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Abstract

According to a paper published in 1991, the quantum group SU(1,1) does not
exists on the C∗-algebra level. In the present paper we show, that the situation
essentially improves, if SU(1,1) is replaced by its double covering. A first step
in this direction was made by L. Korogodski. To incorporate his idea into the
quantum group framework we developed a new theory of balanced extension
of subbalanced operators. This is a generalization of the theory of selfadjoint
extensions of symmetric operators.

The paper is not finished yet. It contains the complete construction of ex-
tended SU(1, 1) quantum group on the Hilbert space level. However the asso-
ciativity of the tensor product stated in Theorem 1.5 is still unproven (so at the
moment it has the status of conjecture), although we strongly believe that it
holds.

0 Introduction.
S0

The quantum SU(1, 1)-group on the level of Hopf ∗-algebra is an object with no prob-
lems. The deformation parameter q is a real number in the interval ]0, 1[. The Hopf
∗-algebra A of polynomial functions on quantum SU(1, 1) is generated by two elements
α, γ subject to the following five relations:

αγ = qγα,
αγ∗ = qγ∗α,
γγ∗ = γ∗γ.

α∗α = I + γ∗γ,
αα∗ = I + q2γ∗γ,

(0.1) SqU11
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The comultiplication ∆ : A → A ⊗ A is the ∗-algebra homomorphism acting on
generators in the following way:

∆(α) = α⊗ α + qγ∗ ⊗ γ,
∆(γ) = γ ⊗ α + α∗ ⊗ γ. (0.2) Delta

One can easily verify that the object (A,∆) described above is a Hopf ∗-algebra and
that the matrix

w =

(
α , qγ∗

γ , α∗

)
is a corepresentation of (A,∆). Clearly w is the fundamental representation of the
quantum SU(1, 1).

On the Hilbert space level generators α and γ should be treated as unbounded1

operators acting on a Hilbert space. Since for unbounded operators the algebraic ope-
rations are often ill defined, one has to give a more precise meaning to the formulae
(0.1). The most natural way is to assume that the four operators: α, γ, α∗ and γ∗ have
the same domain D. Then all terms in (0.1) may be understood as sesquilinear forms on
D×D: e.g: αγ is understood as the sesquilinear form: D×D 3 (x, y) 7→ (α∗x γy) ∈ C.
In what follows, the relations (0.1) will be understood as equalities of sesquilinear forms
(cf formulae (4.2) – (4.5) of [17]). On the Hilbert space level one may also formulate
conditions of non-algebraic nature. For example one often supplements (0.1) by a
spectral condition of the form:

Sp γ∗γ ⊂ Λ, (0.3) spcon

where Λ is a fixed closed subset of R. Such additional spectral condition was considered
by many authors (cf e.g: [9]). It is coherent with (0.1) provided Λ is invariant under
multiplication by q2 and q−2. We say that (α, γ) is a SqU(1, 1)-pair acting on a Hilbert
space H, if α and γ are closed operators acting on H satisfying (0.1) (in the sense
explained above) and (0.3).

We shall use the terminology introduced in [18]. By the procedure described in
Section 7 of [18], relations (0.1) and (0.3) give rise to a C∗-algebra A. This C∗-algebra
is generated by two unbounded elements α, γ affiliated with it and

π ←→
(
π(α), π(γ)

)
(0.4) bij

defines continuous one to one correspondence between the set Rep (A,H) of all repre-
sentation of A acting on a Hilbert space H and the set of all SqU(1, 1)-pairs acting on
H.

Assume now, that A is equipped with a comultiplication ∆ ∈ Mor(A,A ⊗ A) such
that (0.2) holds. Then for any π1 ∈ Rep (A,H1) and π2 ∈ Rep (A,H2) one may consider
the tensor product:

π1©> π2 = (π1 ⊗ π2)o∆.

Clearly π1©> π2 ∈ Rep (A,H1⊗H2). Using the one to one correspondence (0.4) we may
define the tensor product for SqU(1, 1)-pairs. If (α1, γ1) is a SqU(1, 1)-pair acting on a

1one can easily check that relations (0.1) cannot be satisfied by bounded operators α and γ 6= 0.
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Hilbert space H1 and (α2, γ2) is a SqU(1, 1)-pair acting on a Hilbert space H2, then by
virtue of (0.2):

(α1, γ1)©> (α2, γ2) = (α̃, γ̃),

where
α̃ = α1 ⊗ α2 + qγ∗1 ⊗ γ2,

γ̃ = γ1 ⊗ α2 + α∗1 ⊗ γ2.

One expects that (α̃, γ̃) is a SqU(1, 1)-pair acting on H1 ⊗ H2. Unfortunately (cf [17,
Theorem 4.1] and [8, Theorem 6.1]) this is not the case. It turns out that the domains
of α̃ and α̃∗ do not coincide. This failure cannot be repaired by extending the operators
to larger domains. This negative result shows there is no comultiplication on A being
in agreement with (0.2). Quantum SU(1, 1)-group does not exist on C∗-level.

The next important step in this subject was done by Leonid Korogodski in [8]. He
discovered that the situation is more hopeful if one replaces SU(1, 1) by its two-fold
covering SŨ(1, 1). On the classical level

SŨ(1, 1) =

{
g ∈ SL(2,C) : g∗

(
1 , 0
0 , −1

)
g = ±

(
1 , 0
0 , −1

)}
.

This group enters into Iwasawa-type decomposition of SL(2,C): any element g ∈
SL(2,C) such that |g12| 6= |g21| admits unique decomposition of the form

g = g′g′′,

where g′ ∈ SŨ(1, 1) and g′′ is an upper triangular matrix with positive elements on the
diagonal.

Any element g ∈ SŨ(1, 1) is of the form

g =

(
α , εγ∗

γ , εα∗

)
,

where ε = ±1 and α, γ are complex numbers such that

α∗α = ε+ γ∗γ.

A quantum deformation of SŨ(1, 1) on the Hopf ∗-algebra level was constructed
in [8], where rather exotic terminology of shadows was used. We shall describe this
deformation using the more standard language. The Hopf ∗-algebra A of polynomial
functions on SqŨ(1, 1) is generated by three elements α, γ, ε subject to the following set
of relations:

ε2 = I,
ε∗ = ε,

εαε = α,
εγε = γ,

(0.5) a

αγ = qγα,
αγ∗ = qγ∗α,
γγ∗ = γ∗γ.

α∗α = ε+ γ∗γ,
αα∗ = ε+ q2γ∗γ,

(0.6) b
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The comultiplication ∆ : A → A ⊗ A is the ∗-algebra homomorphism acting on
generators in the following way:

∆(α) = α⊗ α + qεγ∗ ⊗ γ,
∆(γ) = γ ⊗ α + εα∗ ⊗ γ,
∆(ε) = ε⊗ ε.

(0.7) c

One can easily verify that the object (A,∆) described above is a Hopf ∗-algebra and
that the matrix

w =

(
α , qεγ∗

γ , εα∗

)
is a corepresentation of (A,∆). Clearly w is the fundamental representation of the
quantum SŨ(1, 1).

We pass to the Hilbert space level. Now α, γ, ε are operators acting on a Hilbert
space H and relations (0.6) are understood as equalities of sesquilinear forms. Due to
(0.5) the Hilbert space

H = H+ ⊕H−,

where H± are eigenspaces of ε corresponding to eigenvalues ±1. This decomposition is
respected by α and γ. We denote by γ± the restriction of γ to H±. It turns out that
Sp γ∗−γ− is uniquely determined by the commutation relations, so the spectral condition
may be imposed on γ+ only. Korogodski uses the following condition:

Sp γ∗+γ+ ⊂ c q2Z ∪ {0}, (0.8) spcont

where c is a fixed positive number.

We say that (α, γ, ε) is a SqŨ(1, 1)-triple acting on a Hilbert space H, if α, γ and ε
are closed operators acting on H satisfying the conditions (0.5), (0.6) and (0.8).

Let (α, γ, ε) be a SqŨ(1, 1)-triple acting on a Hilbert space H. We say that (α, γ, ε)
is bosonic (fermionic respectively) if ε = I (ε = −I respectively). Any SqŨ(1, 1)-triple
is a direct sum of bosonic and fermionic triples. Irreducible triples are either bosonic
or fermionic. Clearly any bosonic SqŨ(1, 1)-triple is of the form (α, γ, I), where (α, γ)
is a SqU(1, 1)-pair.

Formulae (0.7) imply the following form of tensor product of SqŨ(1, 1)-triples:

(α1, γ1, ε1)©> (α2, γ2, ε2) = (α̃, γ̃, ε̃),

where
α̃ = α1 ⊗ α2 + qε1γ

∗
1 ⊗ γ2,

γ̃ = γ1 ⊗ α2 + ε1α
∗
1 ⊗ γ2,

ε̃ = ε1 ⊗ ε2.
We already know that this product is ill defined for bosonic triples. Korogodski has

shown, that the same negative result holds2 when both triples have definite evenness

2assuming that γ1 and γ2 do not vanish.
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(i.e. are bosonic or fermionic). The situation essentially improves when one considers
the reducible triples containing bosonic and fermionic components in equal number.
We have the following result:

Let (α1, γ1, ε1) and (α2, γ2, ε2) be SqŨ(1, 1)-triples. Assume that each of the triples is
a direct sum of two irreducible components: bosonic and fermionic. Assume furthermore
that the bosonic components are infinite-dimensional. Then there exists SqŨ(1, 1)-triple
(α̃, γ̃, ε̃) such that

α1 ⊗ α2 + qε1γ
∗
1 ⊗ γ2 ⊂ α̃

γ1 ⊗ α2 + ε1α
∗
1 ⊗ γ2 ⊂ γ̃

ε1 ⊗ ε2 = ε̃.

(0.9) cc

This is the main result of the Korogodski paper [8]. It gives rise to the following
problem:

How to modify the definition of SqŨ(1, 1)-triple to make bosonic and fermionic
components inseparable? This modification should eliminate purely bosonic and purely
fermionic triples for which the tensor product is ill defined. Furthermore at the moment
the tensor product is not uniquely defined: there are many SqŨ(1, 1)-triples (α̃, γ̃, ε̃)
satisfying (0.9). One can show that the present definition of SqŨ(1, 1)-triple gives no
natural choice among them. So the modified definition should distinguish in a canonical
way one among all SqŨ(1, 1)-triples (α̃, γ̃, ε̃) satisfying (0.9).

The present paper contains a solution of this problem. The definition is modified
by including a new element denoted by Y , so we shall deal with SqŨ(1, 1)-quadruples
(α, γ, ε, Y ). On the Hopf ∗-algebra level, Y is an algebraic combination of the first three
generators:

Y = q
1
2 εγ∗ − α.

Performing simple computations one can easily verify that

Y Y ∗ = qY ∗Y + (1− q)ε.

