classical case the image and the kernel of an intertwiner are invariant
subspaces. In fact for a linear map T : D −→ D′ between two Gelfand spaces one has

(T ⊗ id)D⊗̂A = (T ⊗ id)
∑

s∈S

⊕
D ⊗B(Hs)⊗Ac = T (D)⊗̂A ⊂ D′⊗̂A

since Gelfand spaces are countable dimensional vector spaces. If T is an intertwiner: v′ ◦ T =
(T ⊗ id) ◦ v for the corresponding actions v : D −→ D⊗̂A and v′ : D′ −→ D′⊗̂A respectively
this implies that

v′(T (D)) ⊂ T (D)⊗̂A and v′(kerT ) ⊂ (kerT )⊗̂A
and the invariance follows.

Now we have the following description of non-trivial intertwining operators acting between
Gelfand spaces.

Theorem 5.7
1. Let χ = (n1, n2) be a positive integer point and

χ′ ≡ (−n1, n2), χ′′ ≡ (n1,−n2), −χ ≡ (−n1,−n2).

Then we have the following commutative (up to a complex factor) diagram of nontrivial
intertwiners:

Dχ −−−−−−−−−−−−−−−→ Dχ′y ©©©©©©©©©©©*

¼

HHHHHHHHHHHjHHHHHHHHHHHY

y
Dχ′′ −−−−−−−−−−−−−−−→ D−χ

(5.21)

The intertwiners are unique up to a complex factor.
The kernels of the intertwiners starting from Dχ and images of the intertwiners ending at

Dχ coincide with the subspace Eχ ⊂ Dχ introduced by (5.8).
The images of the intertwiner ending at D−χ and kernels of the intertwiners starting from

D−χ coincide with the subspace F−χ ⊂ D−χ introduced by (5.9).
The intertwiners starting from Dχ′ or Dχ′′ are epimorphisms and the intertwiners ending
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in Dχ′ or Dχ′′ are monomorphisms. In particular the intertwiners between Dχ′ and Dχ′′ are
bijections.

The subpaces Eχ and F−χ are Lorentz invariant and

dim Eχ = <n1 · <n2 = codimF−χ.

2. Let χ = (n1, n2) be a character of the parabolic subgroup such that the space Dχ has
appeared in no diagram of the form (5.21) (none of the characters (±n1,±n2) is an integer
point). Then there exists unique (up to a scalar factor) bijective intertwiner

Dχ

T
←−−−−−−−→ D−χ.

3. The intertwiners listed in the above two points are the only non-trivial intertwiners
acting between the Gelfand spaces.

Remark: For the character χ being the integer point the restricted finite-dimensional repre-
sentations acting on Eχ were studied in [10] . They are non-unitary except the cases of two
1-dimensional representations appearing when χ = (1− ε πi

log q , 1− ε πi
log q ). The representations

acting on F−χ, Dχ′ and Dχ′′ are equivalent. Moreover we can identify the quantum Lorentz
group action on F−χ with the quotient action on Dχ/Eχ and the action on Eχ with the
quotient action on D−χ/F−χ.

6 Gelfand spaces with unitary actions of QLG

In this section we find all characters χ such that corresponding Gelfand spaces Dχ admit a vχ

- invariant scalar product. If χ is such a character then the invariant scalar product is unique
(up to a positive factor). Then by completion procedure Dχ is a dense subset of a Hilbert
space Hχ and vχ gives rise to a unitary representation ṽχ of the quantum Lorentz group acting
on Hχ. We shall show that in this way we obtain all infinite dimensional irreducible unitary
representations of the quantum Lorentz group.

For the convenience of the reader we remind the basic results of the theory of unitary
representations of the quantum Lorentz group [11].

By definition a unitary strongly continuous representation of the quantum Lorentz group
acting on the Hilbert space H is a unitary element ṽ ∈ M(CB(H)⊗A) such that

(id⊗∆)ṽ = ṽ12ṽ13.

For any unitary representation ṽ one introduces the spin spectrum Spṽ := Sp (ṽ|SqU(2))
(cf.(2.12)) and the Casimir operators C(ṽ) and C ′(ṽ) (cf.C.16):

C(ṽ) = (id⊗Ψ)ṽ, C ′(ṽ) = (id⊗Ψ′)ṽ

in a similar manner as for Gelfand actions.1 We shall see that due to the special choice of
central functionals Ψ and Ψ′ (cf.(C.15)) the corresponding Casimir operators are mutually

1The Casimir operator C(ṽ) is a multiple of the Casimir operator X used in [11], C(ṽ) = q−1
√

1 + q2X
(cf.[11], equation (3.3)).
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adjoint: C(ṽ)∗ = C ′(ṽ). If ṽ is an irreducible representation then C(ṽ) = cI where c ∈ C.
It is known (cf. [11], Theorem 0.1) that ṽ is completely characterized by its spin spectrum
and the value of the Casimir operator. More precisely we have the following classification
theorem:

Theorem 6.1
Let ṽ be an irreducible unitary representation of the quantum Lorentz group, Sp ṽ be its spin
spectrum and c ∈ C be the value of its Casimir operator C(ṽ).
Then Spṽ is simple and we have the following possibilities:

1. Sp ṽ = {0} and c = −(q + q−1). In this case ṽ is the trivial one-dimensional represen-
tation.

2. Sp ṽ = {0} and c = q+q−1. In this case ṽ is a nontrivial one-dimensional representation.

3. Sp ṽ = {p, p + 1, p + 2, . . .} where p is non-negative half-integer and
| c−2 | + | c+2 |= 2(qp + q−p). In this case ṽ is an infinite-dimensional representation.
It belongs to the principal series of representations.

4. Sp ṽ = {0, 1, 2, . . .}, c ∈ R and 2 < |c| < q+q−1. In this case ṽ is an infinite-dimensional
representation. It belongs to the supplementary series of representations.

Moreover any of these possibilities does occur and the pair (Sp ṽ, c) completely determines (up
to the unitary equivalence) the irreducible unitary representation ṽ.

Let χ = (n1, n2) and χ′ = (n′1, n′2) be characters of the parabolic subgroup P and (· | ·)
be a sesquilinear form defined on Dχ′ × Dχ. By definition sesquilinear forms considered in
this paper are linear with respect to the second variable. Scalar product is a strictly positive
sesquilinear form. For any x ∈ Dχ′ , y ∈ Dχ and a, b ∈ A we set

(x⊗ a | y ⊗ b)A := a∗ (x | y) b. (6.1)

Clearly the above formula defines a continuous sesquilinear map (Dχ′⊗̂A)× (Dχ⊗̂A) −→ A.
We say that (· | ·) is Lorentz invariant if

(vχ′(x) | vχ(y))A = (x | y) IA (6.2)

for any x ∈ Dχ′ and y ∈ Dχ.
Let (χ′)∗ ≡ (n̄′2, n̄′1). Then

(Dn′1n′2)
∗ =

{
x∗ : x ∈ Dn′1n′2

}
= Dn̄′2n̄′1 .

Remembering that vχ′ is the restriction of ∆ to Dχ′ we get v(χ′)∗(x∗) = vχ′(x)∗ for any x ∈ Dχ′

(∆ is a *-homomorphism). It means that Dχ′ 3 x −→ x∗ ∈ D(χ′)∗ is an (antilinear, invertible)
intertwiner. Therefore linear functionals f on Dn̄′2n̄′1⊗̂Dn1n2 are in one-to-one correspondence
with sesquilinear forms (· | ·) on Dn′1n′2 ×Dn1n2 . This correspondence is given by the formula

(x | y) := f(x∗ ⊗ y), (6.3)

where x ∈ Dn′1n′2 , y ∈ Dn1n2 . Clearly f is a v(χ′)∗©> vχ - invariant functional if and only if the
corresponding sesquilinear functional is Lorentz invariant (cf.(3.4)).

Using Theorem 4.9 one can easily select all pairs of Gelfand spaces admitting invariant
sesquilinear form.
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Theorem 6.2
Let χ = (n1, n2), χ′ = (n′1, n′2) be characters of the parabolic subgroup. Assume that there

exists a non-zero invariant sesquilinear form on Dn′1n′2 ×Dn1n2 . Then we have the following
four possibilities:

1.
(n′1, n′2) ≡ (n̄2, n̄1); (6.4)

2.
(n′1, n′2) ≡ (−n̄2,−n̄1); (6.5)

3.

