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Abstract

Properties of operators affiliated with a C∗-algebra are studied. A
functional calculus of normal elements is constructed. Representations
of locally compact groups in a C∗-algebra are considered. Generaliza-
tions of Stone and Nelson theorems are investigated. It is shown that
the tensor product of affiliated elements is affiliated with the tensor
product of corresponding algebras.
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0 Introduction

Let H be a Hilbert space and CB(H) be the algebra of all compact operators
acting on H. It was pointed out in [17] that the classical theory of unbounded
closed operators acting in H [8, 9, 3] is in a sense related to CB(H). It seems
to be interesting to replace in this context CB(H) by any non-unital C∗-
algebra. A step in this direction is done in the present paper.

We shall deal with the following topics: the functional calculus of normal
elements (Section 1), the representation theory of Lie groups including the
Stone theorem (Sections 2,3 and 4) and the extensions of symmetric elements
(Section 5). Section 6 contains elementary results related to tensor products.
The perturbation theory (in the spirit of T.Kato) is not covered in this pa-
per. The elementary results in this direction are contained the first author’s
previous paper (cf. [17, Examples 1, 2 and 3 pp. 412–413]).

To fix the notation we remind the basic definitions and results [17].

Let A be a C∗-algebra and T be a linear mapping acting on A defined on
a dense linear domain D(T ). The adjoint mapping T ∗ is introduced by the
following equivalence (x, y ∈ A)(

x ∈ D(T ∗)
and y = T ∗x

)
⇐⇒

(
For any a ∈ D(T )

(Ta)∗x = a∗y

)
(0.1)

Clearly T ∗ is a closed linear mapping. Even if T is bounded there is no
guarantee that D(T ∗) is dense in A. However, if T is bounded, so is T ∗.
Indeed, approximating y by a ∈ D(T ) we obtain y∗y = (Ty)∗x, ‖y‖ 2 ≤
‖Ty‖ ‖x‖ ≤ ‖T‖ ‖y‖ ‖x‖ and ‖y‖ ≤ ‖T‖ ‖x‖ .

Let B(A) denote the Banach algebra of all bounded linear mappings
acting on A defined on the whole A (D(a) = A for all a ∈ B(A)) and let

M(A) = {a ∈ B(A) : a∗ ∈ B(A)}.

Then M(A) is a norm–closed subalgebra of B(A), a∗ ∈ M(A) for any a ∈
M(A) and M(A) endowed with the ∗-operation is a unital C∗-algebra. It
coincides with the multiplier algebra of A (see e.g. [12]). Assuming that
elements of A act on A by left multiplication we include A ↪→ M(A). A is
an ideal in M(A).

The natural topology on M(A) is the topology of almost uniform con-
vergence. We say that a net (aα) of elements of M(A) converges (almost
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uniformly) to 0 if ‖aαx‖ → 0 and ‖a∗αx‖ → 0 for any x ∈ A. For example
if (eα) is an approximate unity for A ([5]) then eα converges to I almost
uniformly. Using this fact one can easily show that A is dense in M(A). The
almost uniform topology remembers the position of A in M(A):

A =

{
x ∈ M(A) :

lim ‖aαx‖ = 0 for any net (aα) of elements
of M(A) converging almost uniformly to 0

}
.

To prove this relation it is sufficient to consider aα = I − eα, where (eα)
is the approximate unity for A. Assuming ‖aαx‖ → 0 we get eαx → x in
norm. On the other hand eα ∈ A and A is an ideal in M(A). Therefore
eαx ∈ A and x ∈ A (A is complete!)

Remembering that T ∗ is bounded for any bounded T we get

Proposition 0.1 Let A be a C∗-algebra and T ∈ B(A). Assume that D(T ∗)
is dense in A. Then T ∈ M(A).

Let A be a C∗-algebra and T be a linear mapping acting on A having a
dense domain D(T ). We say that T is affiliated with A and write TηA if and
only if there exists z ∈ M(A) such that ‖z‖ ≤ 1, D(T ) =

√
I − z∗zA and

T
√

I − z∗z a = za for all a ∈ A.
It is known that z is determined by T . We call it z-transform of T and

denote by zT . If TηA then T is closed. The set of all bounded elements
affiliated with A coincides with M(A). According to Theorem 1.4 of [17], if
TηA then T ∗ηA and

zT ∗ = zT
∗. (0.2)

Let A and B be C∗-algebras. The set of all ∗-algebra homomorphisms
ϕ from A into M(B) such that ϕ(A)B is dense in B will be denoted by
Mor(A, B). If TηA and ϕ ∈ Mor(A, B) then there exists unique ϕ(T )ηB
such that ϕ(D(T ))B is a core of ϕ(T ) and

ϕ(T )ϕ(a)b = ϕ(Ta)b

for any a ∈ D(T ) and b ∈ B (see [17, Theorem 1.2]). One can check that
ϕ(T ) ∈ M(B) for any T ∈ M(A). The resulting mapping ϕ : M(A) → M(B)
is a continuous unital ∗-algebra homomorphism (the both multiplier algebras
are considered with the topology of almost uniform convergence). In general
case (TηA) we have zϕ(T ) = ϕ(zT ).
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Remark. If D0 is a core of T then ϕ(D0)B is a core of ϕ(T ). This follows
immediately from the definition. One can easily show (cf. [17, Theorem 1.4])
that ϕ(T ∗) = ϕ(T )∗.

The affiliation relation η was introduced by Baaj [4]. It was rediscovered
in [17] where its properties were investigated in detail. The set of morphisms
Mor(A, B) was introduced and investigated in [15] and [14].

In the following we shall need the following version of polar decomposition
(cf. [17, Proposition 0.2]).

Proposition 0.2 Let c ∈ M(A), where A is a C∗-algebra. Assume that cA
(c∗A resp.) is a dense subset of eA (fA resp.), where e, f are selfadjoint
projections belonging to M(A). Then there exists unique u ∈ M(A) such
that

c = u
√

c∗c, uu∗ = e and u∗u = f.

Proof. Using [5, Lemma 2.9.4] one can easily show that c∗cA = c∗A and

c∗cA =
√

c∗cA. Therefore
√

c∗cA is a dense subset of fA and the set of
elements of the form

a =
√

c∗c x + (I − f)y (0.3)

where x, y ∈ A is dense in A. Let us notice that a∗a = x∗c∗cx+ y∗(I− f)y ≥
(cx)∗cx. Therefore there exists a unique bounded linear mapping u : A → A
such that ua = cx for any a of the form (0.3). In the similar way one can
show that the set of elements of the form

b =
√

cc∗ x′ + (I − e)y′ (0.4)

where x, y ∈ A is dense in A and construct a unique bounded linear mapping
u′ : A → A such that u′b = cx′ for any b of the form (0.4). Let us notice that

(ua)∗b = x∗c∗
√

cc∗ x = x∗
√

c∗c c∗x′ = a∗(u′b).