Therefore one expects that on the Hilbert space level the domains of Y and Y ∗ coincide.
However this is not the case. Consider the following condition:

There exists a closed operator Y such that
1. Y is an extension of q

1
2 εγ∗ − α:

q
1
2 εγ∗ − α ⊂ Y,

2. Domains Y and Y ∗ coincide
3. Y commutes with Phase γ.


(C)

It turns out that this condition selects precisely these SqŨ(1, 1)-triples (α, γ, ε) for
which the tensor product is well defined. Moreover the choice of Y provides an ad-
ditional structure that enables us to select one among many SqŨ(1, 1)-triples (α̃, γ̃, ε̃)
satisfying (0.9).
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The paper uses heavily the theory of unbounded operators on Hilbert spaces (cf
[1, 6, 7, 10]). We shall mainly use closed operators. The domain of an operator a acting
on a Hilbert space H will be denoted by D(a). We shall always assume that D(a) is
dense in H.

We shall use the continuous functional calculus for systems of strongly commuting
selfadjoint operators. To explain the rather peculiar but very convenient notation used
in the paper, let us consider the pair of strongly commuting selfadjoint operators a and
b acting on a Hilbert space H. Then, by the spectral theorem

a =
∫

R2

⊕
λ dE(λ, µ), b =

∫
R2

⊕
µ dE(λ, µ)

where dE(λ) is the common spectral measure associated with a, b. For any measurable
(complex valued) function f of two variables,

f(a, b) =
∫

R2

⊕
f(λ, λ′) dE(λ, λ′).

Let χ be the logical evaluation of a sentence:

χ(false) = 0,
χ(true) = 1.

If R is a two argument relation defined on real numbers, then f(λ, λ′) = χ(R(λ, λ′)) is
a characteristic function of the set ∆ = {(λ, λ′) ∈ R2 : R(λ, λ′)} and (assuming that ∆
is measurable) f(a, b) = E(∆). We shall write χ(R(a, b)) instead of f(a, b):

χ(R(a, b)) =
∫

R2

⊕
χ(R(λ, λ′)) dE(λ, λ′) = E(∆).

The range of this projection will be denoted by H(R(a, b)). The letter ‘H’ in this
expression refers to the Hilbert space, where operators a, b act.

This way we gave meaning to the expressions: χ(a > b), χ(a2 + b2 = 1), χ(a = 1),
χ(b < 0), χ(a 6= 0) and many others of this form. They are orthogonal projections
onto corresponding spectral subspaces. For example H(a = 1) is the eigenspace of a
corresponding to the eigenvalue 1 and χ(a = 1) is the orthogonal projection onto this
eigenspace. More generally if ∆ is a measurable subset of R, then H(a ∈ ∆) is the
spectral subspace of a corresponding to ∆ and χ(a ∈ ∆) is the corresponding spectral
projection.

Formally, expressions of the form R(a, b) are sentences of a non-commutative logic,
and χ is the logical evaluation of such sentences. The values of χ are orthogonal
projections. We are not going to move any further in this direction.

To fix the notation we recall the basic properties of the polar decomposition of a
closed operator. Let T be a closed operator acting on a Hilbert space H. The polar
decomposition of T will be written in the form:

T = (PhaseT )|T |,
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where |T | = (T ∗T )
1
2 and PhaseT is the partial isometry acting on H such that

(PhaseT )∗(PhaseT ) and (PhaseT )(PhaseT )∗ are projections onto H ′ = (kerT )⊥ and
H ′′ = (kerT ∗)⊥ respectively. Restricting PhaseT to the subspace H ′ we obtain unitary
operator

phaseT : H ′ −→ H ′′.

This operator intertwines T ∗T restricted to H ′ with TT ∗ restricted to H ′′:

(phaseT )T ∗T |H′ (phaseT )∗ = TT ∗|H′′ . (0.10) splatacz

Using this fact one can easily show (cf. [6, Problem 69]) that SpT ∗T and SpTT ∗

essentially coincide:
SpT ∗T ∪ {0} = SpTT ∗ ∪ {0}. (0.11) Halmos

A closed operator T is called balanced if D(T ∗) = D(T ). Let Tmin be a closed
operator acting on a Hilbert space H, such that D(Tmin) ⊂ D(T ∗min) and T ⊃ Tmin be a
closed extension of Tmin. We say that T is a balanced extension of Tmin if D(T ) = D(T ∗).
This notion generalizes the concept of selfadjoint extensions of symmetric operators: any
balanced extension of a symmetric operator is selfadjoint. This paper is full of balanced
operators and balanced extensions. If (α, γ, ε, Y ) is a SqŨ(1, 1)-quadruple, then α, γ
and Y are balanced operators. The inclusions in (0.9) denote balanced extensions.

Let T be a balanced operator. Then D(T ) = D(T ∗) is a Banach space with respect
to each of the two graph norms ‖| · ‖| and ‖| · ‖|∗: ‖|x‖|2 = ‖Tx‖2 + ‖x‖2 and ‖|x‖|2∗ =
‖T ∗x‖2 + ‖x‖2. Therefore the norms are equivalent. In particular the dense sets are
the same for the two topologies. This way we proved the following

thesamecore

Proposition 0.1 Let T be a balanced operator and D be a core for T . Then D is a
core for T ∗.

It turns out that a balanced extension Tmin ⊂ T is determined, when Tmin and D(T )
are given. We have even more:

Prop02

Proposition 0.2 Let T and T ′ be balanced extensions of Tmin. Assume that a core of
T is contained in D(T ′). Then T = T ′.

Proof: If Tmin has a balanced extension, then clearly D(Tmin) ⊂ D(T ∗min). Let Tmax

be the adjoint of the restriction of T ∗min to D(Tmin): T ∗max = T ∗min|D(Tmin)
. If Tmin ⊂ T

is a balanced extension, then T ∗ ⊂ T ∗min. Restricting the operators to D(Tmin) we get
T ∗|

D(Tmin)
= T ∗min|D(Tmin)

= T ∗max. Therefore T ∗ ⊃ T ∗max and T ⊂ Tmax. This way we
showed that any balanced extension of Tmin is a restriction of Tmax.

In particular T and T ′ are restrictions of the same closed operator. Remembering
that a core of T is contained in D(T ′) we see that T ⊂ T ′. Therefore T ∗ ⊃ (T ′)∗,
D(T ) = D(T ∗) ⊃ D((T ′)∗) = D(T ′), D(T ) = D(T ′) and T = T ′.

Q.E.D.

In the paper we shall use a number of simple results of the theory of unbounded
operators. For the reader convenience we collect them in Appendix A.
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1 Basic definitions and results.
S1

In the present paper we shall use the spectral condition (0.8) with c = 1. The other val-
ues of c require some technical changes. The notion of a SqŨ(1, 1)-quadruple appeared
already in Section 0. Now we give the precise definition:

qgrt

Definition 1.1 Let π = (α, γ, ε, Y ), where α, γ, ε and Y are closed operators acting on
a Hilbert space H. We say that π is a SqŨ(1, 1)-quadruple on H, if the following six
conditions are satisfied:

1. ε is unitary and selfadjoint: ε = ε∗ = ε−1.

2. ε commutes with α and γ: εαε = α and εγε = γ.

3. Operators α, γ, α∗ and γ∗ have the same domain: D(α) = D(γ) = D(α∗) = D(γ∗)
and

(α∗x γy) = q (γ∗x αy) , (1.1) cr1

(α∗x γ∗y) = q (γx αy) , (1.2) cr2

(γ∗x γ∗y) = (γx γy) , (1.3) cr3

(αx αy) = (x ε y) + (γx γy) , (1.4) cr4

(α∗x α∗y) = (x ε y) + q2 (γx γy) (1.5) cr5

for any x, y ∈ D(γ).

4. The restriction γ+ of γ to the subspace H(ε = 1) satisfies the following spectral
condition:

Sp (|γ+|) ⊂ qZ ∪ {0}. (1.6) SPCON

5. Y is a balanced extension of q
1
2 εγ∗ − α:

q
1
2 εγ∗ − α ⊂ Y,

D(Y ) = D(Y ∗).

6. Y commutes with Phase γ.

ccoorree

Remark 1.2 It follows easily from Condition 3 that the graph topologies associated
with operators α, γ, α∗ and γ∗ coincide. Therefore α, γ, α∗ and γ∗ have the same cores.

Due to Condition 3, operator γ is normal. SqŨ(1, 1)-quadruples split into two
extreme types. We say that a SqŨ(1, 1)-quadruple π = (α, γ, ε, Y ) is of unbounded type
if ker γ = {0}. Conversely π is of bounded type if γ = 0. Any SqŨ(1, 1)-quadruple π =
(α, γ, ε, Y ) acting on H is a direct sum of quadruples of bounded and unbounded type
acting on H(γ = 0) and H(γ 6= 0) respectively; it follows easily from the commutation
relations that the direct sum decomposition

H = H(γ = 0)⊕H(γ 6= 0)

is respected by operators α, γ, ε, Y .
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If a SqŨ(1, 1)-quadruple π = (α, γ, ε, Y ) is of bounded type, then α is unitary,
γ = 0, ε = I and Y = −α. In other words, a SqŨ(1, 1)-quadruple of bounded type is
determined by a single unitary operator. For SqŨ(1, 1)-quadruples of unbounded type
the description is more complicated:

Let H = L2(Λ,m), where Λ is the denumerable subset of R introduced by

Λ = {−q−n : n ∈ N} ∪ {qn : n ∈ Z} (1.7) m1

and m is the measure on Λ such that

m({λ}) = |λ|
−1

(1.8) m2

for any λ ∈ Λ. We consider operators α0, γ0, ε0, Y0 on H defined by

(α0x)(λ) = λ

√
q +

sign (λ)

qλ2
x(λq),

(γ0x)(λ) = |λ| x(λ),

(ε0x)(λ) = sign (λ) x(λ),

(Y0x)(λ) = λ

q 1
2 x(λ)−

√
q +

sign (λ)

qλ2
x(qλ)

 .



(1.9) m3

By definition, the domains of α0 and γ0 consist of all functions x ∈ H such that
the right hand sides of the first two formulae are square integrable over Λ (belong to
H). Operator ε is bounded and its domain coincides with H. If the right hand side of
the last formula is square integrable over Λ, then there exist two limits lim

λ→±∞
x(λ). By

definition, the domain of Y0 is the set of all x ∈ H such that the right hand side of the
last formula is square integrable and

lim
λ→−∞

x(λ) = lim
λ→+∞

x(λ) (1.10) m4

Then one can check that
π0 = (α0, γ0, ε0, Y0)

is a SqŨ(1, 1)-quadruple of unbounded type acting on L2(Λ,m). In this case operators
α0, γ0, Y0 are not bounded. More generally if r ∈ [0, 2π[, then

πr = (e−irα0, e
irγ0, ε0, e

−irY0)

is also a SqŨ(1, 1)-quadruple of unbounded type

It is not difficult to show that the πr is irreducible. It is characterized uniquely by
the number eir = Phase γ ∈ S1. In Section 3 we shall prove the following
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irred

Theorem 1.3 Any SqŨ(1, 1)-quadruple of unbounded type is a direct integral of irre-
ducible SqŨ(1, 1)-quadruples πr (r ∈ [0, 2π[) described above.