(n′1, n′2) =
(
p1 − ε πi

log q , p2 − ε πi
log q

)
, (n1, n2) =

(
p1 − ε πi

log q ,−p2 − ε πi
log q

)
, (6.6)

where p1 = 0, 1, 2, . . . , p2 = ±1,±2, ... and ε = 0, 1;

4.

(n′1, n′2) =
(
p1 − ε πi

log q , p2 − ε πi
log q

)
, (n1, n2) =

(
−p1 − ε πi

log q , p2 − ε πi
log q

)
, (6.7)

where p1 = ±1,±2, . . . , p2 = 0, 1, 2, ... and ε = 0, 1.

In all these cases the invariant sesquilinear form is unique (up to a scalar factor).

Using this result we can select all Gelfand spaces Dχ such that Dχ × Dχ admits non-
zero invariant sesquilinear form. Let us note that if such a form exits then it can be chosen
hermitian by a suitable choice of the phase of the numerical factor. This is an easy consequence
of the uniqueness. In particular we can select all Dχ admitting a vχ - invariant scalar product
(i.e. nondegenerete positive definite invariant sesquilinear form).

Proposition 6.3
Let χ = (n1, n2) be a character of the parabolic subgroup. Then

1.

(
Dχ ×Dχ admits an invariant

sesquilinear form

)
⇐⇒




χ =
(

n
2 + iω,−n

2 + iω
)

where n ∈ Z and ω ∈ [ 0, −2π
log q [

or

χ =
(
ρ− ε πi

log q , ρ− ε πi
log q

)

where ρ ∈ R \ {0} and ε = 0, 1




.

2. If χ =
(

n
2 + iω,−n

2 + iω
)

where n ∈ Z and ω ∈ [ 0, −2π
log q [ then the invariant sesquilin-

ear form can be chosen positive.

3. If χ =
(
ρ− ε πi

log q , ρ− ε πi
log q

)
where ρ ∈ R \ {0} and ε = 0, 1 then the invariant

sesquiliner form can be chosen positive if and only if |ρ| < 1.
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Proof: Let in Theorem 6.2 χ′ = χ. Dχ×Dχ admits an invariant sesquilinear form iff this
condition is compatible with one of the conditions (6.4)-(6.7). It is easy to see that χ′ = χ is
incompatible with (6.6) and with (6.7). Indeed assuming (6.6) we get

(
p1 − ε

πi

log q
, p2 − ε

πi

log q

)
=

(
p1 − ε

πi

log q
,−p2 − ε

πi

log q

)
.

Therefore p2 = 0 and this is a contradiction since p2 should be a non zero integer. In the
similar way one can rule out (6.7).

Consider now (6.5). Then
(n1, n2) ≡ (−n̄2,−n̄1).

This condition involves only real parts of n1 and n2. Solving it we get
(n1, n2) = (n

2 + iω,−n
2 + iω) where ω ∈ R and n = n1 − n2 ∈ Z. By (3.1) ω ∈ [ 0, −2π

log q [.
Consider now (6.4). Then

(n1, n2) ≡ (n̄2, n̄1).

Therefore <n1 = <n2, =n1 = −=n2 = −=n1 mod ( 2π
log q ) and (n1, n2) = (ρ− ε πi

log q , ρ− ε πi
log q ),

where ρ = <n1 ∈ R and ε ∈ Z. By (3.1) ε = 0, 1. We may assume that ρ 6= 0, because
χ = (−ε πi

log q ,−ε πi
log q ) is included in the previous case. This proves Statement 1o.

To prove Statements 2 and 3 we have to write the invariant sesquilinear form (· | ·)
(cf.(6.3)) in an explicite way.

Let n = n1 − n2, λ = n1 + n2 − 2. By Theorem 3.5 and (6.3), for any a, b ∈ Zn we have
(
q−λJ3 ⊗ a|q−λJ3 ⊗ b

)
= h((a∗ ∗ ψ)b), (6.8)

where ψ is a (χ∗, χ) - spherical functional on Ac.
If χ = (n

2 + iω,−n
2 + iω) then χ∗ ≡ −χ and the (χ∗, χ) - spherical functional ψ coincides

(up to a multiplicative constant) with ec restricted to J−n
2

,−n
2
. In this case the formula (6.8)

simplifies to (
q−λJ3 ⊗ a|q−λJ3 ⊗ b

)
:= h(a∗b) (6.9)

and (· | ·) is positive. Statement 2o is proved.
Let χ = (ρ − ε πi

log q , ρ − ε πi
log q ) where ρ ∈ R, ρ 6= 0 and ε = 0, 1. Then χ∗ ≡ χ and

(χ∗, χ) - spherical functionals are described by Proposition 4.5 with n = 0. If ρ is a non-
zero integer then either χ or (−χ) is an integer point and by Lemma 5.4 the linear mapping
Z0 3 a −→ a ∗ψ ∈ Z0 (the truncated version of the Tψ operator) has a nontrivial kernel and
(· | ·) is degenerate. To discuss the case when ρ is not an integer we rewrite (6.8) for elements
of linear basis of Z0 : a = us

0,k, b = us′
0,l. Using the identity (us

0,k)
∗ = (−q)k us

0,−k (cf.(B.21))
and (5.4) we get

(us
0,k)

∗ ∗ ψ = (−q)k ψ(us
0, 0)u

s
0,−k = ψ(us

0, 0) (us
0,k)

∗

and (
q−λJ3 ⊗ us

0,k | q−λJ3 ⊗ us′
0,l

)
= ψ(us

0, 0) h
(
(us

0,k)
∗ us′

0,l

)
(6.10)
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where s, s′ = 0, 1, 2, ...; k = −s,−s + 1, ..., s; l = −s′,−s′ + 1, ..., s′. Remembering that the
pair (χ, χ) is non-singular one may assume that ψ is given by (5.13):

ψ(us
00) = q−2ρs (q2(ρ+1); q2)s

(q2(−ρ+1); q2)s
. (6.11)

Analyzing this expression we see that it has the same sign for all s = 0, 1, 2, ... iff |ρ| < 1.
The reader should notice that for |ρ| < 1, the sign of (6.11) is positive. The Statement 3o is
proved.

2

Remark. Let us note in the case χ = (ρ− ε πi
log q , ρ− ε πi

log q ), where ρ ∈ R, |ρ| ≥ 1, ε = 0, 1, the
formula (6.10) describes an invariant sesquilinear form (·|·). If in addition |ρ| 6= 1, 2, ... then
the formula (6.11) applies and ψ(us

00) 6= 0. More precisely

signψ(us
00) =





(−1)s for s < |ρ|

(−1)r for s > |ρ|,

where r is an integer part of |ρ|. Using this result one can easily show that signature of the
sesquilinear form (−1)r(·|·) consists of r(r+1)

2 minuses and infinitely many pluses.
If ρ = −1,−2,−3, ... then formula (6.11) still applies and

signψ(us
00) =





(−1)s for s < −ρ

0 for s ≥ −ρ.

Now r = −ρ and signature of the sesquilinear form (−1)r(·|·) consists of r(r+1)
2 minuses,

r(r−1)
2 pluses and infinitely many zeros. It means that the sesquilinear form is degenerate.

The corresponding null space clearly coincides with Fχ.
If ρ = 1, 2, ..., then χ is a positive integer point. In this case the functional ψ is given by

the formula (4.11) (the pair (χ, χ) is singular). Taking into account the expression for us
00

(cf.B.19) we obtain

ψ(us
00) =





0 for s < ρ

q2ρ (q−2s; q2)ρ(q2(s+1); q2)ρ

(q2; q2)2ρ
for s ≥ ρ

Therefore

sign ψ(us
00) =





0 for s < ρ

(−1)r for s ≥ ρ.

In this case r = ρ and signature of the sesquilinear form (−1)r(·|·) contains infinitely many
pluses and r2 zeros. The sesquilinear form is degenerate and the corresponding null space
coincides with Eχ.
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Assume that Dχ admits a vχ - invariant scalar product (· | ·). We describe briefly a
procedure of extending vχ to a unitary representation ṽχ of the quantum Lorentz group.
This representation acts on the Hilbert space Hχ which is the completion of Dχ.