Therefore u′ = u∗, hence u ∈ M(A). One can easily check that u satisfies all
the requirements.

Q.E.D.
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1 Functional calculus of normal elements

An element T affiliated with a C∗-algebra A is called normal if D(T ) = D(T ∗)
and (Ta)∗(Ta) = (T ∗a)∗(T ∗a) for any A ∈ D(T ). This is equivalent to
z∗T zT = zT z∗T . T is called selfadjoint if T = T ∗.

We remind the description of the universal normal element given in [17].
Let Λ be a closed subset of C and ζΛ be the element affiliated with C∞(Λ)
introduced by the formula ζΛ(λ) = λ for any λ ∈ Λ. Then we have (cf. [17,
Theorem 1.6]).

Theorem 1.1 Let A be a C∗-algebra, T be a normal element affiliated with
A and Λ =SpT . Then there exists unique ϕT ∈ Mor(C∞(Λ), A) such that

ϕT (ζΛ) = T .

Let T be a normal element affiliated with a C∗-algebra A and f be a complex
valued continuous function defined on Λ = SpT . Then fηC∞(Λ) and using
the notation introduced in Theorem 1.1 we set

f(T ) = ϕT (f). (1.1)

Clearly f(T )ηA. f(T ) is a normal element (f is normal and due to [17,
Theorem 1.2] any image of a normal element is normal). If f(λ) = 1 for all
λ ∈ C then f = IC∞(C) and f(T ) = ϕT (IC∞(C)) = IA. (For any C∗-algebra
A, by IA we denote the unity of M(A).) Similarly, if f(λ = λ for all λ ∈ C
then f = ζ and f(T ) = ϕT (ζ) = T . In general the definition (1.1) gives
the meaning to many algebraic and analytical expressions containing T . For
example (I +T ∗T ) sin(2T ) = ϕT (f) where f is the continuous function on C
such that f(λ) = (1 + λλ̄) sin(2λ) for all λ ∈C. Similarly T (I + T ∗T )−1/2 =
ϕT (f) where f(λ) = λ(1 + λ̄λ)−1/2 for any λ ∈ C. One can easily verify that
in this case f = zζ . Therefore

zT = T (I + T ∗T )−
1
2 (1.2)

for any normal TηA.
The reader easily examines how the functional calculus introduced by

(1.1) works in particular examples. If A is a C∗-algebra of bounded operators
acting in a Hilbert space (examples 3 and 4 in [17]) then

f(T ) =

∫
Sp T

f(λ) dE(λ)
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where dE(·) is the spectral measure associated with the normal operator T :

T =

∫
C

λ dE(λ).

Considering A = C∞(Λ) where Λ is a locally compact topological space one
can see that any TηC∞(Λ) is normal, Sp T = T (Λ) and

f(T ) = f ◦ T. (1.3)

Let A, B be C∗-algebras and Φ ∈ Mor(A, B). Then for any normal
TηA, Φ(T ) is a normal element affiliated with B. Moreover, (Φ ◦ ϕT )(ζ) =
Φ(ϕT (ζ)) = Φ(T ) = ϕΦ(T )(ζ). Therefore ϕΦ(T ) = Φ ◦ ϕT and for any
f ∈ C(C) we get f(Φ(T )) = ϕΦ(T )(f) = Φ(ϕT (f)) = Φ(f(T )) and

f(Φ(T )) = Φ(f(T )). (1.4)

Let A be a C∗-algebra; f1, f2 ∈ C(C) and TηA. Assume that T is normal.
Replacing in (1.4) A, B, Φ, T and f by C∞(C), A, ϕT , f2 and f1 resp. and
remembering that f1(f2) = f1 ◦ f2 (cf. (1.3)) we obtain

f1(f2(T )) = (f1 ◦ f2)(T ). (1.5)

Clearly (cf. Section 0)
f(T )∗ = f̄(T ) (1.6)

where by definition f̄(λ) = f(λ) for any λ ∈ Sp T .
If f ∈ Cbounded(Sp T ) then f(T ) ∈ M(A). Remembering that ϕT ∈

Mor(C∞(Sp T ), A) we see that

(λ1f1 + λ2f2)(T ) = λ1f1(T ) + λ2f2(T ) (1.7)

(f1 · f2)(T ) = f1(T ) · f2(T ) (1.8)

for any f1, f2 ∈Cbounded(Sp T ) and λ1, λ2 ∈C. Moreover, if f ∈Cbounded(Sp T )
and (fn)n=1,2,... is a sequence of bounded continuous functions with a common
bound such that fn → f uniformly on any compact subset of Sp T then
endowing M(A) with the almost uniform topology we have

fn(T ) → f(T ) (1.9)
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Due to relations (1.5)–(1.8) the notation introduced by (1.1) is selfcon-
sistent. Moreover if f(λ) is a continuous bounded function such that λf(λ)
is bounded then

f(T )x ∈ D(T ) (1.10)

T (f(T )x) = (Tf(T ))x (1.11)

for any x ∈ A. The simple proof is left to the reader.

Let A be a C∗-algebra and let TηA. We say that T is skew–adjoint (skew–
symmetric resp.) if T ∗ = −T (T ∗ ⊃ (−T ) resp.). Like in the Hilbert space
operator theory we have

Lemma 1.2 Skew-adjoint elements have no proper skew-symmetric exten-
sions.

Proof. Let A be a C∗-algebra, T, SηA, T ∗ = −T , S∗ ⊃ (−S) and T ⊂ S.
Then S ⊂ (−S∗) ⊂ (−T ∗) = T and S = T . Q.E.D.

Clearly any skew-adjoint element T is normal. Its spectrum is contained
in iR. Indeed, denoting by ζ the element affiliated with C∞(C) introduced by
the formula ζ(λ) = λ for all λ ∈ C, we have: ϕT (zζ) = zT = −z∗T = −ϕT (z̄ζ).
Therefore ϕT vanishes on the closed ideal in Cbounded(C) generated by the
function zζ + z̄ζ , which consists of all bounded continuous functions vanishing
on iR. It means (cf. [17, formula (1.20)] that Sp T ⊂ iR.