Beside the operator Y , there is another operator X playing in our theory a similar
role. Defining the tensor product of two SqŨ(1, 1)-quadruples π1 and π2 we shall use
operator Y related to π1 and operator X related to π2. Let π = (α, γ, ε, Y ) be a
SqŨ(1, 1)-quadruple acting on a Hilbert space H. Operator X is a balanced extension

of ε(q
1
2γ + α):

ε(q
1
2γ + α) ⊂ X,

D(X) = D(X∗).

 (1.11) X

If π is of bounded type, then clearly X = α. In the unbounded case the operator X is
introduced by the formula:

X = (Phase γ)2V Y V ∗, (1.12) XY

where

V =
[
−ε(Phase γ)2

]log |qγ|
. (1.13) V

The symbol ‘log’ denotes the logarithm with base q: log qk = k. In Section 3 we shall
prove that V is unitary and that operator X introduced by (1.12) satisfies the relations
(1.11).

Now we are ready to formulate the main results of the paper.
Ilten

Theorem 1.4 Let π1 = (α1, γ1, ε1, Y1) and π2 = (α2, γ2, ε2, Y2) be SqŨ(1, 1)-quadruples
of unbounded type acting on Hilbert spaces H1 and H2 respectively and X2 be the operator
related to π2 in the way described above.

Then there exists unique SqŨ(1, 1)-quadruple π̃ = (α̃, γ̃, ε̃, Ỹ ) of unbounded type
acting on H1 ⊗H2 such that:

1.
α1 ⊗ α2 + qε1γ1

∗ ⊗ γ2 ⊂ α̃

γ1 ⊗ α2 + ε1α1
∗ ⊗ γ2 ⊂ γ̃

ε1 ⊗ ε2 = ε̃

where the operators on the left hand sides are defined on D(γ1)⊗alg D(γ2).

2. The domain D(γ̃) contains all vectors of the form

χ

(
|γ1 ⊗ γ−1

2 | = qm

ε1 ⊗ ε2 = s

)
(εm1 x1 ⊗ x2), (1.14) Dalpha

where x1 ∈ D(γ1Y1), x2 ∈ D(γ2X2), m ∈ Z and s = ±1. Moreover the linear span of
D(γ1)⊗alg D(γ2) and all vectors of the form (1.14) is a core for α̃, γ̃, α̃∗ and γ̃∗.

3. The domain D(Ỹ ) contains all vectors of the form3

χ
(
|γ̃| |γ1 ⊗ γ−1

2 | = qn
)

(x⊗ εn−r2 y), (1.15) DYtilde

3it turns out, that |γ̃| strongly commutes with |γ1 ⊗ γ−1
2 | so the operator |γ̃| |γ1 ⊗ γ−1

2 | is positive
selfadjoint
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where x ∈ H1(|γ1| = qr), y ∈ D(Y2) and n, r ∈ Z. Moreover the linear span of D(γ̃)
and all vectors of the form (1.15) is a core for Ỹ and Ỹ ∗.

Remark: The uniqueness of π̃ follows immediately from Proposition 0.2.

In what follows, the SqŨ(1, 1)-quadruple π̃ introduced in the above theorem will
be denoted by π1©> π2. In order to have our exposition complete we should define the
product ©> when one of the factors is of bounded type. We set:

(α1, 0, I,−α1)©> (α2, 0, I,−α2) = (α1 ⊗ α2, 0, I ⊗ I,−α1 ⊗ α2)

(α1, 0, I,−α1)©> (α2, γ2, ε2, Y2) = (α1 ⊗ α2, α
∗
1 ⊗ γ2, I ⊗ ε2, α1 ⊗ Y2)

(α1, γ1, ε1, Y1)©> (α2, 0, I,−α2) = (α1 ⊗ α2, γ1 ⊗ α2, ε1 ⊗ I, Ỹ ),

(1.16) Ttproduct

where in the last relation

Ỹ = (I ⊗ α2)2 log |γ1⊗I|+2(Y1 ⊗ α2)(I ⊗ α2)−2 log |γ1⊗I|. (1.17) YYY

It is not difficult to show, that the right hand sides of (1.16) are SqŨ(1, 1)-quadruples.
To relax the reader disappointed with the complicated form of relation (1.17) we notice
that this relation looks much simpler, when expressed in terms of operators X: Using
the translation formula (1.12) one can easily show that (1.17) is equivalent to the
equation: X̃ = X1 ⊗ α2.

The ‘©> ’- product is associative:

asso

Theorem 1.5 Let π1 = (α1, γ1, ε1, Y1), π2 = (α2, γ2, ε2, Y2) and π3 = (α3, γ3, ε3, Y3) be
SqŨ(1, 1)-quadruples acting on Hilbert spaces H1, H2 and H3 respectively. Then

(π1©> π2)©> π3 = π1©> (π2©> π3).

The proof of these theorems is given in the forthcoming sections.

2 Balanced extensions.
S2

In this Section we shall present the theory of balanced extensions of operators of some
special form. Let µ be a real number such that 0 < µ < 1 and a be a selfadjoint and
v be an isometric operator acting on a Hilbert space H. Throughout this Section we
shall assume that

H =
∑
n∈Z

⊕
H(|a| = µn) (2.1) supro

va ⊃ µav (2.2) rel

vv∗ ≥ χ(|a| > µn0) (2.3) ess

for some n0 ∈ Z. Decomposition (2.1) means, that |a| has a pure point spectrum with
eigenvalues of the form µn (n ∈ Z).

11



Relation (2.2) implies that v (v∗ respectively) commutes with sign a and maps eigen-
vectors of |a| into eigenvectors of |a| dividing (multiplying respectively) the eigenvalue
by µ:

v : H(|a| = µn) −→ H(|a| = µn−1) (2.4) v

v∗ : H(|a| = µn−1) −→ H(|a| = µn) (2.5) vstar

for any n ∈ Z. In general (2.4) are isometries, however due to (2.3) they are unitaries
for any n ≤ n0. Clearly, for any n ≤ n0, (2.5) is the inverse of (2.4). In what follows
we denote by P the orthogonal projection onto the eigenspace K = H(|a| = µn0). In
this Section ε will denote the unitary involution introduced by the formula:

ε = sign a. (2.6) epsilon

One can easily show, that K is ε-invariant.

Let x ∈ H. We shall prove that(
x ∈ D(a)

)
⇐⇒

( ∞∑
k=0

‖µ−kP (v∗)k x)‖2 <∞
)
. (2.7) dziedzinaa

Indeed (cf (2.1)) x =
∑
xn, where xn ∈ H(|a| = µn) and n runs over all integers. Then

P (v∗)kx =
∑
P (v∗)kxn. By virtue of (2.5) the only non-zero term in this sum is the

one with n = n0 − k and P (v∗)kx = (v∗)kxn0−k. Remembering that (2.5) are unitary
for n ≤ n0 we get ‖P (v∗)kx‖ = ‖xn0−k‖. Now it is easy to see that the right hand
side of (2.7) is equivalent to the convergence of the series

∑ ‖µnxn‖2, which in turn is
equivalent to the left hand side of (2.7).

Using (2.7) one can easily show, that D(a) is v-invariant:(
vx ∈ D(a)

)
⇐⇒

(
x ∈ D(a)

)
⇐⇒

(
v∗x ∈ D(a)

)
(2.8) inv

for any x ∈ H.

Let p > 0. Replacing in the above demonstration a by |a|p (and µ by µp) one shows
that for any x ∈ H we have:(

x ∈ D(|a|p)
)
⇐⇒

( ∞∑
k=0

‖µ−pkP (v∗)k x)‖2 <∞
)
, (2.9) dzinaaa

(
vx ∈ D(|a|p)

)
⇐⇒

(
x ∈ D(|a|p)

)
⇐⇒

(
v∗x ∈ D(|a|p)

)
. (2.10) inv2

Let f and g be real valued functions defined on Sp (a). We shall assume that they are
bounded on compact subsets of Sp (a) and that their behaviour at infinity is described
by the formulae:

f(λ) = λ+ f0 + f1(λ),
g(λ) = λ+ g0 + g1(λ),

(2.11) e1

where f0, g0 ∈ R, sup |λf1(λ)| <∞ and sup |λg1(λ)| <∞.
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We shall consider the following operators:

Tmin = f(a)− µ 1
2 g(a)v,

T+
min = f(a)− µ 1

2v∗g(a).

(2.12) operatory

Originally the operators Tmin and T+
min are defined on the domain Dmin = D(a):

D(Tmin) = D(T+
min) = Dmin. Due to (2.2) and (2.11) we have:

Tmin =
(
I − µ− 1

2v
)
a+ b,

T+
min =

(
I − µ 1

2v∗
)
a+ b∗,

(2.13) rozklad

where b is a bounded operator: b ∈ B(H). Using the obvious estimates:

‖
(
I − µ− 1

2v
)
x‖ ≥

(
µ−

1
2 − 1

)
‖x‖

‖
(
I − µ 1

2v∗
)
x‖ ≥

(
1− µ 1

2

)
‖x‖

(x ∈ H),

one can easily show that the operators Tmin and T+
min are closed.

Clearly Tmin and T+
min are formally adjoint to each other:

(x Tminy) =
(
T+

minx y
)

for all x, y ∈ Dmin. It shows that T+
min ⊂ T ∗min and symmetrically Tmin ⊂

(
T+

min

)∗
. We

set: Tmax =
(
T+

min

)∗
and T+

max = (Tmin)∗. Then we have the following diagram

Tmin ⊂ Tmax

∗

xy
xy ∗

T+
max ⊃ T+

min

where the vertical arrows denote the passing to the adjoint operators.

Taking into account (2.13) we obtain

Tmax = a
(
I − µ 1

2v
)

+ b,

T+
max = a

(
I − µ− 1

2v∗
)

+ b∗.
(2.14) rozkladmax

In particular

D(Tmax) =
{
x ∈ H :

(
I − µ 1

2v
)
x ∈ D(a)

}
,

D(T+
max) =

{
x ∈ H :

(
I − µ− 1

2v∗
)
x ∈ D(a)

}
.

(2.15) dziedzinamax
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Using the obvious formula

I − µ−
1
2v∗ = −µ−

1
2 v∗

(
I − µ

1
2v
)

(2.16) obvious

and taking into account (2.8) we see that

D(Tmax) = D(T+
max).

This common domain of Tmax and T+
max will be denoted by Dmax.

In what follows we shall consider convergent sequences of vectors of a Hilbert space.
In these considerations the rate of convergence will be important. Roughly speaking a
sequence (xn)n∈N is called ν-converging if it converges faster than (νn/2)n∈N. Precise
definition is the following:

Let ν be a real number such that 0 < ν < 1 and (xk)k∈N be a sequence of elements
of a Hilbert space H. We say that (xk)k∈N ν-converges to 0 if

∞∑
k=0

ν−k ‖xk‖2 <∞.