Let A0 :=
∑⊕

finite B(Hs) ⊗ Ac. Then A0 is a dense *-subalgebra of A : A0 = A. Clearly
A0 ⊂ A. We restrict the sesquilinear form (6.1) to (Dχ ⊗A0)× (Dχ ⊗A0) :

(x⊗ a | y ⊗ b)A := (x | y)a∗b

for any x, y ∈ Dχ and a, b ∈ A0. Then (· | ·)A is A0 valued scalar product and Dχ ⊗ A0

is pre-Hilbert A0-module. Let Hχ be Hilbert space obtained by the completion of Dχ with
respect to (·|·). Then the Hilbert A-module Hχ ⊗ A is a completion of Dχ ⊗ A0 (cf.[7]). In
particular Dχ ⊗A0 is a dense subset of Hχ ⊗A.

A map Θ : Hχ⊗A −→ Hχ⊗A is called adjointable if there is a map Θ∗ : Hχ⊗A −→ Hχ⊗A
such that

(ŷ|Θ x̂)A = (Θ∗ ŷ|x̂)A

for any x̂, ŷ ∈ Hχ⊗A. Any adjointable map is bounded and A-linear. The set of all adjointable
maps is a C∗-algebra denoted by L(Hχ ⊗ A). In what follows the adjointable maps will be
also called adjointable operators.

At first we have to recall how Kasparov (cf.[4]) identifies adjointable operators acting on
Hχ ⊗A with elements of M(CB(Hχ)⊗A).

For any x, y, z ∈ Hχ we set
θx,yz := x(y|z).

Then θx,y is a finite rank operator acting on Hχ : θx,y ∈ CB(Hχ). Similarly for any x̂, ŷ, ẑ ∈
Hχ ⊗A we set

Θx̂,ŷ ẑ := x̂ (ŷ|ẑ)A.

Then Θx̂,ŷ is an adjointable operator acting on Hχ ⊗ A. Identifying θx,y ⊗ ab∗ with Θx⊗a,y⊗b

(x, y ∈ Hχ, a, b ∈ A) we define an embeding CB(Hχ) ⊗ A into L(Hχ ⊗ A). By the famous
Kasparov Theorem (cf.[4],[7] Theorem 2.4 and p.10) this embeding extends uniquely to the
isomorphism of M(CB(Hχ)⊗A) onto L(Hχ ⊗A).

The action vχ : Dχ −→ Dχ⊗̂A gives rise to a linear map ṽχ : Dχ ⊗A0 −→ Dχ ⊗A0 :

ṽχ(x⊗ a) := vχ(x)(I ⊗ a)

for any x ∈ Dχ and a ∈ A0. The map ṽχ is invertible: the inverse mapping is given by the
formula (ṽχ)−1 := (id⊗κ)ṽχ. In particular ṽχ(Dχ⊗A0) = Dχ⊗A0. Using (6.2) we check that

(ṽχ(x⊗ a) | ṽχ(y ⊗ b))A = (x⊗ a | y ⊗ b)A (6.12)

for any x, y ∈ Dχ and a, b ∈ A0. Therefore ṽχ is an isometry acting on the dense subset
Dχ ⊗ A0 of Hχ ⊗ A. It can be extended to the isometry (denoted by the same symbol ṽχ)
mapping Hχ ⊗A onto itself. Replacing in (6.12) x⊗ a by ṽ−1

χ (x⊗ a) we get

(x⊗ a | ṽχ(y ⊗ b))A =
(
(ṽχ)−1(x⊗ a) | y ⊗ b

)
A

. (6.13)
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It shows that ṽχ is an adjointable map and (ṽχ)∗ = (ṽχ)−1. By the Kasparov Theorem
ṽχ ∈ M(CB(Hχ) ⊗ A). To show that ṽχ is a strongly continuous representation of the
quantum Lorentz group it remains to verify that

(id⊗∆)ṽχ = (ṽχ)12(ṽχ)13. (6.14)

To this end we consider linear functionals on A with finite spin support. We say that spin
s ∈ {0, 1/2, 1, 3/2, ...} belongs to the spin support of a functional ξ ∈ A′ whenever ξ restricted
to B(Hs)⊗Ac is a non-zero functional.

Lemma 6.4
For any functional ξ ∈ A′ with finite spin support and x ∈ Dχ :

[(id⊗ ξ)ṽχ] x = (id⊗ ξ)vχ(x). (6.15)

Proof: Let x, y ∈ Hχ; a, b ∈ A. Using the identification Θx⊗a,y⊗b = θx,y ⊗ ab∗ we get

(id⊗ ξ)Θx⊗a,y⊗b = ξ(ab∗)θx,y = θξ(ab∗)x,y = θ(id⊗b∗ξ)(x⊗a),y

for any ξ ∈ A′ and by continuity

(id⊗ ξ)Θx̂,y⊗b = θ(id⊗b∗ξ)x̂,y (6.16)

for any x̂ ∈ Hχ ⊗A.
Let x ∈ Dχ, a ∈ A0. Remembering that ṽχ is adjointable operator we check that

ṽχΘx⊗a,y⊗b = Θṽχ(x⊗a),y⊗b = Θvχ(x)(I⊗a),y⊗b

and by (6.16)

(id⊗ ξ) [ṽχΘx⊗a,y⊗b] = θ(id⊗b∗ξ)[vχ(x)(I⊗a)],y = θ(id⊗ab∗ξ)vχ(x),y.

On the other hand

(id⊗ ξ) [ṽχΘx⊗a,y⊗b] = (id⊗ ξ) [ṽχ(θx,y ⊗ ab∗)] = [(id⊗ ab∗ξ)ṽχ] θx,y = θ[(id⊗ab∗ξ)ṽχ]x,y.

Therefore comparing the right hand sides of the above expressions we obtain

[(id⊗ ab∗ξ)ṽχ] x = (id⊗ ab∗ξ)vχ(x).

This proves (6.15) since any continuous linear functional on A with finite spin support is of
the form ab∗ξ (ξ ∈ A′, a ∈ A0, b ∈ A).

2
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Remark: Since vχ = ∆|Dχ then for any x ∈ Dχ :

(id⊗ ξ)vχ(x) = (id⊗ ξ)∆(x) = ξ ∗ x

and (6.15) can be written as
[(id⊗ ξ)ṽχ] x = ξ ∗ x (6.17)

Now using Lemma 6.4 we get for any ξ, ξ′ ∈ A′ with finite spin supports and x ∈ Dχ that
[
(id⊗ ξ ⊗ ξ′)(id⊗∆)ṽχ

]
x =

[
(id⊗ ξ ∗ ξ′)ṽχ

]
x = ξ ∗ ξ′ ∗ x

(note that the functional ξ ∗ ξ′ has also finite spin support) and
[
(id⊗ ξ ⊗ ξ′)(ṽχ)12(ṽχ)13

]
x =

[
(id⊗ ξ)ṽχ][(id⊗ ξ′)ṽχ

]
x = [(id⊗ ξ)ṽχ] (ξ′ ∗ x) = ξ ∗ ξ′ ∗ x.

Therefore
[(id⊗ ξ ⊗ ξ′)(id⊗∆)ṽχ]x = [(id⊗ ξ ⊗ ξ′)(ṽχ)12(ṽχ)13]x

and (6.14) is proved.

One can easily show that

Sp ṽχ = Sp vχ, C(ṽχ) = C(vχ).

Moreover the irreducibility of vχ implies the irreducibility of ṽχ. To see this suppose that

ṽχ (T̂ ⊗ idA) = (T̂ ⊗ idA) ṽχ

for some T̂ ∈ B(Hχ). In particular T̂ ⊗ idA commutes with the representation of SqU(2)
group obtained from ṽχ by restriction. Clearly the linear span of the subspaces of irreducible
components of this representation coincides with Dχ. Let T := T̂ |Dχ . Then T maps Dχ into
itself. Using the fact that Dχ is also vχ - invariant we conclude that T ∈ Mor (χ, χ). Therefore
T is a multiple of the identity map and the same holds for T̂ . This proves the irreducibility
of ṽχ.

Due to Proposition 6.3, Theorem 2.4 and Theorem 6.1 we get

Theorem 6.5

1. Let χ =
(

n
2 + iω,−n

2 + iω
)

where n ∈ Z, ω ∈ [ 0, −2π
log q [ and let p = |n|

2 . Then ṽχ is
an irreducible unitary representation belonging to the principal series with

Sp ṽχ = {p, p+1, p+2, ...} and c = −(q
n
2 + q−

n
2 ) cos (ω log q)− i(q

n
2 − q−

n
2 ) sin (ω log q).
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2. Let χ =
(
ρ− ε πi

log q , ρ− ε πi
log q

)
where ρ ∈ R, 0 < |ρ| < 1 and ε = 0, 1. Then ṽχ is an

irreducible unitary representation belonging to the supplementary series with

Sp ṽχ = {0, 1, 2, ...} and c = (−1)ε+1(qρ + q−ρ).