Let T be a skew-adjoint element affiliated with a C∗-algebra A. Taking
into account the localization of Sp T described above and using (1.5)–(1.9)
we obtain (

etT
)∗

= e−tT =
(
etT

)−1
(1.12)

et1T et2T = e(t1+t2)T (1.13)

lim
t→0

etT = I (1.14)

lim
t→0

etT − I

t
(I + T ∗T )−

1
2 = T (I + T ∗T )−

1
2

for any t, t1, t2 ∈ R. The above limits are understood in the sense of almost
uniform convergence. Let us notice that (I + T ∗T )−1/2 = (I − z∗T zT )−1/2.
Therefore for any a ∈ D(T ) there exists x ∈ A such that a = (I + T ∗T )−1/2x
and using the last of the above formulae we get

norm- lim
t→0

etT − I

t
a = Ta (1.15)

for all a ∈ D(T ).
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2 Infinitesimal representations of Lie groups

Let G be a locally compact group and A be a C∗-algebra. We say that a
mapping u : G → M(A) is a unitary representation of G in A if

1. u(g) is unitary for any g ∈ G.

2. u(g1g2) = u(g1)u(g2) for any g1, g2 ∈ G.

3. For any a ∈ A the mapping G 3 g 7→ u(g)a ∈ A is norm continuous.

Let us remind that elements of M(A) are continuous linear operators on
A (they act by left multiplication). Therefore we may use all the concepts
and results of the general theory of linear actions of locally compact groups
on Banach spaces [1]. In particular in the Lie group case, we may consider
infinitesimal representations of G.

From now till the end of this Section we assume that G is an N–dimen-
sional Lie group. Let g be the Lie algebra and E be the enveloping algebra
of G. By definition g consists of all right–invariant real vector fields on
G. Consequently elements of E are differential operators on G commuting
with the right shifts. E is equipped with an antilinear and antimultiplicative
involution E 3 M 7→ M+ ∈ E such that X+ = −X for all X ∈ g.

Let u be a unitary representation of G in a C∗-algebra A. The cor-
responding infinitesimal representation will be denoted by du. Operators
du(M) (where M ∈ E) are defined on the invariant dense domain

D∞(u) =

a ∈ A :
The mapping G 3 g 7→ u(g)a ∈ A

is of C∞-class in the sense
of norm topology in A.


For any M ∈ E and a ∈ D∞(u)

du(M)a = Mu(g)a|g=e

Clearly D∞(u) is invariant under all u(h), h ∈ G. Replacing in the above
formula a by u(h)a and remembering that M commutes with right transla-
tions we get du(M)u(h)a = Mu(g)a|g=h. This formula may be rewritten in
the following way:

du(M)u(h)a = Mu(h)a (2.1)

8



Let a, b ∈ D∞(u) and X ∈ g. Applying X to the constant function
(u(g)a)∗u(g)b = a∗b and using the Leibniz rule we get

(du(X)a)∗b = −a∗(du(X)b).

Therefore
(du(M)a)∗b = a∗du(M+)b

for any a, b ∈ D∞(u) and M ∈ E . Using this formula one can easily show
that for all M ∈ E operators du(M) are closable. In what follows the closure
of du(M) will be denoted by u(M).

Affiliation problem
Characterize all elements M ∈ E such that u(M)ηA for any unitary

representation u of G in a C∗-algebra A.

The following theorem provides a simple necessary condition

Theorem 2.1 Let u be a unitary representation of G in a C∗-algebra A
and M ∈ E. Assume that f = 0 is the only bounded C∞–solution of the
differential equation M+Mf = −f . Then u(M), u(M+)ηA and u(M)∗ =
u(M+).

Proof. By virtue of [17, Proposition 2.2] it is sufficient to show that the
set {(

a− du(M+)b
du(M)a + b

)
: a, b ∈ D∞(u)

}
is dense in A⊕ A. Let ω and ω′ be continuous linear functionals on A such
that

ω(a− du(M+)b) + ω′(du(M)a + b) = 0 (2.2)

for all a, b ∈ D∞(u). We have to show that ω = ω′ = 0. Let c ∈ D∞(u).
Inserting in (2.2) u(g)c and −du(M)u(g)c instead of a and b we get

f + M+Mf = 0

where f(g) = ω(u(g)c) is a bounded C∞-function on G. Therefore ω(u(g)c)
= 0, ω(c) = 0 and (D∞(u) is dense in A) ω = 0. Now, inserting in (2.2)
a = 0 we get ω′(b) = 0 for all b ∈ D∞(u) and ω′ = 0. Q.E.D.
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It is known that all elements M ∈ g satisfy the assumption of Theo-
rem 2.1. The same is true for the Nelson operator ∆ =

∑
X+

i Xi, where
(Xi)i=1,2,...,N is a basis in g. Elements u(Xi) (i = 1, 2, . . . , N) are called
infinitesimal generators of u. They are skew–adjoint and affiliated with A.
Element u(∆)ηA is selfadjoint and positive.

Theorem 2.2 Let A, B be C∗-algebras, ϕ ∈ Mor(B, A), v be a unitary rep-
resentation of G in B and u(g) = ϕ(v(g)) for all g ∈ G. Then

1. u is a unitary representation of G in A.

2. If M ∈ E and v(M)ηB then u(M)ηA and

u(M) = ϕ(v(M)).

Proof. Statement 1 is trivial. We prove Statement 2. By definition
ϕ(D∞(v))A is a core for ϕ(v(M)) and for any b ∈ D∞(v) and a ∈ A we have:

ϕ(v(M))ϕ(b)a = ϕ(v(M)b)a = ϕ(Mv(g)b|g=e)a = (Mϕ(v(g)b)|g=e)a

= (Mu(g)ϕ(b)|g=e)a = u(M)ϕ(b)a.

Therefore it is sufficient to show that ϕ(D∞(v))A is a core for u(M).
Let c ∈ D∞(u) and ε > 0. Then u(h)c and u(M)u(h)c (=Mu(h)c by

virtue of (2.1)) depend continuously on h and there exists a neighbourhood
U of e such that

‖u(h)c− c‖ ≤ ε

2
(2.3)

‖u(M)u(h)c− u(M)c‖ ≤ ε

2
(2.4)

for any h ∈ U . Let f be a C∞-function on G with a compact support
contained in U such that f(h) ≥ 0 for all h ∈ G and

∫
G

f(h) dh = 1 (dh
denotes the left–invariant Haar measure on G). We set

Ru =

∫
G

f(h)u(h) dh,

Rv =

∫
G

f(h)v(h) dh.