Consequently (xk)k∈N ν-converges to a vector x∞ ∈ H if (xk − x∞)k∈N ν-converges
to 0.

One can easily check that a linear combination of ν-convergent sequences is ν-
convergent. Let (xk)k∈N be a sequence of elements of a Hilbert space H and (yk)k∈N

be a sequence of elements of a Hilbert space K. If one of the sequences is ν-converging
to zero, while the second is bounded, then clearly (xk ⊗ yk)k∈N is ν-converging to zero.
Now the formula

xk ⊗ yk − x∞ ⊗ y∞ = (xk − x∞)⊗ yk + x∞ ⊗ (yk − y∞)

shows that the tensor product of ν-convergent sequences is ν-convergent.

The Cauchy criterion for ν-convergent sequences is extremely simple:

Cauchy

Proposition 2.1 Let (xk)k∈N be a sequence of elements of a Hilbert space H. Then (xk)k∈N is

ν-convergent

⇐⇒
 (xk+1 − xk)k∈N is

ν-converging to 0

 .
Proof: The implication ‘=⇒’ is obvious. Conversely assume that (xk+1 − xk)k∈N is
ν-converging to 0. It means that

∞∑
k=0

ν−k ‖xk+1 − xk‖2 <∞.

Therefore
‖xk+1 − xk‖ = ckν

k
2 , (2.17) cka
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where (ck)k∈N is a square summable sequence. Since
(
ν
k
2

)
k∈N

is also square summable,(
ckν

k
2

)
k∈N

is summable and (2.17) shows that (xk)k∈N is a Cauchy sequence. This way

we showed the existence of the limit:

x∞ = lim
k→∞

xk.

To prove the ν-convergence we start with the following formula:

xk − x∞ = −
∞∑
m=k

(xm+1 − xm).

Therefore, by virtue of (2.17):

ν−
k
2 ‖xk − x∞‖ ≤

∞∑
m=k

cmν
m−k

2 =
∞∑
m=0

cm+kν
m
2 . (2.18) 58

For each m = 0, 1, 2, . . . the sequence (ck+m)k∈N is square summable with the l2-norm

bounded by a constant independent of m. On the other hand the sequence
(
ν
m
2

)
m∈N

is summable. Therefore the sequence( ∞∑
m=0

cm+kν
m
2

)
k∈N

is square summable. By the estimate (2.18), the sequence
(
ν−

k
2 ‖xk − x∞‖

)
k∈N

is also

square summable. It means that (xk)k∈N is ν-convergent.
Q.E.D.

The main result of this Section is contained in the following two theorems.
Dmax

Theorem 2.2
1. Let x ∈ H. Then x ∈ Dmax if and only if the sequence

(
µ−

k
2P (v∗)k x

)
k∈N

is

µ-convergent. If this is the case, then we set

θ(x) = lim
k→∞

µ−
k
2P (v∗)k x. (2.19) theta

2.
Dmin = {x ∈ Dmax : θ(x) = 0} .

3.

Dmax =
{(
I − µ

1
2v
)−1

y + t : y ∈ K, t ∈ Dmin

}
. (2.20) Dprim

main2
Theorem 2.3 Let T be a balanced extension of Tmin. Then T ⊂ Tmax and there exists
unique unitary involution u : K → K such that uε = −εu and

D(T ) =
{(
I − µ 1

2v
)−1

y + t : y ∈ K(u = 1), t ∈ D(a)
}

=

x ∈ H :
The sequence

(
µ−

k
2P (v∗)k x

)
k∈N

is

µ-converging to a vector y ∈ K(u = 1)


=

{
x ∈ Dmax : θ(x) ∈ K(u = 1)

}
.

(2.21) dziedzina
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Moreover the set of y appearing in the above formula coincides with K(u = 1).

Conversely if u : K → K is a unitary involution anticommuting with ε, then the
domain (2.21) is contained in Dmax and restricting Tmax to (2.21) we obtain a balanced
extension of Tmin.

If u is an unitary involution acting on K, anticommuting with ε, then uK(ε = 1) =
K(ε = −1) and dimK(ε = 1) = dimK(ε = −1). This must be the case if Tmin admits
a balanced extension.

The unitary involution u appearing in (2.21) is called the linking operator associated
with the balanced extension T .

To prove the above theorems we shall use the following Proposition:
qq

Proposition 2.4 Let p > 1
2
, x ∈ H and y ∈ K. Then Sequence

(
µ−

k
2P (v∗)k x

)
k∈N

is µ2p−1-converging to y

⇐⇒


Vector x is of the form

x =
(
I − µ 1

2v
)−1

y + t

where t ∈ D(|a|p)

 . (2.22) q

Proof: Using the geometric series expansion

(
I − µ

1
2v
)−1

y =
∞∑
m=0

(
µ

1
2v
)m

y

we get

(v∗)k
(
I − µ

1
2v
)−1

y =
k−1∑
m=0

µ
m
2 (v∗)k−my +

∞∑
m=k

µ
m
2 vm−ky.

Applying to the both sides the projection P we see, that only the term with m = k
survives on the right hand side. Therefore

µ−
k
2P (v∗)k

(
I − µ

1
2v
)−1

y = y. (2.23) staly

Now the ‘⇐’ part of (2.22) follows immediately from (2.9). Conversely assume that

the left hand side of (2.22) holds. Put t = x−
(
I − µ 1

2v
)−1

y. Then by virtue of (2.23),

the sequence
(
µ−

k
2P (v∗)k t

)
k∈N

is µ2p−1-converging to 0 and using again (2.9) we see

that t ∈ D(|a|p). The right hand side of (2.22) is proved.
Q.E.D.

Proof of the Theorem 2.2: Inserting p = 1 and y = 0 in Proposition 2.4 we see,
that (

x ∈ Dmin

)
⇐⇒

 The sequence
(
µ−

k
2P (v∗)k x

)
k∈N

is µ-converging to 0

 . (2.24) nnumer

We shall prove Statement 2. According to (2.15),(
x ∈ Dmax

)
⇐⇒

((
I − µ

1
2v
)
x ∈ Dmin

)
.
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By (2.24), the latter holds if and only if the sequence:
(
µ−

k
2P (v∗)k

(
I − µ 1

2v
)
x
)
k∈N

is

µ-converging to 0. A trivial computation shows that

µ−
k
2P (v∗)k

(
I − µ

1
2v
)
x = µ−

k
2P (v∗)k x− µ−

k−1
2 P (v∗)k−1 x (2.25) trivial

and Proposition 2.1 shows that
(
µ−

k
2P (v∗)k

(
I − µ 1

2v
)
x
)
k∈N

µ-converges to 0 if and

only if the sequence
(
µ−

k
2P (v∗)k x

)
k∈N

is µ-convergent. Statement 1 is proven.

Now Statement 3 follows immediately from Proposition 2.4 and Statement 1 from
(2.24).

Q.E.D.

For any x, x′ ∈ Dmax we set:

Ψ(x, x′) =
(
T+

maxx x
′
)
−
(
x Tmaxx

′
)
. (2.26) Psi

Clearly Ψ is a sesquilinear form on Dmax. It vanishes, when one of the arguments
belongs to Dmin. If T is an operator such that Tmin ⊂ T ⊂ Tmax, then T+

min ⊂ T ∗ ⊂ T+
max

and for any x ∈ D(T ∗) and x′ ∈ D(T ) we have: Ψ(x, x′) = (T ∗x x′)− (x Tx′) = 0. A
moment of reflection shows that

D(T ∗) =

{
x ∈ Dmax :

Ψ(x, x′) = 0 for
any x′ ∈ D(T )

}
. (2.27) DTstar

To use this statement we have to compute Ψ(x, x′) for arbitrary elements x, x′ ∈
Dmax. According to Theorem 2.2

x =
(
I − µ

1
2v
)−1

y + t,

x′ =
(
I − µ

1
2v
)−1

y′ + t′,

where y, y′ ∈ K and t, t′ ∈ Dmin. We know, that Ψ(x, x′) = 0 when one of the argu-
ments belongs to Dmin. Thus t and t′ may be neglected in further computations. We
shall use formulae (2.14). It is obvious that the operator b gives no contribution to

(2.26). Therefore we may replace in this formula Tmax and T+
max by a

(
I − µ 1

2v
)

and

a
(
I − µ− 1

2v∗
)

respectively. Now, taking into account (2.16) we have:

Ψ(x, x′) = −µ−
1
2

(
av∗y

(
I − µ

1
2v
)−1

y′
)
−
((
I − µ

1
2v
)−1

y ay′
)
.

By (2.5), µ−
1
2av∗y = µ

1
2v∗ay. To proceed with computations we use the geometric

series expansion:

Ψ(x, x′) = −
∞∑
m=1

(
ay

(
µ

1
2v
)m

y′
)
−
∞∑
m=0

((
µ

1
2v
)m

y ay′
)
.
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We know, that y and y′ are eigenvectors of |a| with the same eigenvalue µn0 . Remem-
bering that v divides the eigenvalue by µ we see that the only non-vanishing term is
the one with m = 0 :

Ψ(x, x′) = − (y ay′) .

Remembering, that on K, a = µn0ε we obtain:

Ψ(x, x′) = −µn0 (y εy′) . (2.28) Psi1

Now we are able to prove our main theorem.

Proof of Theorem 2.3: Let T be balanced extension of Tmin. Then T ∗ ⊂ T ∗min = T+
max.

Remembering that T+
min is a restriction of T+

max and that D(T+
min) = D(Tmin) ⊂ D(T ) =

D(T ∗) we see that T+
min ⊂ T ∗. Therefore T ⊂

(
T+

min

)∗
= Tmax and D(T ) ⊂ D(Tmax).

Using Statement 3 of Theorem 2.2 one can easily show that

D(T ) =
{(
I − µ

1
2v
)−1

y + t : y ∈ L, t ∈ Dmin

}
, (2.29) Dziedzin

where L is a linear subset of K. Let u be the unitary involution acting on K such that
K(u = 1) = L and K(u = −1) = L⊥ (L⊥ denotes the orthogonal complement of L in
K). Inserting in (2.27), D(T ∗) = D(T ) and using (2.28) we see that

L =
{
y ∈ K : (y εy′) = 0 for any y′ ∈ L

}
. (2.30) L

It means that L⊥ = εL. Therefore u anticommutes with ε. Now (2.29) coincides
with the first row of (2.21). The second equality in (2.21) follows immediately from
Proposition 2.4 and the third one from Statement 1 of Theorem 2.2.

Conversely, let T be the restriction of Tmax to the domain (2.21) determined by
a unitary involution u acting on K. If u anticommutes with ε, then the eigenspace
L = K(u = 1) satisfies the relation L⊥ = εL. Therefore (2.30) holds and formula (2.27)
shows that D(T ∗) = D(T ).