3. Representations described above exhaust all irreducible infinite-dimensional unitary rep-
resentations of the quantum Lorentz group.

Remark: For χ = (n
2 + iω,−n

2 + iω) we have n2 = −n̄1 and the corresponding eigenvalue
c′ of the Casimir operator C ′(vχ) is c′ = c̄. For χ = (ρ − ε πi

log q , ρ − ε πi
log q ) we have n2 = n1

and the corresponding value c′ = c and is real. Therefore for any unitary representation ṽχ

we have C ′(ṽχ) = C(ṽχ)∗.
Let us also note that vχ is unitarizable if and only if v−χ is unitarizable and clearly

Sp ṽχ = Sp ṽ−χ, C(ṽχ) = C(ṽ−χ). Therefore by Theorem 6.1 representations ṽχ and ṽ−χ are
unitarily equivalent (the same result follows also from Statement 2o of Theorem 5.7). Con-
versely if ṽχ′ and ṽχ are unitarily equivalent then their spin spectra and eigenvalues of Casimir
operators coincide and this implies that χ′ = χ or χ′ ≡ −χ.

A Appendix: Smooth vector spaces

In this section we collected auxiliary topological results needed for the description of smooth
action of the quantum Lorentz group.

Beside the Banach spaces (Hilbert spaces, C∗-algebras) the topological vector spaces which
appear in the paper are of the very special kind. For the basic topological notions and results
we refer to [13], one can also find a short review of main results used in this presentation also
in [2] (Appendices 1-3).

For topological locally convex vector spaces X and Y : X ⊗ Y is their algebraic ten-
sor product and X⊗̂Y will denote the complete projective tensor product. The complete
projective tensor product is associative and by definition the canonical bilinear mapping

X × Y 3 (x, y) → x⊗ y ∈ X⊗̂Y

is continuous (cf.[13, Definition 43.2]). For any continuous linear maps Ti : Xi → Yi, (i = 1, 2)
the tensor product map T1⊗T2 : X1⊗X2 −→ Y1⊗Y2 has the unique extension to the continuous
linear map (cf.[13, Definition 43.6 and Proposition 43.6])

T1 ⊗ T2 : X1⊗̂X2 −→ Y1⊗̂Y2.

In particular for any continuous functional φ on X, φ ∈ X ′ the linear continuous map
(φ ⊗ idY ) : X⊗̂Y −→ Y is uniquely defind by (φ ⊗ idY )(x ⊗ y) = φ(x) y for any x ∈ X
and y ∈ Y.

If X is a countable dimensional vector space then providing it with the strongest locally
convex topology respecting the vector structure we turn X to a topological locally convex
vector space. We refer to this as a natural topology of X. Equivalently, the natural topology

57



is the strict inductive limit topology defined by any increasing sequence of finite-dimensional
vector subspaces of X. It is known that the natural topology of X is complete, nuclear and
Montel. We mention other very nice properties:

- Any linear map from X into a topological vector space is continuous.

- For two countable dimensional vector spaces X1, X2 there is an isomorphism X1⊗̂X2 =
X1 ⊗ X2 with natural topology. In particular any bilinear map from X1 × X2 into a
topological vector space is continuous.

- Any linear subset of X is a closed subspace and has a topological complementary sub-
space.

If Xj (j ∈ J) are Hausdorff complete locally convex topological vector spaces, then the
Cartesian product X =

∏

j∈J

Xj is a Hausdorff complete locally convex topological vector space.

The topology of X is by definition the weakest topology such that all projections X −→ Xj

are continuous (Tichonov topology). The topological vector spaces that are at most countable
Cartesian products of countable dimensional vector spaces are called (in this paper) smooth
vector spaces.

If X =
∏

i∈I

Xi, Y =
∏

j∈J

Yj is a pair of smooth vector spaces then any continuous linear map

T : X −→ Y is represented by a J × I matrix (Tji) consisting of linear maps Tji : Xi −→ Yj .
A matrix (Tji)(j,i)∈J×I represents a continuous linear map T : X −→ Y if and only if any
row contains only a finite number of non-zero elements. In particular a continuous linear
functional on X is a row of linear functionals φ = (φi)i∈I such that φi 6= 0 for finite number
of i ∈ I.

The class of smooth vector spaces is closed under the complete projective tensor product
operation. Indeed, for any topological vector space Y there is the natural isomorphism:

(
∏

j∈J

Xj)⊗̂Y =
∏

j∈J

(Xj⊗̂Y ).

Therefore for any pair of smooth vector spaces we have: X =
∏

i∈I

Xi, Y =
∏

j∈J

Yj :

X⊗̂Y = (
∏

i∈I

Xi)⊗̂(
∏

j∈J

Yj) =
∏

(i,j)∈I×J

(Xi ⊗ Yj).

Using the above isomorphism one can easily see that the set of linear functionals
{φ⊗ ψ : φ ∈ X ′, ψ ∈ Y ′} ⊂ (X⊗̂Y )′ separates the points of X⊗̂Y.

Let X be a countable dimensional vector space with a fixed (countable) linear basis {ei, i ∈
I}, Y be a smooth vector space. Then any element b ∈ X⊗̂Y is of the form

b =
∑

i∈I

ei ⊗ bi, (A.1)

where bi ∈ Y and the series is convergent in the topology of X⊗̂Y. Moreover vectors bi (i ∈ I)
are uniquely defined.
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Indeed, let for i ∈ I : εi be a linear functional on X such that εi(ei′) = δi
i′ , (i′ ∈ I).

Clearly εi is continuous. Applying εi ⊗ idY to both sides of (A.1) we get (εi ⊗ idY )(b) = bi

and the uniqueness follows.
Now let b ∈ X⊗̂Y and bi := (εi ⊗ idY )(b). Assume that Y =

∏

j∈J

Yj where Yj , (j ∈ J) are

countable dimensional vector spaces and denote by πj : Y −→ Yj the canonical projections.
Then (idX ⊗ πj)(b) ∈ X ⊗ Yj and (A.1) means that

(idX ⊗ πj)(b) =
∑

i∈I

ei ⊗ πj(bi) (A.2)

for all j ∈ J. In particular the series (A.1) is convergent if and only if (A.2) is convergent for
all j ∈ J. We compute:

(idX ⊗ πj)(b) =
∑

i∈I

ei ⊗ yi
j ,

where yi
j ∈ Yj and the sum contains only finite number of non-zero terms. Clearly

yi
j = (εi ⊗ idY )(idX ⊗ πj)(b) = (idX ⊗ πj)(εi ⊗ idY )(b) = πj(bi).

Therefore
∑

i∈I ei ⊗ πj(bi) =
∑

i∈I ei ⊗ yi
j and the series (A.2) is convergent.

B Appendix: SqU(2) and ̂SqU(2) quantum groups

In this section we briefly sketch the basic results concerning the quantum SqU(2) group and
its dual group ̂SqU(2). For more detailed description we refer the reader to [15], [10] and [16].

The algebra Ac of “smooth continuous functions” on Gc := SqU(2) is the *-algebra gen-
erated by two elements αc, γc satisfying relations:

α∗cαc + γ∗c γc = I, αcα
∗
c + q2γ∗c γc = I,

αcγc = qγcαc, αcγ
∗
c = qγ∗c αc, γcγ

∗
c = γ∗c γc.

(B.1)

The algebra of all “continuous functions” on Gc, denoted by Ac, is the C∗-completion of
Ac, Ac := Ac. Let us note that Ac is a countable dimensional vector space and its natural
locally convex topology (cf. the preceding Appendix) is stronger than the topology induced
by the C∗-norm.

The group structure on Gc is encoded by the comultiplication ∆c : Ac −→ Ac⊗Ac, counit
ec : Ac −→ C and coinverse κc : Ac −→ Ac. By definition ∆c and ec are *-homomorphisms
such that

∆c(αc) = αc ⊗ αc − qγ∗c ⊗ γc, ∆c(γc) = γc ⊗ αc + α∗c ⊗ γc,

ec(αc) = 1, ec(γc) = 0.
(B.2)
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and κc is a linear antimultiplicative map such that

κc(αc) = α∗c , κc(α∗c) = αc, κc(γc) = −qγc, κc(γ∗c ) = −1
q
γ∗c . (B.3)

Clearly (cf. the properties of countable dimensional vector spaces listed in Appendix A)
the multiplication Ac×Ac 3 (a, b) 7→ ab ∈ Ac, involution Ac 3 a 7→ a∗ ∈ Ac, comultiplication
∆c, counit ec and coinverse κc are continuous maps. In other words Ac is a topological Hopf
*-algebra.