Clearly Ru ∈ M(A), Rv ∈ M(B) and Ru = ϕ(Rv). Moreover

‖Rua‖ ≤ ‖a‖ (2.5)
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for all a ∈ A.
Ru and Rv are regularizing operators: RuA ⊂ D∞(u) and RvB ⊂

D∞(v) (cf. the concept of the G̊arding domain [6]). Let a ∈ A. Using
(2.1) and integrating by parts we get u(M)Rua = u(M)

∫
f(h)u(h)a dh =∫

f(h)(Mu(h)a) dh =
∫

(M+f)(h)u(h)a dh. Therefore

‖u(M)Rua‖ ≤ Q‖a‖ (2.6)

where Q =
∫
|(M+f)(h)| dh.

Let θ = ε
2
·min(1, Q−1). We know (cf. Section 0) that ϕ(B)A is dense in

A. Therefore there exist b1, b2, . . . , bN ∈ B and a1, a2, . . . , aN ∈ A such that

‖
N∑

k=1

ϕ(bk)ak − c‖ ≤ θ.

Inserting in (2.5) and (2.6) a =
∑

ϕ(bk)ak − c we get

‖
N∑

k=1

ϕ(Rvbk)ak −Ruc‖ ≤
ε

2
, (2.7)

‖u(M)
N∑

k=1

ϕ(Rvbk)ak − u(M)Ruc‖ ≤
ε

2
. (2.8)

On the other hand due to (2.3) and (2.4) we have

‖Ruc− c‖ ≤ ε

2
, (2.9)

‖u(M)Ruc− u(M)c‖ ≤ ε

2
. (2.10)

Combining (2.7) with (2.9) and (2.8) with (2.10) we get

‖c′ − c‖ ≤ ε, (2.11)

‖u(M)c′ − u(M)c‖ ≤ ε. (2.12)

where c′ =
∑

ϕ(Rvbk)ak. This way we showed that for any c ∈ D∞(u) and
any ε > 0 there exists c′ ∈ ϕ(D∞(v))A such that the estimates (2.11) and
(2.12) hold. It means that ϕ(D∞(v))A is a core for u(M). Q.E.D.

The remaining part of this Section is mainly devoted to the case G = R.
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Theorem 2.3 Let u be a representation of R in a C∗-algebra A and TηA
be the infinitesimal generator of u. Then

1.

Ta = lim
t→0

u(t)a− a

t
(2.13)

In particular a ∈ D(T ) if and only if the limit on the right hand side of (2.13)
exists in the sense of the norm topology on A.

2. T is skew–adjoint (T ∗ = −T ) and using the functional calculus of
normal elements we have

u(t) = etT (2.14)

for all t ∈ R.

Proof.
Ad 1. Let T be the operator introduced by (2.13). One can easily see

that T is a closed extension of du( d
dt

). Therefore T ⊃ u( d
dt

). On the other
hand due to the Leibniz rule (Ta)∗b+ a∗Tb = 0 for all a, b ∈ D(T ). It means
that T is skew–symmetric and using Lemma 1.2 we obtain T = u( d

dt
).

Ad 2. By virtue of (1.12) – (1.15) the mapping R 3 t 7→ etT ∈ M(A) is
a unitary representation of R in A and its infinitesimal generator contains
T . Using Lemma 1.2 and remembering that any representation is uniquely
determined by its generator we get (2.14). Q.E.D.

Corollary 2.4 Let u be a representation of G in a C∗-algebra A and let
Y1, Y2, . . . , YN be infinitesimal generators of u. Then

1.

⋂
i=1,2,...,N

D(Yi) =

{
a ∈ A :

The mapping G 3 g 7→ u(g)a ∈ A
is of C1-class

}
.

2. For any t1, t2, . . . , tN ∈ R

u(exp(
∑

tiXi)) = e
P

tiYi , (2.15)

where exp : g → G is the exponential mapping of the theory of Lie groups
and the right hand side is understood in the sense of functional calculus of
normal (skew–adjoint) elements (cf. Section 1).
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3 Elements affiliated with C∗(G).

Let G be a locally compact group. It is well known that unitary representa-
tions of G are in 1–1 correspondence with the representations of the algebra
C∗(G). By Theorem 2.2, investigating the affiliation problem formulated
in Section 2 it is sufficient to consider the universal representation of G in
C∗(G).

We refer to [12] for the definition and basic properties of C∗(G). By
definition L1(G) ⊂ C∗(G) : C∗(G) is the completion of L1(G) with respect
to a C∗–norm. Moreover the space of all finite (complex valued) measures
on G is contained in M(C∗(G)).

Identifying any element g ∈ G with the probability measure concentrated
at g we define the embedding G ↪→ M(C∗(G)). One can easily show that
this embedding G 3 g 7→ U(g) ∈ M(C∗(G)) is a unitary representation of G
in C∗(G). It is called the universal representation for the following

Theorem 3.1 Let u be a representation of G in a C∗-algebra A. Then there
exists unique ũ ∈ Mor(C∗(G), A) such that u(g) = ũ(U(g)) for all g ∈ G.

Conversely if ũ ∈ Mor(C∗(G), A) then (cf. Theorem 2.2.1) setting u(g) =
ũ(U(g)) we define a representation u of G.

Using theorem 3.1 one can easily prove

Proposition 3.2 There exists unique Φ ∈ Mor(C∗(G), C∗(G)⊗C∗(G)) such
that Φ(U(g)) = U(g)⊗ U(g).

Proposition 3.3 Let ϕ : G1 → G2 be a homomorphism of locally com-
pact groups. Then there exists unique ϕ̃ ∈ Mor(C∗(G1), C

∗(G2)) such that
ϕ̃(U1(g)) = U2(ϕ(g)) for all g ∈ G1 (Ui denotes the universal representation
of Gi, i = 1, 2).

The algebra C∗(G) may be considered as the algebra of all “continuous,
vanishing at infinity functions” on a quantum space Ĝ. The comultiplication
Φ introduced in Proposition 3.2 defines a group structure on Ĝ. Ĝ endowed
with this structure is the Pontryagin dual of G (cf. [15]). It turns out that
the pair (C∗(G), Φ) determines the group G uniquely: Using the Tatsuuma
duality [2] one can show that G (or more precisely U(G)) coincides with
{v ∈ M(C∗(G)) : v 6= 0 and Φ(v) = v ⊗ v}. Moreover restricting to G the
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topology of almost uniform convergence on M(C∗(G)) we get the original
topology of G.