Q.E.D.

Let x ∈ Dmax. Then (cf Statement 3 of Theorem 2.2 and Proposition 2.4)

x =
(
I − µ

1
2v
)−1

y + t,

where y = θ(x) ∈ K and t ∈ D(a). By virtue of (2.14) and (2.16):

x =
(
I − µ

1
2v
)−1

y + t,

where y = θ(x) ∈ K and t ∈ D(a). By virtue of (2.14) and (2.16):

Tmax(x) =


ay + a

(
I − µ 1

2v
)
t

+ b
(
I − µ 1

2v
)−1

y + bt,
(2.31) wynik

Clearly the right hand side depends continuously on y ∈ K and t ∈ D(a) (when D(a)
is equipped with the graph topology of operator a). Combining this observation with
Theorem 2.3 we obtain
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core

Proposition 2.5 Let T be a balanced extension of Tmin, u be the corresponding linking
operator and D′ be a linear subset of D(T ) containing a core of the operator a. Assume
that the set {θ(x) : x ∈ D′} is dense in K(u = 1). Then D′ is a core for T .

In particular we have:
core1

Proposition 2.6 Let T be a balanced extension of Tmin and u : K → K be the linking
operator associated with T . For any p ≥ 1 we set

Dp =

x ∈ H :
The sequence

(
µ−

k
2P (v∗)k x

)
k∈N

is

µp-converging to a vector y ∈ K(u = 1)

 . (2.32) Dp

Then Dp is a core for T . Moreover the set of y appearing in the above formula coincides
with K(u = 1). The reader should notice that D1 = D(T ).

Proof: Let p′ = 1
2
(p+ 1) ≥ 1. Then p = 2p′ + 1 and by virtue of Proposition 2.4

Dp =
{(
I − µ

1
2v
)−1

y + t : y ∈ K(u = 1), t ∈ D(|a|p′)
}
. (2.33) Dpp

We know that D(|a|p′) is a core for a. The above formula shows, that Dp ⊃ D(|a|p′).
If x =

(
I − µ 1

2v
)−1

y + t then y = θ(x). Therefore {θ(x) : x ∈ Dp} = K(u = 1). Now,
Proposition 2.5 shows, that Dp is a core for T .

Q.E.D.

For p = 3, the domain Dp has the following remarkable property:

DaT1

Proposition 2.7 Let T be a balanced extension of Tmin and u : K → K be the linking
operator associated with T . Then the operators T ∗ and T map D3 into D(T ). In other
words: T ∗T ∗x, T ∗Tx, TT ∗x and TTx are well defined for all x ∈ D3.

Proof: Assume for the moment that the constants f0 and g0 entering the asymptotic
formulae (2.11) do vanish: f0 = g0 = 0. Then the operators b and b∗ appearing in
(2.13) map H into Dmin. Let x ∈ H. Remembering that bH ⊂ D(a) and using

(2.14) we see that x ∈ D(aT ) if and only if x ∈ D(T ) and a
(
I − µ 1

2v
)
x ∈ D(a).

The latter is equivalent to
(
I − µ 1

2v
)
x ∈ D(a2). Similarly x ∈ D(aT ∗) if and only if

x ∈ D(T ∗) = D(T ) and (cf (2.14)) a
(
I − µ− 1

2v∗
)
x ∈ D(a). By (2.16) and (2.10), the

latter is again equivalent to
(
I − µ 1

2v
)
x ∈ D(a2). Let x′ =

(
I − µ 1

2v
)
x. According to

Proposition 2.4:x′ ∈ D(a2)

⇐⇒
 The sequence

(
µ−

k
2P (v∗)k x′

)
k∈N

is µ3-converging to 0

 .
Using now Proposition 2.1 and formula (2.25) we see that the right hand side of the a-

bove equivalence is equivalent to the µ3-convergence of the sequence
(
µ−

k
2P (v∗)k x

)
k∈N

.
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Since x ∈ D(T ), the limit must belong to K(u = 1) (cf (2.21)). This way we showed
that (

x ∈ D(aT )
)
⇐⇒

(
x ∈ D(aT ∗)

)
⇐⇒

(
x ∈ D3

)
.

In particular Tx and T ∗x belong to D(a) = Dmin for any x ∈ D3.

In general case we set: T1 = T − f0I − µ
1
2 g0v. Then

T = T1 + f0I + µ
1
2 g0v. (2.34) adhoc

Let x ∈ D3. By the first part of the proof T1x and T ∗1 x belong to Dmin. One can easily

show, that D3 is v and v∗ invariant. Therefore (f0I + µ
1
2 g0v)x and (f0I + µ

1
2 g0v)∗x

belong to D3. Formula (2.34) shows now, that Tx and T ∗x belong to Dmin+D3 ⊂ D(T ).

Q.E.D.

Notice that we have also proved the following:
DaT

Proposition 2.8 Let T be a balanced extension of Tmin and u : K → K be the linking
operator associated with T . Assume that the constants f0 and g0 appearing in (2.11)
vanish: f0 = g0 = 0. Then D(aT ∗) = D(aT ) coincide with the domain D3 introduced
by (2.32).

Let x ∈ D(Tmax). Then
(
I − µ 1

2v
)
x ∈ D(a). We claim that

θ(x) = P
[
x+ µ−n0+ 1

2v∗
(
I − µ

1
2v∗

)−1
|a|
(
I − µ

1
2v
)
x
]
. (2.35) theta1

Indeed denoting by RHS the Right Hand Side of the above relation and using the
geometric power series expansion we get:

RHS = Px+
∞∑
l=1

µ−n0+ l
2P (v∗)l |a|

(
I − µ

1
2v
)
x.

P (v∗)l kills all the eigenspaces H(|a| = µn) of |a| except the one with n = n0 − l.
Therefore P (v∗)l |a| = µn0−lP (v∗)l and

RHS =
∞∑
l=1

µ−
l
2P (v∗)l

(
I − µ

1
2v
)
x+ Px

=
∞∑
l=1

[
µ−

l
2P (v∗)l x− µ−

l−1
2 P (v∗)l−1 x

]
+ Px

Computing the partial sum from l = 1 to l = k we see that all terms except µ−
k
2P (v∗)k x

cancel. Therefore
RHS = lim

k→∞
µ−

k
2P (v∗)k x = θ(x).

Formula (2.35) is shown. The reader should notice that the above computations give
the alternative proof of the existence of the limit (2.19). Formula (2.35) shows that

θ(x) depends continuously on |a|
(
I − µ 1

2v
)
x. Taking into account (2.14) we get:
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Proposition 2.9 The mapping:

D(Tmax) 3 x 7−→ θ(x) ∈ K

is continuous provided the source space is equipped with the graph topology of operator
Tmax.

Let T be a balanced extension of Tmin and u : K → K be the linking operator
associated with this extension. Iterating (2.4) l - times we obtain a unitary operator

vl : K = H (|a| = µn0) → H
(
|a| = µn0−l

)
. Therefore vlu(v∗)l is a unitary involution

acting on H
(
|a| = µn0−l

)
. Summing up we obtain a unitary involution

R =
∑
l≥0

⊕
vlu(v∗)l (2.36) R

acting on H (|a| ≥ µn0) =
∑
l≥0

⊕H
(
|a| = µn0−l

)
. We extend this operator to the whole

space H putting Rx = 0 for all x ∈ H (|a| < µn0). Then

R = R∗,

R2 = χ (|a| ≥ µn0) ,

Rε = −εR,
R|a| ⊂ |a|R,

vH(R = ±1) ⊂ H(R = ±1).


(2.37) refl

To prove the third relation it is sufficient to use anticommutativity of u and ε, the forth
relation means that R respects the direct sum decomposition (2.1) and the last relation
follows from the formula: H(R = ±1) =

∑⊕
l≥0 v

lK(u = ±1), which in turn follows
immediately from the definition (2.36).

The operator R is called the reflection operator associated with the balanced ex-
tension Tmin ⊂ T . One can easily show, that any operator R satisfying (2.37) is the
reflection operator of a balanced extension of Tmin. The corresponding linking operator
u is the restriction of R to H(|a| = µn0).

Let x ∈ H, n ≤ n0 and l = n0 − n. Then χ (|a| = µn) = vlP (v∗)l. Using this
equality one can easily verify that

Sequence
(
µ−

k
2P (v∗)k x

)
k∈N

is converging to a vector
y ∈ K(u = 1)

⇐⇒


Sequence
(
µ−

k
2χ (|a| = µn) (v∗)k x

)
k∈N

is converging to a vector
y′ ∈ H(|a| = µn, R = 1)


The rate of convergence of the both sequences is the same. Relation between y and y′

is given by the formula: y′ = µ
l
2vly.

The reader should notice that (2.3) is all the more satisfied when we replace n0 by
a smaller integer. This leads to the following:
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Remark 2.10 In the above considerations, n0 may by replaced by any integer n ≤ n0.
Then P , K and u should be replaced by χ (|a| = µn), H (|a| = µn) and (as the above
equivalence shows) the reflection operator R restricted to H(|a| = µn).

In many cases it is important to know, what are the kernels of balanced extensions
considered in this Section. We shall prove:

jadro

Theorem 2.11 Let T be a balanced extension of the operator Tmin introduced by (2.12)
and x ∈ kerT . Then for any n ∈ Z and s = ±1 we have:

|f(sµn)| ‖χ(a = sµn)x‖ = µ
1
2 |g(sµn)| ‖χ(a = sµn+1)x‖. (2.38) jadro1

Moreover
lim

n→−∞
µ
n
2 ‖χ(a = −µn)x‖ = lim

n→−∞
µ
n
2 ‖χ(a = µn)x‖ (2.39) jadro2

Proof: Let x ∈ D(Tmax). Using (2.14) and (2.4) one can easily show that

χ(a = sµn)Tmaxx = f(sµn)χ(a = sµn)x− µ 1
2 g(sµn)χ(a = sµn)vx

= f(sµn)χ(a = sµn)x− µ 1
2 g(sµn)vχ(a = sµn+1)x

We know that Tmax is an extension of T . Therefore x ∈ kerT imply x ∈ D(Tmax) and
Tmaxx = 0. Now using the above formula and remembering that v is an isometry we
obtain (2.38).