∆c and ec admit continuous extensions to C∗−algebra morphisms from Ac into Ac ⊗ Ac

and C respectively. In this place Ac ⊗Ac denotes the spatial tensor product of C∗−algebras.

Any irreducible unitary representation of Gc is finite dimensional. It is uniquely (up to
a unitary equivalence) determined by the dimension of the underlying Hilbert space. The
irreducible unitary representations are labeled by the spin parameter s ∈ S where S is the set
of non-negative half-integers:

S :=
{

0,
1
2
, 1,

3
2
, 2, ...

}
.

The corresponding irreducible unitary representation us acts on (2s + 1)-dimensional Hilbert
space Hs, us ∈ B(Hs)⊗Ac. Let

Ad :=
∑

s∈S

⊕
B(Hs).

and let πs (s ∈ S) be the canonical projection πs ∈ Mor(Ad, B(Hs)). The set of all elements
affiliated with Ad will be denoted by Aη

d ([10], [18]). Any element T ∈ Aη
d is uniquely

determined by the sequence (πs(T ))s∈S and any sequence (T s)s∈S where T s ∈ B(Hs) can
be obtained in this way. Therefore

Aη
d =

∏

s∈S

B(Hs). (B.4)

Clearly in this case Aη
d carries a natural *-algebra structure. It contains Ad and the mul-

tiplier algebra M(Ad) as *-subalgebras. An element T = (T s)s∈S belongs to Ad (M(Ad)
respectively) if and only if the sequence (||T s||)s∈S tends to 0 for s →∞ (is bounded respec-
tively). The reader should notice that in this case Aη

d endowed with the product topology is
a smooth vector space (cf. preceding Appendix). With this topology Aη

d is a complete topo-
logical *-algebra. On the other hand it can be equipped with a topology of almost uniform
convergence (cf.[18, p.491]) as a space of affiliated elements of a C∗-algebra. To describe this
topology we consider the z−transform.

Let B be a C∗−algebra and Bη the set of its affiliated elements. Then z−transform is a
map (cf. [18, (1.3)])

Bη 3 T 7→ zT := T (I + T ∗T )−
1
2 ∈ M(B),

where the multiplier algebra M(B) is equipped with the strict topology. The almost uniform
topology on Bη is by definition the weakest topology such that z−transform is continuous. If
B is a unital C∗−algebra then Bη = M(B) = B and the strict topology coincides with norm
topology. Moreover for any b ∈ B, ||b|| = M(1−M2)−

1
2 where M = ||zb||. Proposition 2.1 of

[18] shows now that the z−transform is a homemorphic map of B onto the open unit ball of
B. This leads to more general result
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Proposition B.1
Let

B =
∑
s

⊕
Bs

be a countable direct sum of unital separable C∗−algebras. Then the set of affiliated elements
Bη =

∏
s

Bs. (B.5)

Moreover the almost uniform topology on Bη coincides with the Tichonov product of the norm
topologies on Bs (s ∈ S). In this case Bη is a topological *-algebra with unity.

Proof. Let πs denote the canonical projections πs : B → Bs. Remembering that M(Bs) = Bs

and identifying T ∈ Bη with (πs(T ))s ∈
∏
s

Bs we obtain (B.5). Let (Tn)n∈N be a sequence in

Bη converging almost uniformly to T∞ ∈ Bη (by ([18, p.491] the topology of almost uniform
convergence is metrizable). It means that zTn → zT∞ strictly. It is equivalent to the strict
convergence πs(zTn) → πs(zT∞) for all s. Clearly πs ◦ z = z ◦ πs. Remembering that Bs

is unital we get that strict convergence is a norm convergence zπs(Tn) → zπs(T∞). Therefore
πs(Tn) → πs(T∞) in norm for any s i.e. Tn → T∞ in the Tichonov product of norm topologies.

2

All vector space topologies on a finite dimensional vector space are equivalent. Therefore
applying the above proposition to the case Bs = B(Hs) (s ∈ S) we conclude that the smooth
vector space topology on Aη

d coincides with the topology of almost uniform convergence.

Now following [10] eqs.(5.1),(5.2) (cf.also [11] pp.598-599) we introduce four (continuous)
linear functionals: ψo, ψo, ψ+, ψ− = −q−1ψ+ on Ac where by ψ we denote the linear
functional conjugate to ψ : ψ(a) := ψ(a∗).

The functional ψo is multiplicative i.e.

ψo(ab) = ψo(a)ψo(b) (B.6)

for any a, b ∈ Ac. Therefore it is completely determined by its values on the generators
αc, α∗c , γc, γ∗c of Ac. By definition

ψo(Ic) = 1, ψo(αc) = q−
1
2 , ψo(α∗c) = q

1
2 , ψo(γc) = 0, ψo(γ∗c ) = 0. (B.7)

The functional ψ+ is a skew-derivation i.e.

ψ+(ab) = ψ+(a)ψo(b) + ψo(a)ψ+(b) (B.8)

for any a, b ∈ Ac and by definition

ψ+(Ic) = 0, ψ+(αc) = 0, ψ+(α∗c) = 0, ψ+(γc) = q−
1
2 , ψ+(γ∗c ) = 0. (B.9)

Let us note that ψo is also multiplicative and ψ− is a skew-derivation. One can show that

ψo ∗ ψo = ec = ψo ∗ ψo,
ψo ∗ ψ+ = qψ+ ∗ ψo, ψo ∗ ψ− = q−1ψ− ∗ ψo,

ψo ∗ ψ+ = q−1ψ+ ∗ ψo, ψo ∗ ψ− = qψ− ∗ ψo,

ψ+ ∗ ψ− = ψ− ∗ ψ+ +
1

1− q2
(ψo ∗ ψo − ψo ∗ ψo).

(B.10)
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Indeed, one can check that ψo ∗ψo and ψ ∗ψo are multiplicative functionals which coincide
with ec on the set of generators {αc, α∗c , γc, γ∗c } of Ac. This proves the first formula in (B.10).
Now using (B.6) and (B.8) one checks by simple computations that the set of all elements
a ∈ Ac such that

ψo ∗ ψ+(a) = qψ+ ∗ ψo(a), ψo ∗ ψ−(a) = q−1ψ− ∗ ψo(a), ψo ∗ ψ+(a) = q−1ψ+ ∗ ψo(a),

ψo ∗ ψ−(a) = qψ− ∗ ψo(a), ψ+ ∗ ψ−(a) = ψ− ∗ ψ+(a) + 1
1−q2 (ψo ∗ ψo(a)− ψo ∗ ψo(a)) ,

is an algebra containing αc, α∗c , γc and γ∗c . Therefore this set coincides with Ac and (B.10) is
proved.

Let
u =

∑

s∈S

⊕
us. (B.11)

Then u ∈ M(Ad ⊗Ac) and u is a representation of the group SqU(2) :

(id⊗∆c)u = u12u13. (B.12)

The map
A′c 3 φ −→ (idd ⊗ φ)u ∈ Aη

d (B.13)

is a bijection from Ac onto Aη
d. The convolution algebra (A′c)o generated by functionals

ψo, ψo, ψ+, ψ− is weakly dense in A′c. Therefore it separates the points of Ac : for a ∈ Ac

(
ψ(a) = 0 for all ψ ∈ (A′c)o

) ⇐⇒ (a = 0).

By (B.13) functionals ψo, ψo, ψ+, ψ− define distiguished elements of Aη
d :

(idd ⊗ ψo)u = qJd3 , (idd ⊗ ψo)u = q−Jd3 ,

(idd ⊗ ψ+)u = q−
1
2 Jd+, (idd ⊗ ψ−)u = q−

1
2 Jd−.

(B.14)

Due to (B.10) they satisfy the corresponding commutation relations (remember that u is a
representation):

qJd3Jd+ = qJd+qJd3 , qJd3Jd− = q−1Jd−qJd3 ,

[Jd+, Jd−] =
q−2Jd3 − q2Jd3

q−1 − q
,

(Jd+)∗ = Jd−, qJd3 > 0.