Indeed the mapping G 3 g 7→ U(g) ∈ M(C∗(G)) is continuous (U is
a representation of G in C∗(G)). To prove the continuity of the reverse
mapping it is sufficient to consider left regular representation L of G: one
can easily show that Lgα → Lg∞

in the strong
operator topology

 ⇐⇒

 gα → g∞


for any sequence (gα) of elements of G and any g∞ ∈ G.

A deeper analysis (see [16]) shows that the Pontryagin dual of Ĝ coincides
with G.

Assume now that G is a Lie group. Let g be the Lie algebra of G,
(X1, X2, . . . , XN=dim G) be the basis in g and ci

kl be the corresponding struc-
ture constants:

[Xk, Xl] =
∑

i

ci
klXi.

The enveloping algebra of g will be denoted by E . In particular the
Nelson operator ∆ =

∑
X+

i Xi ∈ E . In what follows we identify G with its
U–image. Consequently each M ∈ E will be identified with the corresponding
closed unbounded operator acting on C∗(G). It means that we shall omit
the symbol U writing g and M instead of U(g) and U(M) resp. We also set
D∞ = D∞(U).

We already know (cf. Section 2, remarks after Theorem 2.1) that Xi

(i = 1, 2, . . . , N) and ∆ are affiliated with C∗(G). Xi are skew–adjoint; ∆ is
selfadjoint and positive. Therefore Sp ∆ ⊂ [0,∞[. Let

b0 = (I + ∆)−1. (3.1)

By virtue of [11, Theorem 3.1] b0 ∈ C∗(G) (see also [13]). Inserting in

(1.10) T = ∆1/2, f(λ) = (1 + λ2)−1/2 and x = b
1/2
0 we obtain b0 ∈ D(∆1/2).

Like in the Hilbert space operator theory one can show that any core of
∆ is a core of ∆1/2. Using now the obvious estimate ‖Xia‖ ≤ ‖∆1/2a‖ for
all a ∈ D∞ we see that D(∆1/2) ⊃ D(Xi). In particular b0 ∈ D(Xi) for all
i = 1, 2, . . . , N . Let bi = Xib0. Then b0, b1, . . . , bN ∈ C∗(G).

14



Clearly b0, b1, . . . , bN coincide with the generators introduced in Lemma
2 of [13]. They satisfy the following Szymański relations

b∗0 = b0,

b∗kb0 = −b0bk,

b0(I − b0) =
N∑

j=1

b∗jbj,

b∗kbl − b∗l bk =
N∑

j=1

cj
klb0bj,

b∗k + bk =
N∑

i,j=1

cj
ki(b

∗
jbi + b∗i bj).

for all k, l = 1, 2, . . . , N . If G is connected and simply connected then C∗(G)
coincides with the (non–unital) C∗-algebra generated by abstract elements
b0, b1, . . . bN satisfying the above relations [13]. We shall use the following
C∗–version of Lemma 2 of [13].

Proposition 3.4 Let A be a C∗-algebra and b0
′, b1

′, . . . , bN
′ be elements of

M(A) satisfying the Szymański relations. Assume that b0
′A is dense in A

and that G is connected and simply connected. Then there exists unique
ϕ ∈ Mor(C∗(G), A) such that bj

′ = ϕ(bj) for all j = 0, 1, . . . , N .

Proof. We may assume that A ⊂ B(H) where H is a Hilbert space
and the embedding is non–degenerate. Then b0

′, b1
′, . . . , bN

′ ∈ B(H) and
using Lemma 2 of [13] we get bj

′ = ϕ(bj) where ϕ is a representation of
C∗(G) in H. Remembering that b0, b1, . . . , bN generate C∗(G) we see that
ϕ(C∗(G)) ⊂ M(A). Moreover ϕ(C∗(G))A ⊃ ϕ(b0)A = b0

′A. Therefore
ϕ(C∗(G))A is dense in A and ϕ ∈ Mor(C∗(G), A). Q.E.D.
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4 The integrability theorem of E.Nelson

Let Y be a linear operator acting on a C∗-algebra A. W say that Y is
skew–symmetric if (Y a)∗b = −a∗(Y b) for all a, b ∈ D(Y ).

In this section we assume that G is a connected, simply connected Lie
group. We shall use the notation introduced in Sections 2 and 3. The
following theorem is the C∗–version of Theorem 5 and Corollary 9.1 of [10].

Theorem 4.1 Let Yi (i = 1, 2, . . . , N) be closed skew–symmetric operators
acting on a C∗-algebra A and D be a dense linear subset of A such that for
all a ∈ D and i, j = 1, 2, . . . , N we have

1. a ∈ D(Yi) and Yia ∈ D(Yj),

2. YiYja− YjYia =
∑N

k=1 ck
ijYka.

Assume that the closure of
∑N

k=1 Y 2
k |D is a selfadjoint element affiliated with

A.
Then YiηA (i = 1, 2, . . . , N) and there exists unique representation u of

G such that u(Xi) = Yi (i = 1, 2, . . . , N).

Proof. The uniqueness of u follows from the general theory of Banach
space representations of Lie groups. We have to show the existence.

Let ∆̃ be the closure of −
∑N

k=1 Y 2
k |D and C = I + ∆̃. Then D is a core

of C, C∗ = CηA and C ≥ I. It implies that CD(C) = A. The inverse of C
will be denoted by b0

′. Clearly b0
′ ∈ M(A), 0 ≤ b0

′ ≤ I and b0
′A = D(C).

Let i ∈ {1, 2, . . . , N}. For any a ∈ D we have

(Yia)∗(Yia) ≤
N∑

k=1

(Yka)∗(Yka) = a∗(C − I)a ≤ 1

4
(Ca)∗(Ca).