3 SqŨ(1, 1)-quadruples.
S3

In this Section we shall examine in more detail the commutation relation entering the
Definition 1.1. One of the aims is to prove Theorem 1.3. We start with the following

relkom

Proposition 3.1 Let α, γ and ε be operators acting on a Hilbert space H satisfying
the first three conditions of Definition 1.1. Assume moreover that ker γ = {0}. Then
operators α and γ are not bounded and

1.
αγ = qγα (3.1) cr11

αγ∗ = qγ∗α (3.2) cr12

γγ∗ = γ∗γ (3.3) cr13

α∗α = ε+ γ∗γ (3.4) cr14

αα∗ = ε+ q2γ∗γ (3.5) cr15

2. Phase γ is unitary and commutes with Phaseα, γ and ε.

3. If H(ε = −1) 6= {0}, then the restriction γ− of γ to this subspace satisfies the
following spectral condition:

Sp (|γ−|) = q−N.
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4. If H(ε = 1) 6= {0}, then the restriction γ+ of γ to this subspace have the following
property:

q Sp (|γ+|) = Sp (|γ+|).
5. Phaseα is an isometry:

(Phaseα)∗Phaseα = I

Phaseα(Phaseα)∗ = χ
(
ε|γ| 6= −q−1

) (3.6) izometria

6. For any measurable subset ∆ ⊂ R+, the isometry Phaseα maps H(|γ| ∈ ∆) into
H(|qγ| ∈ ∆). If 1 /∈ ∆ then the mapping

Phaseα : H(|γ| ∈ ∆) −→ H(|qγ| ∈ ∆)

is unitary.

7. We have:

α = Phaseα
√
ε+ |γ|2

α∗ = (Phaseα)∗
√
ε+ q2|γ|2

Proof: We start with Statement 1. Assume that x ∈ D(γ∗γ). Then using (1.5) we
see that (α∗y α∗x) = (y ε+ q2γ∗γ x) for any y ∈ D(α∗). Therefore α∗x ∈ D(α) and
αα∗x = (ε+ q2γ∗γ)x. It shows that αα∗ ⊃ ε+ q2γ∗γ.

Conversely if x ∈ D(αα∗), then by virtue of (1.5) (y αα∗ − ε x) = q2 (γy γy) for
any y ∈ D(γ). Therefore γx ∈ D(γ∗) and αα∗ − ε ⊂ q2γ∗γ and (3.5) follows. In the
similar way, using relations (1.1) – (1.4) we obtain (3.1) – (3.4). Statement 1 is proved.

Now Statement 7 is obvious: The formulae coincide with the polar decomposition
of α and α∗.

Due to Condition 2 of Definition 1.1, operators α and γ respect the decomposition
H = H(ε = 1)⊕H(ε = −1). Therefore in the proof it is sufficient to consider two cases:
ε = I and ε = −I. We shall use this possibility proving Statements 3, 4, 5 and 6.

Assume at first that ε = I. Then we shall write α+ and γ+ instead of α and γ.
Using (1.4) and (1.5) we see that α∗+α+ ≥ I and α+α

∗
+ ≥ I. Therefore kerα+ = kerα∗+

= {0} and Phaseα+ = phaseα+ is unitary. Statement 5 is proved. (notice that in the
considered case ε|γ+| = |γ+| ≥ 0, so the right hand side of (3.6) equals to I).

According to (0.10)

(Phaseα+)α∗+α+(Phaseα+)∗ = α+α
∗
+.

Remembering that ε = I and using (3.4) and (3.5) we have:

(Phaseα+)γ∗+γ+(Phaseα+)∗ = q2γ∗+γ+.

Computing the square root of the both sides we get

(Phaseα+)|γ+|(Phaseα+)∗ = q|γ+|. (3.7) splatacz12
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It shows that Sp |γ+| = q Sp |γ+| and Statement 4 follows. Remembering that the
functional calculus is covariant with respect to unitary transformations we get:

(Phaseα+)χ(|γ+| ∈ ∆)(Phaseα+)∗ = χ(|qγ+| ∈ ∆).

It shows that x ∈ H(|γ+| ∈ ∆) if and only if (Phaseα+)x ∈ H(|qγ+| ∈ ∆).

Assume now, that ε = −I. Then we shall write α− and γ− instead of α and γ.
According to (3.4) and (3.5),

I + α∗−α− = γ∗−γ−,

I + α−α
∗
− = q2γ∗−γ−.

(3.8) dod

Therefore I + α−α
∗
− = q2(I + α∗−α−) and q2α∗−α− = α−α

∗
− + (1− q2)I ≥ (1− q2)I. It

shows that kerα− = {0} and the first formula of (3.6) follows. The second formula of

(3.8) shows that kerα∗− = H
(
q2γ∗−γ− = 1

)
= H (ε|γ| = −q−1). The proof of Statement

5 is complete.

The second relation (3.8) shows that

q Sp (|γ−|) ⊂ [1,∞]. (3.9) dod1

Let H ′′ = H(|γ−| = q−1)⊥. Then by virtue of (0.10)

(phaseα−)α∗−α−(phaseα−)∗ = α−α
∗
−|H′′

and using (3.8) we obtain:

(phaseα−)γ∗−γ−(phaseα−)∗ = q2γ∗−γ−|H′′ .

Computing the square root of the both sides we get

(phaseα−)|γ−|(phaseα−)∗ = q |γ′′−|, (3.10) splatacz1

where γ′′− is the operator γ− restricted to H ′′. It shows that Sp |γ−| = q Sp |γ′′−|. Assume
for the moment that q−1 /∈ Sp |γ−|. Then H ′′ = H, γ′′− = γ− and Sp |γ−| would be
invariant under multiplication by q in contradiction with (3.9). Therefore q−1 ∈ Sp |γ−|.

Remembering that the orthogonal complement of H ′′ is the eigenspace of |γ−| cor-
responding to the eigenvalue q−1 we get:

q Sp |γ−| = Sp |γ−| ∪ {1}.

Iterating this formula n-times we obtain:

qn Sp |γ−| = Sp |γ−| ∪ {1, q, q2, . . . , qn−1}.

Now using (3.9) we see that(
qn Sp |γ−|

)
∩ [0, 1] = {1, q, q2, . . . , qn−1}
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and Statement 3 follows.

To prove Statement 6 we rewrite (3.10) in the following form:

q−1(phaseα−)|γ−| = |γ′′−|(phaseα−).

The only difference between phaseα− and Phaseα− lies in their target spaces: H ′′ for
phaseα− and H for Phaseα−. Therefore

q−1(Phaseα−)|γ−| = |γ−|(Phaseα−). (3.11) splatacz11

It shows that x ∈ H(|γ−| = qn) if and only if (Phaseα−)x ∈ H(|γ−| = qn−1). If n 6= 0,
then the second formula (3.6) shows that H(|γ−| = qn−1) is contained in the range of
Phaseα− and Statement 6 follows.

We still have to prove Statement 2. (3.3) says that γ is a normal operator. Re-
membering that ker γ = {0} we see that Phase γ is unitary and commutes with |γ|. By
virtue of Condition 2 of Definition 1.1, Phase γ commutes with ε.

Replacing in (3.1), operators α and γ by their polar decomposition we obtain:

(Phaseα)
(
ε+ |γ|2

) 1
2 (Phase γ)|γ| = q(Phase γ)|γ|(Phaseα)

(
ε+ |γ|2

) 1
2 .

We know that Phase γ commutes with |γ|. Moreover, due to (3.7) and (3.11), the
product q|γ|(Phaseα) may be replaced by (Phaseα)|γ|. Therefore

(Phaseα)(Phase γ)
(
ε+ |γ|2

) 1
2 |γ| = (Phase γ)(Phaseα)

(
ε+ |γ|2

) 1
2 |γ|

and
(Phaseα)(Phase γ)x = (Phase γ)(Phaseα)x (3.12) komu

for any x ∈ Range (ε+ |γ|2)
1
2 |γ|. One can easily show that the closure of the range of

(ε+ |γ|2)
1
2 |γ| coincides with H(ε|γ| 6= −1). By Statement 3, −1 is not an eigenvalue

of ε|γ|. Therefore H(ε|γ| 6= −1) = H and (3.12) holds for any x ∈ H. Statement 2 is
proved.

Q.E.D.
ograniczone

Proposition 3.2 Let α, γ and ε be closed operators satisfying the three first conditions
of Definition 1.1. Then the operators |α|−|γ|, |α∗|−q|γ|, (|α|−|γ|)|γ| and (|α∗|−q|γ|)|γ|
are bounded. The norms of the first three operators are ≤ 1, whereas the norm of the
last one is ≤ q−1.

Proof: According to Conditions 1 and 2 of Definition 1.1, ε is a unitary and selfadjoint
operator commuting with |γ|. Therefore the operator

a = ε|γ| (3.13) aS3

is selfadjoint, |a| = |γ| and sign a = ε. By Statement 3 Proposition 3.1 Sp a ⊂ −qN∪R+.
Using Statement 7 of Proposition 3.1 one can easily verify, that ε|α| and ε|α∗| are
functions of a:

ε|α| = h(a), q−1ε|α∗| = g(a),
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where

h(λ) = λ

(
1 +

1

λ|λ|

) 1
2

, g(λ) = λ

(
1 +

1

q2λ|λ|

) 1
2

(3.14) deffun

for any λ ∈ Sp (a). Elementary analysis shows that:

|h(λ)− λ| ≤ 1, |g(λ)− λ| ≤ q−1,

|λ| |h(λ)− λ| ≤ 1, |λ| |g(λ)− λ| ≤ q−2

for any λ ∈ −qN ∪ R+. Remembering that, for any function f on Sp a, ‖f(a)‖ ≤
sup

{
|f(λ)| : λ ∈ Sp a

}
we obtain the desired estimates.

Q.E.D.

Let π = (α, γ, ε, Y ) be a SqŨ(1, 1)-quadruple of unbounded type acting on a Hilbert
space H. By Statement 2 of Proposition 3.1 and Condition 6 of Definition 1.1, the
operator Phase γ is central: it commutes with α, γ, ε and Y . Combining Condition 4
of Definition 1.1 with Statement 3 of Proposition 3.1 we see that Sp |γ| ⊂ qZ. Let a be
the selfadjoint operator introduced by (3.13) and

v
Y

= ε(Phaseα)(Phase γ), (3.15) vy

Tmin = q−
1
2 (Phase γ)

[
q

1
2 εγ∗ − α

]
, (3.16) TminY1

T = q−
1
2 (Phase γ)Y.

An elementary computation shows that

Tmin = ε|γ| − q 1
2 (q−1ε|α∗|) v

Y

= a− q 1
2 g(a)v

Y
,

(3.17) TminY

where g is the function introduced by (3.14).

According to Conditions 5 and 6 of Definition 1.1, Y is a balanced extension of
q

1
2 (Phase γ)∗ Tmin commuting with Phase γ. Therefore T is a balanced extension of the

operator Tmin.