(B.15)

Moreover operators qJd3 , q−Jd3 , Jd+ and Jd− generate the algebra Ad in the sense [18, Definition
3.1] (cf. example 9, p.500 of [18]).

Let q±Js
3 , Js

+, Js− ∈ B(Hs) denotes the components of q±Jd3 , Jd+ and Jd− i.e.

qJd3 =
∑

s∈S

⊕
qJs

3 , q−Jd3 =
∑

s∈S

⊕
q−Js

3 , Jd+ =
∑

s∈S

⊕
Js

+, Jd− =
∑

s∈S

⊕
Js
−.
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It is known (cf.[10, Corollary 5.2]) that for any s ∈ S there exists the canonical orthonormal
basis

{fs
m : m = −s,−s + 1, . . . s− 1, s} (B.16)

in the Hilbert space Hs such that

Js
3fs

m = mfs
m,

Js
+fs

m = q
1
2
−s

√
[s−m]q[s + m + 1]q fs

m+1,

Js−fs
m = q

1
2
−s

√
[s + m]q[s−m + 1]q fs

m−1,

(B.17)

where

[n]q =
1− q2n

1− q2
. (B.18)

Using the basis (B.16) we identify Hs with C2s+1. Then us (s ∈ S) becomes a matrix
(us

kl)k,l=−s,−s+1,...s with matrix elements us
kl belonging to Ac. We refer to them as standard

matrix elements of the unitary representations of SqU(2).
To write explicite formulae for us

kl we shal use the following notation: For any complex c
and non-negative integer j we set

(c; q2)j =





1 for j = 0

j−1∏

m=0

(1− cq2m) for j ≥ 1.

Then (1; q2)j = δj0 and (q2; q2)j = (1 − q2)j [j]q! where [0]q! = 1 and [j]q! := [1]q[2]q...[j]q.
With this notation (cf.e.g.[6] [5])
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us
kl =

q−(k−l)(s−k)

[k − l]q!

√
[s + k]q![s− l]q!
[s− k]q![s + l]q!

(α∗c)
k+lγk−l

c

×
s−k∑

j=0

(q2(−s+k); q2)j(q2(s+k+1); q2)j

(q2(k−l+1); q2)j(q2; q2)j
(q2γ∗c γc)j ,

us
lk =

q−(k−l)(s−k)

[k − l]q!

√
[s + k]q![s− l]q!
[s− k]q![s + l]q!

(α∗c)
k+l(−qγ∗c )k−l

×
s−k∑

j=0

(q2(−s+k); q2)j(q2(s+k+1); q2)j

(q2(k−l+1); q2)j(q2; q2)j
(q2γ∗c γc)j ,

us
−k,l =

q−(k+l)(s−l)

[k + l]q!

√
[s + k]q![s + l]q!
[s− k]q![s− l]q!

×
s−k∑

j=0

(q2(−s+k); q2)j(q2(s+k+1); q2)j

(q2(k+l+1); q2)j(q2; q2)j
(q2γ∗c γc)j (αc)k−l(−qγ∗c )k+l,

us
l,−k =

q−(k+l)(s−l)

[k + l]q!

√
[s + k]q![s + l]q!
[s− k]q![s− l]q!

×
s−k∑

j=0

(q2(−s+k); q2)j(q2(s+k+1); q2)j

(q2(k+l+1); q2)j(q2; q2)j
(q2γ∗c γc)j (αc)k−l(γc)k+l.





(B.19)

In this formulae s ∈ S, |l| ≤ k ≤ s. In particular

u
1
2 =

(
αc −qγ∗c
γc α∗c

)
(B.20)

is the standard 2-dimensional (unitary) representation of SqU(2).
Using the above expressions for the matrix elements one can check that

(us
kl)

∗ = (−q)l−kus
−k,−l (B.21)

for any s ∈ S and k, l = −s,−s + 1, ...s. One may also compute the values of our functionals
on the standard matrix elements (cf. (B.14) and (B.17)):

ψo(us
kl) = qkδk,l = ψo((us

kl)
∗),

ψo(us
kl) = q−kδk,l = ψo((us

kl)
∗),

ψ+(us
kl) = q−s

√
[s− l]q[s + l + 1]qδk,l+1 = −qψ−((us

kl)
∗),

ψ−(us
kl) = q−s

√
[s + l]q[s− l + 1]qδk,l−1 = −q−1ψ+((us

kl)
∗).

(B.22)
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Now we describe the the Pontryagin dual Gd = ̂SqU(2) of the quantum group SqU(2).
The algebra of “continuous functions on ̂SqU(2) tending to zero at infinity” is by definition
the algebra Ad. The group structure of Gd is encoded by the comultiplication ∆d, counit ed

and coinverse κd described below.
By definition the comultiplication and the counit are the only morphisms ∆d ∈ Mor(Ad, Ad⊗

Ad) and ed ∈ Mor(Ad,C) such that

(∆d ⊗ id)u = u23u13, (B.23)

(ed ⊗ id)u = Ic.

Taking into account (B.6) and (B.8) we get

∆d(Jd±) = qJd3 ⊗ Jd± + Jd± ⊗ q−Jd3 , ed(qJd±) = 0,

∆d(qJd3) = qJd3 ⊗ qJd3 , ed(qJd3) = 1.

The coinverse κd is the linear antimultiplicative map acting on Aη
d such that

(κd ⊗ id)u = u∗. (B.24)

One may verify that

κd(qJd3) = q−Jd3 , κd(Jd+) = −1
qJd+, κd(Jd−) = −qJd−, κd(q−Jd3) = qJd3 . (B.25)

Relations (B.12) and (B.23) show that u is a bicharacter on Gd × Gc. It establishes the
Pontryagin duality between Gd and Gc.

We have (cf.(B.4))

Aη
d⊗̂Aη

d =
∏

(s,s′)∈S×S

B(Hs)⊗B(Hs′) = (Ad ⊗Ad)η.

Since ∆d ∈ Mor(Ad, Ad ⊗Ad) then by ([18, Proposition 2.3])

∆d : Aη
d −→ Aη

d⊗̂Aη
d

is a continuous coassociative mapping. It endows Aη
d with a bialgebra structure. Moreover

ed : Aη
d → C and κd : Aη

d → Aη
d are continuous maps.

Any element x ∈ Aη
d is of the form x =

∑⊕
s∈S xs where xs ∈ B(Hs) = B(C2s+1) is a matrix

xs = (xs
ij)i,j=−s,−s+1,....s with numerical entries. For any s ∈ S and k, l ∈ {−s,−s+1, ...s} let

ξs
kl(x) = xs

kl.

Then ξs
kl is a continuous linear functional on Aη

d. Clearly (ξs
kl) (s ∈ S, k, l = −s,−s+1, ....s) is

a linear basis in (Aη
d)
′ ((Aη

d)
′ is a countable dimensional vector space). Since matrix elements

of u∗ form a linear basis of Ac we have the canonical linear isomorphism

(Aη
d)
′ 3 ξ −→ (ξ ⊗ idc)u∗ ∈ Ac.
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For any a ∈ Ac, ξa will denote the corresponding linear functional on Aη
d. In particular

(cf.(B.20) and (B.3))
(
u

1
2

)∗
=

(
α∗c γ∗c
−qγc αc

)
(B.26)

and

ψα = ξ
1
2
1
2

1
2

, ψα∗ = ξ
1
2

− 1
2
− 1

2

, ψγ = −q−1ξ
1
2
1
2
− 1

2

, ψγ∗ = ξ
1
2

− 1
2

1
2

. (B.27)

By (B.23)

(ξ1 ∗ ξ2 ⊗ idc)u∗ := (ξ1 ⊗ ξ2 ⊗ idc)(∆d ⊗ idc)u∗ = (ξ1 ⊗ ξ2 ⊗ idc)(u23u13)∗

= (ξ1 ⊗ ξ2 ⊗ idc)u∗13u
∗
23 = [(ξ1 ⊗ idc)u∗] [(ξ2 ⊗ idc)u∗].

This shows that
ξab = ξa ∗ ξb

for any a, b ∈ Ac. Therfore

ψα ∗ ψα∗ + q2ψγ∗ ∗ ψγ = ed, ψα∗ ∗ ψα + ψγ∗ ∗ ψγ = ed,
ψα ∗ ψγ = qψγ ∗ ψα, ψα∗ ∗ ψγ = q−1ψγ ∗ ψα∗ ,
ψα ∗ ψγ∗ = qψγ∗ ∗ ψα, ψα∗ ∗ ψγ∗ = q−1ψγ∗ ∗ ψα∗ ,
ψγ ∗ ψγ∗ = ψγ∗ ∗ ψγ .