The last estimate follows from the equality C − I = (C/2)2 − (C/2 − I)2.
Therefore ‖Yia‖ ≤ 1

2
‖Ca‖ for all a ∈ D. Remembering that D is a core of

C and that Yi is closed we get D(C) ⊂ D(Yi) and ‖Yia‖ ≤ 1
2
‖Ca‖ for all

a ∈ D(C). It shows that the operator bi
′ = Yib0

′ is defined on the whole A
and ‖bi

′‖ ≤ 1
2
. Therefore bi

′ ∈ B(A).
Let x ∈ D(Yi). Then for any z ∈ A we have (bi

′z)∗x = (Yib0
′z)∗x =

−(b0
′z)∗Yix = z∗(−b0

′Yix). It shows that x ∈ D((bi
′)∗), D(Yi) ⊂ D((bi

′)∗)
and by virtue of Proposition 0.1 we obtain bi

′ ∈ M(A) for i = 1, 2, . . . , N .
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By simple computations one can check that b0
′, b1

′, . . . , bN
′ satisfy the

Szymański relations. Therefore (cf. Proposition 3.4) there exists unique
ϕ ∈ Mor(C∗(G), A) such that ϕ(bk) = bk

′ for k = 1, 2, . . . , N .
Let i ∈ {1, 2, . . . , N}. For any a ∈ D(C) we have

Yia = Yib0
′Ca = bi

′Ca = ϕ(bi)Ca = ϕ(Xib0)Ca = ϕ(Xi)ϕ(b0)Ca

= ϕ(Xi)b0
′Ca = ϕ(Xi)a.

According to (3.1), b0C
∗(G) = D(∆) ⊃ D∞. Therefore b0C

∗(G) is a core
of Xi and consequently (cf. Section 0, Remark before Prop. 0.2) ϕ(b0)A =
b0
′A = D(C) is a core of ϕ(Xi). Taking into account the above computations

and remembering that Yi is closed we conclude that ϕ(Xi) ⊂ Yi. By virtue
of Lemma 1.2, ϕ(Xi) = Yi. In particular YiηA.

For any g ∈ G ⊂ M(C∗(G)) we set u(g) = ϕ(g). By virtue of Theorem
2.2, u is a unitary representation of G in A and u(Xi) = ϕ(Xi) = Yi for
i = 1, 2, . . . , N . Q.E.D.
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5 Selfadjoint extensions of symmetric elements

Let A be a C∗-algebra and TηA. We say that T is symmetric if T ⊂ T ∗. It
means that

y∗Tx = (Ty)∗x (5.1)

for any x, y ∈ D(T ). Let z be the z–transform of TηA. Then x =
√

I − z∗z a,
Tx = za, y =

√
I − z∗z b and Ty = zb, where a, b are elements of A. Insert-

ing these data into (5.1) we get

z∗
√

I − z∗z =
√

I − z∗z z. (5.2)

Conversely, (5.2) immediately implies (5.1). Like in the theory on the Hilbert
space level the problem of extensions of symmetric elements can be solved
by the Cayley transform method (see e.g. [9]).

Let T be a symmetric element affiliated with a C∗-algebra and z be the
z–transform of T . We set

cT = w−w∗
+ (5.3)

where w± = z± i
√

I − z∗z. Due to (5.2) w+ and w− are isometries: w∗
±w± =

I. Therefore cT is a partial isometry: c∗T cT = w+w∗
+ and cT c∗T = w−w∗

− are
projections (note that an element c of a C∗-algebra is a partial isometry if
and only if cc∗c = c). We call cT the Cayley transform of T . To justify this
terminology one can verify that

cT (T + iI)x = (T − iI)x

for any x ∈ D(T ).
Let b ∈ A. Then

i

2
(cT − I)c∗T =

i

2
(w−w∗

+ − I)w+w∗
−b =

√
I − z∗z w∗

−b

and i
2
(cT − I)c∗T b ∈ D(T ). Let us notice that each element of D(T ) is of this

form. Indeed, for any a ∈ A we have a = w∗
−b, where b = w−a. With the

same notations we have

T (
i

2
(cT −I)c∗T b) = zw∗

−b =
1

2
(w−+w+)w∗

−b =
1

2
(cT c∗T + c∗T )b =

1

2
(cT +I)c∗T b.

This way we showed that(
x ∈ D(T )
y = Tx

)
⇐⇒

(
There exists b ∈ c∗T A such that
x = i(cT − I)b and y = (cT + I)b

)
(5.4)
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Therefore T is uniquely determined by its Cayley transform cT . Moreover,
(cT − I)c∗T A is dense in A.

Proposition 5.1 Let c be an element of M(A) such that cc∗c = c (i.e. c is
a partial isometry). Assume that (c − I)c∗A is dense in A. Then c is the
Cayley transform of a symmetric TηA.

Proof. (I − c∗)cc∗A = (c− I)c∗A is, by assumption,dense in A. Therefore
(I − c∗)A is dense in A and c(I − c∗)A is dense in cA = cc∗A (because
cc∗A ⊂ cA = cc∗cA ⊂ cc∗A). Applying Proposition 0.4 to the operator
c(I − c∗) we get

c(I − c∗) = v−|c(I − c∗)|

where v∗−v− = I, v−v∗− = cc∗ and |c(I − c∗)| =
√

(I − c)c∗c(I − c∗) =√
c∗c− c− c∗ + cc∗.
Let v+ = c∗v−. Then v∗+v+ = v∗−cc∗v− = v∗−v−v∗−v− = I, v+v∗+ =

c∗v−v∗−c = c∗cc∗c = c∗c and

v−v∗+ = v−v∗−c = cc∗c = c.

We shall apply Proposition 0.4 to the operator (v+ − v−)∗. In this case
e = f = I. Indeed, (v+ − v−)A ⊃ (v+ − v−)v∗−A = (c∗ − cc∗)A = (I − c)c∗A
is, by the assumption, dense in A and f = I. Furthermore, (v+ − v−)∗A =
v∗+v+(v+−v−)∗A = v∗+(c∗c−c∗)A = v∗+c∗(I−c)A. We know that (I−c)c∗A is
dense in A, so is (I−c)A, whence (v+−v−)∗A is dense in v∗+c∗A = v∗−cc∗A ⊃
v∗−cc∗cA = v∗−cA = v∗+A ⊃ v∗+v+A = A and e = I.

By virtue of Proposition 0.4 (v+ − v−)∗ = rs, where r, s ∈ M(A), r is
unitary, s ≥ 0 and v+ − v− = sr∗.

Let
w+ = iv+r,

w− = iv−r.

By computation we get

w∗
+w+ = I, w∗

−w− = I, (5.5)

w+w∗
+ = c∗c, w−w∗

− = cc∗,

1

i
(w+ − w−) ≥ 0, (5.6)

c = w−w∗
+.
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Let

z =
1

2
(w+ + w−). (5.7)

Then

z∗z +

(
1

2i
(w+ − w−)

)∗(
1

2i
(w+ − w−)

)
= I.

and taking into account (5.6) we get

1

2i
(w+ − w−) =

√
I − z∗z, (5.8)

Combining (5.7) and (5.8) we get

w± = z ± i
√

I − z∗z. (5.9)

Since √
I − z∗z A = i(v+ − v−)rA = (v+ − v−)A

is dense in A, z is the z–transform of an element T affiliated with A. T is
symmetric. Indeed, combining (5.5) and (5.9) we get (5.2). Clearly c is the
Cayley transform of T . Q.E.D.