Using the results of Proposition 3.1 one can easily show, that the operators a and
v = v

Y
introduced above satisfy the basic assumptions (2.1) – (2.3) of Section 2 (with

µ replaced by q and n0 replaced by −1). A simple analysis shows that, for λ → ∞,
the functions f(λ) = λ and g(λ) introduced by (3.14) exhibit the asymptotic behaviour
(2.11) with constants f0 = g0 = 0. Summing up we see that the theory of balanced
extensions developed in Section 2 may be applied to (3.17).

relkom1

Proposition 3.3 Let π = (α, γ, ε, Y ) be a SqŨ(1, 1)-quadruple of unbounded type acting
on a Hilbert space H and v

Y
be the operator related to π by (3.15). We set: P =

χ (|γ| = q−1) and K = H (|γ| = q−1). Then there exists unitary involution:

u : K −→ K
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commuting with Phase γ and anticommuting with ε, such that

D(Y ) =

x ∈ H :
The sequence

(
q−

k
2P

(
v∗
Y

)k
x
)
k∈N

is

q-converging to a vector y ∈ K(u = 1)

 . (3.18) DY

Conversely, let α, γ and ε be operators acting on a Hilbert space H satisfying the
first four conditions of Definition 1.1. Assume that ker γ = {0}. Then for any unitary
involution u acting on K, commuting with Phase γ and anticommuting with ε, there
exists unique closed operator Y with the domain given by (3.18) such that π = (α, γ, ε, Y )
is a SqŨ(1, 1)-quadruple.

Remark: The operator u is called the linking operator associated with π. Its existence
implies that dimK(ε = −1) = dimK(ε = 1). It shows that the SqŨ(1, 1)-quadruple
(α, γ, ε, Y ) of unbounded type must contain non-trivial bosonic and fermionic compo-
nents.

Proof: We shall use Theorem 2.3. Let u be the linking operator associated with the
balanced extension Tmin ⊂ T . Then D(T ) = D(Y ) and (3.18) coincides with the second
row of (2.21). Since Y commutes with Phase γ, D(Y ) must be (Phase γ)-invariant.
Therefore K(u = 1) is (Phase γ)-invariant and u commutes with (Phase γ).

Q.E.D.

Let RY be the reflection operator associated with the balanced extension Tmin ⊂ T :

RY =
∞∑
l=0

⊕
vl
Y
u(v∗

Y
)l, (3.19) RY

where u is the linking operator introduced above. We say that RY is the Y -reflection
operator associated with π. Modifying Proposition 2.8 according to Remark 2.10 , we
get in the present context:

DgammaY

Proposition 3.4 Let π = (α, γ, ε, Y ) be a SqŨ(1, 1)-quadruple of unbounded type on a
Hilbert space H, v

Y
= ε(Phaseα)(Phase γ), RY be the Y -reflection operator associated

with π and n be an integer negative number. Then

D(γY ) =

x ∈ H :
The sequence

(
q−

k
2χ (|γ| = qn)

(
v∗
Y

)k
x
)
k∈N

is q3-converging to a vector y ∈ H (RY = 1)

 . (3.20) dzinaaY

The set of y appearing in the above formula coincides with H (|γ| = qn, RY = 1).

We shall need the analogous result for the operator X. At first we shall prove:

gammaX

Proposition 3.5 Let π = (α, γ, ε, Y ) be a SqŨ(1, 1)-quadruple of unbounded type acting
on a Hilbert space H and X be the operator related to π via formula (1.12). Then X is

a balanced extension of ε(q
1
2γ + α).
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Proof: Let V be the operator introduced by (1.13). Clearly V commutes with γ and
ε. Formula (1.13) means that

V x =
(
−ε(Phase γ)2

)k+1
x (3.21) VVV

for any x ∈ H(|γ| = qk). Unitarity of Phase γ implies the unitarity of V . Remembering
that Phaseα divides the eigenvalues of |γ| by q (cf Statement 6 of Theorem 3.1), we
obtain:

V (Phaseα) = −ε(Phase γ)−2(Phaseα)V. (3.22) VV

Unitary transform of a balanced operator is balanced. Hence V Y V ∗ is balanced and
remembering that Phase γ is central one can easily show, that X = (Phase γ)2V Y V ∗

is balanced. To end the proof, we have to show, that X is an extension of ε(q
1
2γ +

α). By virtue of (3.22), V α = −ε(Phase γ)−2αV . Therefore (Phase γ)2V γ∗V ∗ = γ,
(Phase γ)2V αV ∗ = −εα and (1.11) follows.

Q.E.D.

Let π = (α, γ, ε, Y ) be a SqŨ(1, 1)-quadruple of unbounded type acting on a Hilbert
space H, u be the linking operator associated with π and V be the unitary introduced
by (1.13). We set: v

X
= V v

Y
V ∗ and RX = V RY V

∗. Then

v
X

= −(Phaseα)(Phase γ)∗, (3.23) vX

RX =
∞∑
l=0

⊕vl
X
u(v∗

X
)l. (3.24) RX

H(RX = 1) = V H(RY = 1) (3.25) RX1

Indeed, by virtue of (3.22) we have:

V v
Y

= V ε(Phaseα)(Phase γ) = −(Phaseα)(Phase γ)−1V

and (3.23) follows. Inserting in (3.21) k = −1 we see that V y = y for any y ∈ K.
Therefore V uV ∗ = u and (3.24) follows. (3.25) is obvious. We say that RX is the
X-reflection operator associated with π.

DgammaX

Proposition 3.6 Let π = (α, γ, ε, Y ) be a SqŨ(1, 1)-quadruple of unbounded type on a
Hilbert space H, X be the operator related to π by (1.12), v

X
and RX be the operators

introduced above and let n be an integer negative number. Then

D(γX) =

x ∈ H :
The sequence

(
q−

k
2χ (|γ| = qn)

(
v∗
X

)k
x
)
k∈N

is q3-converging to a vector y ∈ H (RX = 1)

 . (3.26) dzinaaX

The set of y appearing in the above formula coincides with H (|γ| = qn, RX = 1).

Proof: Let x ∈ H. According to (1.12), x ∈ D(X) iff V ∗x ∈ D(Y ). Therefore x ∈
D(γX) iff V ∗x ∈ D(Y ) and Y V ∗x ∈ D(γV ). One can easily show, that D(γV ) = D(γ).
It proves that x ∈ D(γX) iff V ∗x ∈ D(γY ). By the definition of v

X
we get:

V
(
q−

k
2χ (|γ| = qn)

(
v∗
Y

)k
V ∗x

)
= q−

k
2χ (|γ| = qn)

(
v∗
X

)k
x.

28



Taking into account (3.25), we see that (3.26) and (3.20) are equivalent. The last
statement follows immediately from the corresponding statement of Proposition 3.4.

Q.E.D.

In what follows we shall need another formula relating RX with RY . We know
that RY commutes with γ and anticommutes with ε (cf (2.37)). Therefore RY V =
(−1)log |qγ|V RY and

RX = (−1)log |qγ|RY . (3.27) RX2

Clearly the reflection operators RY with RX satisfy the relations (2.37). More precisely
we have:

RY = R∗Y ,

R2
Y = χ (|γ| ≥ q−1) ,

RY ε = −εRY ,

RY |γ| ⊂ |γ|RY ,

v
Y
H(RY = ±1) ⊂ H(RY = ±1),

RX = R∗X ,

R2
X = χ (|γ| ≥ q−1) ,

RXε = −εRX ,

RX |γ| ⊂ |γ|RX ,

v
X
H(RX = ±1) ⊂ H(RX = ±1).


(3.28) reflYX

The following theorem reveals the structure of SqŨ(1, 1)-quadruples of unbounded
type.

postac

Theorem 3.7 Let (α0, γ0, ε0, Y0) be the SqŨ(1, 1)-quadruple introduced by (1.9). Then
for any SqŨ(1, 1)-quadruple π of unbounded type, there exists a unitary operator U
acting on a Hilbert space K+ such that π is unitarily equivalent to the quadruple

π
U

= (U∗ ⊗ α0, U ⊗ γ0, I ⊗ ε0, U∗ ⊗ Y0).

Remark: Any decomposition of K+ = K ′+ ⊕ K ′′+ respected by the operator U leads

to the decomposition of π
U

into direct sum of two SqŨ(1, 1)-quadruples π
U′

and π
U′′

,
where U ′ and U ′′ are restrictions of U to K ′+ and K ′′+ respectively. Therefore if π is
irreducible, then dimK+ = 1, U = eirI (where r ∈ [0, 2π[) and π is unitarily equivalent
to the SqŨ(1, 1)-quadruple πr introduced in Section 1. In the general case, U can be
decomposed into a direct integral of one-dimensional operators. Therefore π is a direct
integral of SqŨ(1, 1)-quadruples of the form πr. Theorem 1.3 is a corollary of the present
Theorem.

Proof: We shall use the notation introduced in Proposition 3.3. Let a = ε|γ|. The
orthogonal projections onto K± = H(a = ±q−1) will be denoted by P± = χ(a = ±q−1).
Moreover (Λ,m) will be the measure space introduced by (1.7) and (1.8). Using the
Remark following Proposition 3.3 and Statements 3 and 4 of Proposition 3.1 we see
that:

Sp a = (−q−N) ∪ qZ ∪ {0} = Λ ∪ {0}.

It means that a has pure point spectrum. Remembering that ker a = ker γ = {0} we
get

H =
∑
λ∈Λ

⊕
H(a = λ). (3.29) suma
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The eigenspaces of a are all isomorphic. Indeed, Statement 6 of Theorem 3.1 shows
that (

v∗
Y

)−k−1
: H(a = qk) −→ K+ for k = −1,−2,−3, . . .

(v
Y

)k+1 : H(a = qk) −→ K+ for k = 0, 1, 2, 3, . . .

u
(
v∗
Y

)−k−1
: H(a = −qk) −→ K+ for k = −1,−2,−3, . . .


(3.30) unitarne

are unitary mappings. Replacing on the right hand side of (3.29) all eigenspaces of a
by K+ we obtain the Hilbert space∑

λ∈Λ

⊕
K+ = L2(Λ, K+) = K+ ⊗ L2(Λ,m).

The direct sum of unitaries (3.30) defines a unitary operator

W : H −→ L2(Λ, K+).

If x ∈ H, then the corresponding element x̂ = Wx ∈ L2(Λ, K+) is given by the formula:

x̂(sqk) =



q
k
2P+

(
v∗
Y

)−k−1
x for s = 1 and k = −1,−2,−3, . . .

q
k
2P+ (v

Y
)k+1 x for s = 1 and k = 0, 1, 2, 3, . . .

q
k
2u∗P−

(
v∗
Y

)−k−1
x for s = −1 and k = −1,−2,−3, . . .

(3.31) Fourier

The appearance of powers of q on the right hand side of the above formula follows from
(1.8): qk = m({sq−k}). The inverse map is given by the formula

x =
−1∑

k=−∞
q−

k
2 v−k−1

Y
x̂(qk) +

∞∑
k=0

q−
k
2

(
v∗
Y

)k+1
x̂(qk) +

−1∑
k=−∞

q−
k
2 v−k−1

Y
u x̂(−qk).

Transformation W diagonalizes the operator a:

(WaW ∗x̂)(λ) = λx̂(λ).

Remembering that |γ| = |a| and ε = sign (a) we obtain:

(W |γ|W ∗x̂)(λ) = |λ|x̂(λ),

(WεW ∗x̂)(λ) = sign (λ)x̂(λ). (3.32) Wepsilon

Let U denote the restriction of Phase γ to K+. Remembering that Phase γ commutes
with v

Y
and u we obtain:

(WPhase γ W ∗x̂)(λ) = Ux̂(λ).
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Finally, using (3.31), one can easily verify, that

(W v
Y
W ∗x̂)(λ) = q−

1
2 x̂(qλ).