(B.28)

We know that that Ac is generated by αc, α
∗
c , γc and γ∗c . Therefore the set of all linear com-

binations of convolution products of ed, ψα, ψα∗ , ψγ and ψγ∗ coincides with (Aη
d)
′.

We end the section by proving the identities used for calculating (χ, χ) - spherical func-
tional in the case of a non-singular pair:

Lemma B.2
Let z be a complex number such that <z 6= 0,−1,−2... or =z 6= π

log qp, (p = 0,±1,±2, ...) and
k, m be non-negative integers. Then

k∑

j=0

(q−2k; q2)j(q2(m+k); q2)j

(q2m; q2)j(q2; q2)j

q2j

1− q2(j+z)
= q2kz (q2; q2)k(q2(m−z); q2)k

(q2z; q2)k+1(q2m; q2)k
. (B.29)

Proof. At first we observe that due to the obvious identity

1
1− q2(z+j)

=
1

1− q2z

(q2z; q2)j

(q2(z+1); q2)j
,

the left hand side L of (B.29) reduces to a multiple of a value of the basic hypergeometric
function:

L =
1

1− q2z 3φ2(q−2k, q2z, q2(m+k); q2(z+1), q2m; q2, q2).

Let us recall (e.g.[6], [5]) that for a1, a2, ...ar+1; b1, b2, ...br the corresponding basic hypergeo-
metric function r+1φr is defined as

r+1φr(a1, a2, ...ar+1; b1, b2, ...br; q2, t) :=
∞∑

j=0

(a1; q2)j ...(ar+1; q2)j

(b1; q2)j ...(br; q2)j

tj

(q2; q2)j
.
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For a1 = q−2k (k = 0, 1, 2, ...) it is a polynomial of degree k since (q−2k; q2)j = 0 for j =
k + 1, k + 2, .... Using succesively identities (cf.(9) of [5] and (2.2.2) of [6])

3φ2(q−2k, a, b, ; c, d; q2, q2) =
(ca−1; q2)k

(c; q2)k
ak

3φ2(q−2k, a, db−1; ac−1q2(−k+1), d; q2, bc−1q2)

and

3φ2(q−2k, a, b, ; d, e; q2, de(ab)−1q2) =
(ea−1; q2)k

(e; q2)k
3φ2(q−2k, a, db−1; d, ae−1q2(−k+1); q2, q2)

we obtain

L =
1

1− q2z

q2zk(q2; q2)k

(q2(z+1); q2)k
3φ2(q−2k, q2z, q−2k; q−2k, q2m; q2, q2(m−z+k))

=
q2zk(q2; q2)k

(q2z; q2)k+1

(q2(m−z); q2)k

(q2m; q2)k
3φ2(q−2k, q2z, 1; q−2k, q2(z−m−k+1); q2, q2)

and this proves the result since

3φ2(q−2k, q2z, 1; q−2k, q2(z−m−k+1); q2, q2) = 1.
2

C Appendix: Quantum Lorentz group

The quantum Lorentz group QLG considered in this paper is defined in [10]. It appears as
the result of the double group construction applied to the quantum SU(2) group.

We shall use the bicharacter u =
∑⊕

s us ∈ M(Ad⊗Ac) introduced in the previous section.
Let σ ∈ Mor(Ac ⊗Ad, Ad ⊗Ac) be the isomorphism such that

σ(a⊗ x) := u(x⊗ a)u−1 (C.1)

for any a ∈ Ac and x ∈ Ad.
In [10] the algebra A of all “continuous functions vanishing at infinity” on QLG was

identified with Ac ⊗Ad. In the present paper it is more convenient to assume that

A := Ad ⊗Ac.

The connection between the two approaches is given by the isomorphism σ. In particular the
formulae (4.16) – (4.18) of [10] take the following form

∆ := (idd ⊗ σ−1 ⊗ idc)(∆d ⊗∆c),

e := ed ⊗ ec,

κ := τ(κc ⊗ κd)σ−1,

(C.2)

where τ : Ac ⊗Ad −→ Ad ⊗Ac is the flip isomorphism ( τ(x⊗ a) = a⊗ x for any x ∈ Ad and
a ∈ Ac).

Let
pc = id⊗ ed, pd = ec ⊗ id.
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Then pc ∈ Mor(A,Ac) and pd ∈ Mor(A,Ad). One can easily verify that

∆cpc = (pc ⊗ pc)∆, ∆dpd = (pd ⊗ pd)∆. (C.3)

The morphisms pc and pd correspond to the embedings

SqU(2) −→ QLG, ̂SqU(2) −→ QLG.

Due to (C.3) these embedings respect the group structures.

Let α, β, γ, δ denote matrix elements of

w =

(
α, β
γ, δ

)
:=

(
qJ3 , (1− q2)q−1/2J+

0, q−J3

)
©⊥

(
αc, −qγ∗c
γc, α∗c

)
. (C.4)

It means that

α := qJ3 ⊗ αc + (1− q2)q−1/2J+ ⊗ γc, β := −qqJ3 ⊗ γ∗c + (1− q2)q−1/2J+ ⊗ α∗c
γ := q−J3 ⊗ γc, δ := q−J3 ⊗ α∗c .

(C.5)

Using (B.1) and (B.15) we obtain Podleś commutation relations:

αβ = qβα, αγ = qγα,

αδ − qβγ = I, δα− 1
q
βγ = I,

βγ = γβ,

βδ = qδβ, γδ = qδγ,

βα∗ =
1
q
α∗β +

1− q2

q
γ∗δ,

γα∗ = qα∗γ,

δα∗ = α∗δ, γβ∗ = β∗γ,

δβ∗ = qβ∗δ − q(1− q2)α∗γ,

δγ∗ =
1
q
γ∗δ, γγ∗ = γ∗γ,

αα∗ = α∗α + (1− q2)γ∗γ, δδ∗ = δ∗δ − (1− q2)γ∗γ,

ββ∗ = β∗β + (1− q2) [δ∗δ − α∗α]− (1− q2)2γ∗γ.

(C.6)

One may prove that the elements α, β, γ, δ are affiliated with A. They generate A in the
sense of Definition 3.1 of [18] (cf. [18, Example 10, p.500]). Moreover w is a fundamental
representation of QLG

∆(α) = α⊗ α + β ⊗ γ, ∆(β) = α⊗ β + β ⊗ δ,

∆(γ) = γ ⊗ α + δ ⊗ γ, ∆(δ) = γ ⊗ β + δ ⊗ δ.
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The formula (C.4) is the quantum version of the Iwasawa decomposition.

Let
A :=

∏

s∈S

(B(Hs)⊗Ac) = Aη
d⊗̂Ac.

Then A is a topological *-algebra. By definition A is a countable Cartesian product of
countable dimensional vector spaces B(Hs) ⊗ Ac (s ∈ S). Therefore A is a smooth vector
space. Let us note that A ⊂ Aη. It is the fundamental algebra in our construction. Elements
of A are called smooth functions on the quantum Lorentz group. Clearly the bi-character
u is the unitary element of A. Therefore the mapping (C.1) extends to the isomorphism
σ ∈ Mor(Ac⊗̂Aη

d, A
η
d⊗̂Ac). This implies (cf.(C.2))

∆ : A −→ A⊗̂A. (C.7)

∆ is a coassociative morphism and A is a bialgebra. We refer to (C.7) as a smooth action
of QLG (on itself). The Gelfand spaces are countable dimensional subspaces of A invariant
under the smooth action of QLG. The induced representations considered the paper are re-
strictions of (C.7) to Gelfand spaces.