Now we are able to prove

Theorem 5.2 Let T be a symmetric element affiliated with a C∗-algebra A,
z be the z–transform of T and E+, E− be elements of M(A) introduced by

E± = z∗z ± i
(
z
√

I − z∗z −
√

I − z∗z z∗
)
− zz∗. (5.10)

Then
1. E+ and E− are orthogonal projections: E±∗ = E± = (E±)2. More-

over, E+ 6= I 6= E−.
2. T is selfadjoint if and only if E± = 0.
3. The set of all selfadjoint extensions of T is in one to one corre-

spondence with the set of all elements v ∈ M(A) such that v∗v = E+ and
vv∗ = E−.

4. The set of all symmetric extensions of T is in one to one correspon-
dence with the set of all partial isometries v ∈ M(A) such that v∗v ≤ E+

and vv∗ ≤ E−.
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Proof.
Ad 1. Using the relations derived in the proof of Proposition 5.1 one can

easily verify that
E+ = I − c∗T cT ,

E− = I − cT c∗T ,

where cT is the Cayley transform of T and the statements follow (cT is a
partial isometry).

Ad 2. If T is selfadjoint then z∗ = z and (cf. (5.10)) E± = 0. Con-
versely, if E± = 0 then z∗z = zz∗ and z

√
I − z∗z =

√
I − z∗z z∗. Therefore

z∗ commutes with z∗z and z
√

I − z∗z = z∗
√

I − z∗z. Remembering that
D(T ) =

√
I − z∗z A is dense in A we get z = z∗ and the selfadjointness of T

follows (cf. (0.2)).
It follows immediately from the above considerations that a symmetric

element is selfadjoint if and only if its Cayley transform is unitary.
Ad 4. Let v ∈ M(A) be a partial isometry such that v∗v ≤ E+ and

vv∗ ≤ E−. Then v∗v ≤ I − c∗T cT and vv∗ ≤ I − cT c∗T . Therefore

(vc∗T )∗(vc∗T ) = cT v∗vc∗T ≤ cT (I − c∗T cT )c∗T = 0,

(v∗cT )∗(v∗cT ) = c∗T vv∗cT ≤ c∗T (I − cT c∗T )cT = 0

and
vc∗T = v∗cT = 0. (5.11)

Using these relations one can easily prove that c = cT +v is a partial isometry.
Indeed,

c∗c = I − (E+ − v∗v),

cc∗ = I − (E− − vv∗)

are orthogonal projections.
Let b ∈ c∗T A. Then b = c∗T a (where a ∈ A), vb = vc∗T a = 0 (cf. (5.11)) and

cb = cT b. Moreover, b = c∗T cT c∗T a = (c∗T + v∗)cT c∗T a = c∗cT c∗T a and b ∈ c∗A.
Therefore (c− I)c∗A ⊃ (cT − I)c∗T A is dense in A, c is the Cayley transform
of a symmetric SηA (see Proposition 4.1) and using (5.4) we get T ⊂ S.

Conversely, assume that S is a symmetric extension of T . By virtue of
(5.4) for any b ∈ c∗T A there exists b′ ∈ c∗SA such that

i(cT − I)b = i(cS − I)b′,
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(cT + I)b = (cS + I)b′.

Solving these equations we get b′ = b and cSb′ = cT b. It shows that

c∗T A ⊂ c∗SA (5.12)

and
cSc∗T = cT c∗T (5.13)

We know that c∗ScSc∗S = c∗S, hence c∗ScSa = a for any a ∈ c∗SA. By virtue
of (5.12) the same relation holds for a ∈ c∗T A. In particular c∗ScSc∗T cT = c∗T cT .
Therefore c∗T cT ≤ c∗ScS and c∗ScS − c∗T cT is an orthogonal projection.

Let
v = cS(c∗ScS − c∗T cT ).

Then v∗v = c∗ScS − c∗T cT . It shows that v is a partial isometry and v∗v ≤
I − c∗T cT = E+. Using (5.13) one can verify that vv∗ = cSc∗S − cT c∗T ≤ E−.
To end the proof of Statement 4 we notice that by virtue of (5.13)

v = cSc∗ScS − cT c∗T cT = cS − cT .

Ad 3. According to the remark at the end of the proof of Statement 2
the extension S is selfadjoint if and only if cS is unitary. Clearly this is the
case if and only if v∗v = I − c∗T cT = E+ and vv∗ = I − cT c∗T = E−.

Q.E.D.

Corollary 5.3 Let A be a C∗-algebra such that M(A) contains no projec-
tions except 0 and I. Then every symmetric TηA is selfadjoint.

Remembering that E± = I − w±w∗
± we get the following enhancement

Corollary 5.4 Let A be a C∗-algebra such that each isometry belonging to
M(A) is unitary. Then each symmetric TηA is selfadjoint.

Let TηA. We say that T is positive if x∗Tx ≥ 0 for any x ∈ D(T ). Let z
be the z–transform of T . One can easily check that T is positive if and only
if √

I − z∗z z ≥ 0.

In particular any positive element is symmetric.
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Proposition 5.5 Every positive element T affiliated with a C∗-algebra ad-
mits a selfadjoint extension.

Proof. Let z be the z–transform of T . For any λ ∈ C such that |λ| = 1,
<λ ≥ 0 we set

wλ = z + λ
√

I − z∗z.

Then w∗
λwλ = I + (2<λ)

√
I − z∗z z ≥ I. It shows that Sp (w∗

λwλ) ⊂ [1,∞[.
Therefore (cf. [7, Problem 69]) Sp (wλw

∗
λ) ⊂ {0} ∪ [1,∞[.

Let f be a continuous function on [0,∞[ such that f(0) = 1 and f(t) = 0
for t ≥ 1. We set

E(λ) = f(wλw
∗
λ).

Then E(λ) is an orthogonal projection belonging to M(A); E(λ) depends
continuously on λ and E(±i) = E±. The existence of a partial isometry v
such that v∗v = E+ and vv∗ = E− follows now from the following lemma
well known in the K–theory of C∗-algebras.

Lemma 5.6 Let e, f be orthogonal projections belonging to M(A) such that
‖e− f‖ < 1. Then there exists u ∈ M(A) such that u∗u = e and uu∗ = f .

Proof. Apply Proposition 0.4 to the element c = ef .
Q.E.D.