We use the functionals introduced in the previous Section to define eight continuous linear
functionals on A = Aη

d⊗̂Ac. Let

Φα := ψα ⊗ ec, Φα∗ := ψα∗ ⊗ ec, Φγ := ψγ ⊗ ec, Φγ∗ := ψγ∗ ⊗ ec

Φo := ed ⊗ ψo, Φ̄o := ed ⊗ ψ̄o, Φ+ := ed ⊗ ψ+, Φ− := ed ⊗ ψ−
(C.8)

We shall prove that

Φα ∗ Φα∗ + q2Φγ∗ ∗ Φγ = e, Φα∗ ∗ Φα + Φγ∗ ∗ Φγ = e,
Φα ∗ Φγ = qΦγ ∗ Φα, Φα∗ ∗ Φγ = q−1Φγ ∗ Φα∗ ,
Φα ∗ Φγ∗ = qΦγ∗ ∗ Φα, Φα∗ ∗ Φγ∗ = q−1Φγ∗ ∗ Φα∗ ,
Φγ ∗ Φγ∗ = Φγ∗ ∗ Φγ ,

(C.9)

Φo ∗ Φ̄o = e = Φ̄o ∗ Φo,
Φo ∗ Φ+ = qΦ+ ∗ Φo, Φo ∗ Φ− = q−1Φ− ∗ Φo,

Φ̄o ∗ Φ+ = q−1Φ+ ∗ Φ̄o, Φ̄o ∗ Φ− = qΦ− ∗ Φ̄o,

Φ+ ∗ Φ− = Φ− ∗ Φ+ + (1− q2)−1(Φ̄o ∗ Φ̄o − Φo ∗ Φo),

(C.10)

Φo ∗ Φα = Φα ∗ Φo, Φ̄o ∗ Φα = Φα ∗ Φ̄o,
Φo ∗ Φγ = q−1Φγ ∗ Φo, Φ̄o ∗ Φγ = qΦγ ∗ Φ̄o,
Φo ∗ Φα∗ = Φα∗ ∗ Φo, Φ̄o ∗ Φ∗α = Φ∗α ∗ Φ̄o,
Φo ∗ Φγ∗ = qΦγ∗ ∗ Φo, Φ̄o ∗ Φγ∗ = q−1Φγ∗ ∗ Φ̄o,
Φ̄+ ∗ Φγ∗ = Φγ∗ ∗ Φ+, Φ− ∗ Φγ = Φγ ∗ Φ−,
Φ+ ∗ Φα = qΦα ∗ Φ+ − qΦγ∗ ∗ Φo,
Φ− ∗ Φα = qΦα ∗ Φ− − qΦγ ∗ Φ̄o,
Φ+ ∗ Φα∗ = q−1Φα∗ ∗ Φ+ + q−1Φγ∗ ∗ Φ̄o,
Φ− ∗ Φα∗ = q−1Φα∗ ∗ Φ− + q−1Φγ ∗ Φo,
Φ+ ∗ Φγ = Φγ ∗ Φ+ + q−1(Φα∗ ∗ Φo − Φα ∗ Φ̄o),
Φ− ∗ Φγ∗ = Φγ∗ ∗ Φ− + q−1(Φα∗ ∗ Φ̄o − Φα ∗ Φo).

(C.11)
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For linear functionals ψc ∈ A′c, ψd ∈ (Aη
d)
′ we denote by Φc and Φd the corresponding

functionals on A, Φc := ed ⊗ ψc ∈ A′ and Φd := ψd ⊗ ec ∈ A′. Then for any b ∈ A we have

Φc ∗ Φ′c(b) = (Φc ⊗ Φ′c)∆(b) = (ed ⊗ ψc ⊗ ed ⊗ ψ′c)(idd ⊗ σ−1 ⊗ idc)(∆d ⊗∆c)(b)

Remembering that (ed ⊗ idd)∆d = idd and (idc ⊗ ed)σ−1 = ed ⊗ idc we get

Φc ∗ Φ′c(b) = (ed ⊗ ψc ⊗ ψ′c)(idd ⊗∆c)(b) = (ed ⊗ ψc ∗ ψ′c)(b).

Therefore (C.10) follows immediately from (B.10). In the same way one shows that

Φd ∗ Φ′d(b) = (ψd ⊗ ψ′d ⊗ ec)(∆d ⊗ idc)(b) = (ψd ∗ ψ′d ⊗ ec)(b).

Therefore (B.28) implies (C.9).
To prove (C.11) we note that

Φc ∗ Φd(b) = (ed ⊗ ψc ⊗ ψd ⊗ ec)(idd ⊗ σ−1 ⊗ idc)(∆d ⊗∆c)(b)

= (ψd ⊗ ψc)(u∗bu).
(C.12)

On the other hand using (ec ⊗ ed)σ−1 = ed ⊗ ec we get

Φd ∗ Φc(b) = (ψd ⊗ ec ⊗ ed ⊗ ψc)(idd ⊗ σ−1 ⊗ idc)(∆d ⊗∆c)(b)

= (ψd ⊗ ψc)(b)
(C.13)

Now for b = x ⊗ a ∈ Aη
d ⊗ Ac we have (to abbreviate the notation we put for lower indices

(−,+) instead of (−1
2 , 1

2)

(u∗bu)
1
2−− = x

1
2−−α∗caαc + x

1
2−+α∗caγc + x

1
2
+−γ∗c aαc + x

1
2
++γ∗c aγc,

(u∗bu)
1
2−+ = −qx

1
2−−α∗caγ∗c + x

1
2−+α∗caα∗c − qx

1
2
+−γ∗c aγ∗c + x

1
2
++γ∗c aα∗c ,

(u∗bu)
1
2
+− = −qx

1
2−−γcaαc − qx

1
2−+γcaγc + x

1
2
+−αcaαc + x

1
2
++αcaγc,

(u∗bu)
1
2
++ = q2x

1
2−−γcaγ∗c − qx

1
2−+γcaα∗c − qx

1
2
+−αcaγ∗c + x

1
2
++αcaα∗c .

(C.14)

Now we shall prove the last formula in (C.11). By (C.12), (B.27) and (C.14) we obtain

Φ− ∗Φγ∗(x⊗ a) = −qx
1
2−−ψ−(α∗caγ∗c ) + x

1
2−+ψ−(α∗caα∗c)− qx

1
2
+−ψ−(γ∗c aγ∗c ) + x

1
2
++ψ−(γ∗c aα∗c).

Using skew-derivation property of ψ− (cf.(B.8)) and (B.22) we get

ψ−(α∗caγ∗c ) = ψ̄o(α∗c)ψ̄o(a)ψ−(γ∗c ) = −q−2ψ̄o(a)

and similarly

ψ−(γ∗c aγ∗c ) = 0, ψ−(α∗caα∗c) = ψ−(a), ψ−(γ∗c aα∗c) = −q−1ψo(a).

Therefore
Φ− ∗ Φγ∗(x⊗ a) = q−1x

1
2−−ψ̄o(a) + x

1
2−+ψ−(a)− q−1x

1
2
++ψo(a).
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On the other hand by (C.13)

Φγ∗ ∗Φ−(x⊗a) = x
1
2−+ψ−(a), Φα∗ ∗ Φ̄o(x⊗a) = x

1
2−−ψ̄(a), Φα∗Φo(x⊗a) = x

1
2
++ψo(a).

Comparison of these expressions ends the proof. The proof of other formulae in (C.11) goes
the same way.

We give simple characterization of convolution center of A′.
Proposition C.1
For Ψ ∈ A′ the following conditions are equivalent
i) Ψ ∗ Φ = Φ ∗Ψ for any Φ ∈ A′.
ii) Ψ ∗ Φ = Φ ∗Ψ for all eight functionals Φ from the set (C.8).
iii) (idA ⊗Ψ)∆ = (Ψ⊗ idA)∆.

Proof. The implications iii) ⇒ i) ⇒ ii) are clear. Assuming ii) we get that Ψ ∗ Φ = Φ ∗ Ψ
for any Φ from the convolution algebra generated by the functionals from the set (C.8). By
(C.13) elements of this algebra separate points of A. Since for any a ∈ A

Φ((Ψ⊗ idA)∆(a)) = Ψ ∗ Φ(a) = Φ ∗Ψ(a) = Φ((idA ⊗Ψ)∆(a))

we get (Ψ⊗ idA)∆(a) = (idA ⊗Ψ)∆(a) and this proves iii).
2

Now using (C.9), (C.10) and (C.11) one can easily check that the fuctionals

Ψ := (1− q2)Φγ ∗ Φ+ − qΦα∗ ∗ Φo − q−1Φα ∗ Φ̄o,

Ψ′ := (1− q2)Φγ∗ ∗ Φ− − qΦα∗ ∗ Φ̄o − q−1Φα ∗ Φo

(C.15)

belong to the center of the convolution algebra A. The corresponding Casimir operators on
A are denoted by

C := (id⊗Ψ)∆, C ′ := (id⊗Ψ′)∆. (C.16)

Restricting these operators to the Gelfand spaces Dχ ⊂ A we obtain the Casimir operators
related to the representation vχ.
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