Remark. At the moment we are not able to show that any positive element
admits a positive selfadjoint extension.

Let T be a positive element affiliated with a C∗-algebra A. We endow
D(T ) with the norm

‖|x‖| =
√
‖x∗(T + I)x‖ , x ∈ D(T ).

Let D̃(T ) be the completion of D(T ) with respect to this norm, DF = D̃(T )∩
D(T ∗) and TF = T ∗|DF

. TF is called the Friedrichs extension of T .
Problem: Is TF affiliated with A? It seems that the answer is negative

in general. However, if A is balanced (i.e. any left multiplier is a multiplier:
LM(A) = M(A)) then TF ηA for any positive TηA. In this case TF is a
positive selfadjoint extension of T .
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6 Tensor product of affiliated elements

In this section we shall prove the following

Theorem 6.1 Let Ai be a C∗-algebra and TiηAi (i = 1, 2). Then there exists
unique T1 ⊗ T2ηA1 ⊗A2 such that D(T1)⊗alg D(T2) is a core of T1 ⊗ T2 and

(T1 ⊗ T2)(a1 ⊗ a2) = T1a1 ⊗ T2a2 (6.1)

for any a1 ∈ D(T1) and a2 ∈ D(T2). Moreover

(T1 ⊗ T2)
∗ = T ∗1 ⊗ T ∗2 . (6.2)

We shall use the following

Proposition 6.2 Let C be a unital C∗-algebra; J ⊂ C be a closed ideal;
b1, b2, . . . , bN be hermitian, mutually commuting elements of C, Λ ⊂ RN be
the joint spectrum of (b1, b2, . . . , bN) and f, g ∈ C(Λ). Assume that

(f(λ) = 0) =⇒ (g(λ) = 0) (6.3)

for any λ ∈ Λ.
Then g(b1, b2, . . . , bN)J is contained in the closure of f(b1, b2, . . . , bN)J .

Proof. Due to (6.3) the closed ideal of C(Λ) generated by f contains g
(cf. [5, Lemma 2.9.4]). It means that for any ε > 0 there exists hε ∈ C(Λ)
such that

|g(λ)− f(λ)hε(λ)| ≤ ε

for all λ ∈ Λ.
Let x ∈ J . Then yε = hε(b1, b2, . . . , bN)x ∈ J , using the above inequality

we get ‖g(b1, b2, . . . , bN)x−f(b1, b2, . . . , bN)yε‖ ≤ ε and the statement follows.
Q.E.D.

We shall use Proposition 6.2 in the following situation: C = M(A1 ⊗
A2); J = A1 ⊗ A2; b1 = z∗1z1 ⊗ I and b2 = I ⊗ z∗2z2, where z1 and z2

are z–transforms of T1 and T2 resp.. Then Λ ⊂ [0, 1]2 and the functions
f(λ1, λ2) = (1−λ1)(1−λ2)+λ1λ2 and g(λ1, λ2) =

√
(1− λ1)(1− λ2) satisfy

the relation (6.3). Indeed, the only points, where f vanishes, are (1, 0) and
(0, 1). Notice that in this case g(b1, b2)J = (

√
I − z∗1z1 ⊗

√
I − z∗2z2)(A1 ⊗

A2) ⊃ D(T1)⊗alg D(T2) is dense in A1 ⊗ A2. Therefore we have
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Lemma 6.3 The range of (I − z∗1z1)⊗ (I − z∗2z2) + z∗1z1 ⊗ z∗2z2 is dense in
A1 ⊗ A2.

Replacing T1 and T2 by T ∗1 and T ∗2 resp. we get

Lemma 6.4 The range of (I − z1z
∗
1)⊗ (I − z2z

∗
2) + z1z

∗
1 ⊗ z2z

∗
2 is dense in

A1 ⊗ A2.

Proof of Theorem 6.1
We shall use Theorem 2.3 of [17]. Let

a =
√

I − z1z∗1 ⊗
√

I − z2z∗2 ,

b = c = z1 ⊗ z2,

d =
√

I − z∗1z1 ⊗
√

I − z∗2z2,

Q =

(
d, −c∗

b, a∗

)
.

Clearly a, b, c, d ∈ M(A1 ⊗ A2). By direct computation one may check that
ab = cd. Next a(A1 ⊗ A2) contains a(A1 ⊗alg A2) = D(T ∗1 ) ⊗alg D(T ∗2 ) and
d(A1 ⊗ A2) contains d(A1 ⊗alg A2) = D(T1) ⊗alg D(T2). Both these sets are
dense in A1 ⊗ A2. Finally

QQ∗ =

(
d2 + c∗c , 0

0 , a2 + bb∗

)
and using Lemmas 6.3 and 6.4 we see that the range of Q is dense in (A1 ⊗
A2)⊕ (A1 ⊗ A2).

By virtue of Theorem 2.3 of [17] there exists an element T1⊗T2ηA1⊗A2

such that d(A1 ⊗ A2) is a core of T1 ⊗ T2 and

(T1 ⊗ T2)dx = bx (6.4)

for all x ∈ A1 ⊗ A2. Remembering that A1 ⊗alg A2 is dense in A1 ⊗ A2 we
see that d(A1 ⊗alg A2) = D(T1)⊗alg D(T2) is a core of T1 ⊗ T2. Moreover, if
a1 ∈ D(T1) and a2 ∈ D(T2) then a1 =

√
I − z∗1z1 x1, a2 =

√
I − z∗2z2 x2 and

inserting in (6.4) x = x1 ⊗ x2 we get (6.1).
Let x, y ∈ A1⊗A2. By virtue of (0.1) x ∈ D((T1⊗T2)

∗) and y = (T1⊗T2)
∗x

if and only if
((T1 ⊗ T2)c)

∗x = c∗y (6.5)
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for all c ∈ D(T1 ⊗ T2). We may assume that c is of the form c = dc′ where
c′ ∈ A1 ⊗ A2 (d(A1 ⊗ A2) is a core of T1 ⊗ T2). Then (T1 ⊗ T2)c = bc′ and
relation (6.5) is equivalent to

b∗x = d∗y (6.6)

On the other hand replacing T1 and T2 by T ∗1 and T ∗2 resp. (and consequently
a by d and c by b∗) and using Statement 2 of Theorem 2.3 of [17] we see that
(6.6) is equivalent to x ∈ D(T ∗1 ⊗T ∗2 ) and y = (T ∗1 ⊗T ∗2 )x. This way formula
(6.2) is proved.

Q.E.D.
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