By definition v
Y

= ε(Phaseα)(Phase γ). Therefore Phaseα = ε(Phase γ)∗v
Y

and

(W PhaseαW ∗x̂)(λ) = q−
1
2 sign (λ)U∗x̂(qλ). (3.33) WPhasea

Taking into account the polar decomposition of α given by Statement 7 of Theorem 3.1
and using the above formulae we get:

(W γW ∗x̂)(λ) = |λ|U x̂(λ), (3.34) Wgamma

(W αW ∗x̂)(λ) = λ

√
q +

sign (λ)

qλ2
U∗ x̂(qλ). (3.35) Walpha

Comparing (3.35), (3.34) and (3.32) with (1.9) we see that W αW ∗ = U∗ ⊗ α0,
W γW ∗ = U ⊗ γ0 and W εW ∗ = I ⊗ ε0. To end the proof we have to show, that
W Y W ∗ = U∗ ⊗ Y0. Since both sides of the last relation are balanced extensions of
W (q

1
2γ∗ − α)W ∗, it is sufficient to prove the equality of domains.

Let k ∈ N. By virtue of (3.31),

q−
k
2P

(
v∗
Y

)k
x = q

1
2

(
x̂(q−k−1) + u x̂(−q−k−1)

)
.

Therefore (cf (3.18)) x ∈ D(Y ) if and only if the sequences
(
x̂(±q−k−1)

)
k∈N

are

q-convergent and lim
(
x̂(q−k−1) + u x̂(−q−k−1)

)
∈ K(u = 1). The latter is equivalent

to
lim
k→∞

x̂(q−k−1) = lim
k→∞

x̂(−q−k−1).

Comparing the last condition with (1.10) we get the Statement.
Q.E.D.

4 Tensor product I.
S4

In this section we shall construct the first three elements of the tensor product of two
SqŨ(1, 1)-quadruples. Let π1 = (α1, γ1, ε1, Y1) and π2 = (α2, γ2, ε2, Y2) be SqŨ(1, 1)-
quadruples acting on Hilbert spaces H1 and H2 respectively. We shall assume that π1

and π2 are of unbounded type. Let H̃ = H1 ⊗H2. At first we have to find the suitable
balanced extensions of operators:

α̃min = α1 ⊗ α2 + qε1γ1
∗ ⊗ γ2,

γ̃min = γ1 ⊗ α2 + ε1α1
∗ ⊗ γ2.

(4.1) minimal

To simplify the notation, we shall omit indexes writing α, γ and ε instead of αk, γl and
εm, where k, l,m = 1, 2. The values of k, l and m will always be clear from the context.
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For example, remembering that the operator εα∗⊗γ acts on H̃ = H1⊗H2 we conclude
that ε, α and γ stay for ε1, α1 and γ2.

Let
α̃+

min = α∗ ⊗ α∗ + qεγ ⊗ γ∗,

γ̃+
min = γ∗ ⊗ α∗ + εα⊗ γ∗.

(4.2) minimal+

The operators (4.1) and (4.2) are originally defined on D(γ) ⊗alg D(γ). One can
easily verify, that α̃+

min ⊂ α̃∗min and γ̃+
min ⊂ γ̃∗min. Therefore α̃min, γ̃min, α̃+

min and γ̃+
min

are closeable. Their closures will be denoted by the same symbols. By definition,
D(γ) ⊗alg D(γ) is a core for these operators. We know (cf (3.29)) that the set Λ
introduced by (1.7) coincides with Sp (ε|γ|). Let λ1, λ2 ∈ Λ. One can easily verify that
α̃min, γ̃min, α̃+

min and γ̃+
min are bounded on H1(ε|γ| = λ1) ⊗alg H2(ε|γ| = λ2). Therefore

H1(ε|γ| = λ1)⊗H2(ε|γ| = λ2) is contained in the domains of these operators.
relkom2

Proposition 4.1 Let D̃comp be the linear span of all eigenspaces

H̃(λ1, λ2) = H1(ε|γ| = λ1)⊗H2(ε|γ| = λ2), (4.3) h1h2

where λ1, λ2 ∈ Λ. Then

1. D̃comp is an invariant core for α̃min, γ̃min, α̃+
min and γ̃+

min.

2. For any x ∈ D̃comp we have:

α̃minγ̃minx = qγ̃minα̃minx, (4.4) cr21

α̃minγ̃
+
minx = qγ̃+

minα̃minx, (4.5) cr22

γ̃minγ̃
+
minx = γ̃+

minγ̃minx, (4.6) cr23

α̃+
minα̃minx = ε̃x+ γ̃+

minγ̃minx, (4.7) cr24

α̃minα̃
+
minx = ε̃x+ q2γ̃+

minγ̃minx, (4.8) cr25

where ε̃ = ε⊗ ε.
3. D(α̃min) = D(γ̃min) = D(α̃+

min) = D(γ̃+
min). In what follows, this common domain

will be denoted by D̃min.

4. Each of the range γ̃min(D̃comp) and γ̃∗min(D̃comp) is dense in H̃.

Proof: In each of the spaces Hi (i = 1, 2), we have the dense linear subset Di
comp

spanned by all eigenspaces Hi(ε|γ| = λi), where λi ∈ Λ. Clearly Di
comp is a core for αi,

γi, α
∗
i and γ∗i . Therefore the set D̃comp that contains D1

comp⊗algD
2
comp is a core for α̃min,

γ̃min, α̃+
min and γ̃+

min. The operators γi and γ∗i leave Hi(ε|γ| = λi) invariant, whereas, by
virtue of Statement 6 of Proposition 3.1, the operators αi and α∗i map Hi(ε|γ| = λi)
into Hi(ε|γ| = q−1λi) and Hi(ε|γ| = qλi), respectively. Therefore

α̃min

(
H̃(λ1, λ2)

)
⊂ H̃(q−1λ1, q

−1λ2) ⊕ H̃(λ1, λ2)

γ̃min

(
H̃(λ1, λ2)

)
⊂ H̃(λ1, q

−1λ2) ⊕ H̃(qλ1, λ2)

α̃+
min

(
H̃(λ1, λ2)

)
⊂ H̃(qλ1, qλ2) ⊕ H̃(λ1, λ2)

γ̃+
min

(
H̃(λ1, λ2)

)
⊂ H̃(λ1, qλ2) ⊕ H̃(q−1λ1, λ2)

(4.9) kierunki

32



Therefore α̃min, γ̃min, α̃+
min and γ̃+

min leave D̃comp invariant and Statement 1 follows.

Let A be the Hopf ∗-algebra of polynomials on SqŨ(1, 1). We know that (0.7) defines
a ∗-algebra homomorphism ∆ : A → A ⊗ A. Therefore, on the algebraic level (when
no problems related with the domains of operators appears) the commutation relations
(0.6) are satisfied by the triplet (α̃, γ̃, ε̃). It shows that Statement 2 holds.

Statement 3 follows easily form the first two. Indeed, due to (4.6) – (4.8) we have:
‖γ̃+

minx‖2 = ‖γ̃minx‖2, ‖α̃minx‖2 = (x εx)+‖γ̃minx‖2 and ‖α̃+
minx‖2 = (x εx)+q2‖γ̃minx‖2

for any x ∈ D̃comp. It shows that the four graph norms on D̃comp related to operators
α̃min, γ̃min, α̃+

min and γ̃+
min are equivalent. Therefore the corresponding four closures of

D̃comp must coincide.

Q.E.D.

Using for π1 and π2 the decomposition (3.29) we get:

H̃ =
∑

λ1,λ2∈Λ

⊕
H̃(λ1, λ2)

Rearranging this sum we obtain:

H̃ =
∑
s=±1

⊕∑
m∈Z

⊕
Hs,m, (4.10) dsd

where
Hs,m =

∑
λ1,λ2∈Λ,

λ1λ
−1
2 =sqm

⊕
H̃(λ1, λ2) (4.11) dsdsm

Clearly

Hs,m = H̃

(
ε⊗ ε = s

|γ ⊗ γ−1| = qm

)
.

Till the end of this Section we shall use the following notation:

a = ε|γ|2 ⊗ I,
v = v

Y
⊗ v

X

= −ε(Phaseα)(Phase γ)⊗ (Phaseα)(Phase γ)∗,

P n1,n2 = χ(|γ| = qn1)⊗ χ(|γ| = qn2).

(4.12) avi

If for some x ∈ H̃, the sequence
(
q−kP n1,n2 (v∗)k x

)
k∈N

is converging, then we set

θn1,n2 = lim
k→∞

q−kP n1,n2 (v∗)k x. (4.13) thetadef

In the above formulae, n1, n2 are negative integers.

Proposition 4.2 Let

Tmin =
[
Phase γ ⊗ (Phase γ)∗

]
α̃min,

Smin =
[
ε(Phase γ)⊗ Phaseα

]
γ̃+

min.
(4.14) TS
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Then Tmin and Smin respect the direct sum decomposition (4.10) and denoting by
T s,mmin and Ss,mmin the restrictions of Tmin and Smin to Hs,m, we have:

T s,mmin = q1−m

a− a(I +
sq2m

q2a

) 1
2
(
I +

1

q2a

) 1
2

qv

 , (4.15) Tsmmin

Ss,mmin = q1−m

a(I +
sq2m

q2a

) 1
2

− a
(
I +

1

q2a

) 1
2

qv

 . (4.16) Ssmmin

Proof: The operators in square brackets standing in front of α̃min and γ̃+
min are isometric.

Therefore Tmin and Smin are closed densely defined operators. We have

Tmin = [Phase γ ⊗ (Phase γ)∗] (α⊗ α + qεγ∗ ⊗ γ)

= qε|γ| ⊗ |γ|+ |α∗|(Phase γ)(Phaseα)⊗ |α∗|(Phase γ)∗(Phaseα)

= qε|γ| ⊗ |γ| − (ε|α∗| ⊗ |α∗|) v,
(4.17) Tmin1

Smin = [ε(Phase γ)⊗ Phaseα] (γ∗ ⊗ α∗ + εα⊗ γ∗)
= ε|γ| ⊗ |α∗|+ |α∗|(Phase γ)(Phaseα)⊗ q|γ|(Phaseα)(Phase γ)∗

= ε|γ| ⊗ |α∗| − q (ε|α∗| ⊗ |γ|) v.
(4.18) Smin1

We know that D̃min is a core for Tmin and Smin. Clearly operators ε|γ|⊗|γ|, ε|α|⊗|α|,
ε|γ| ⊗ |α| and ε|α| ⊗ |γ| map (4.3) into itself, whereas (cf Statement 6 of Theorem 3.1)
v divides the values of λ1 and λ2 by q. In all cases λ1λ

−1
2 is left invariant. It shows that

Tmin and Smin respect the decomposition (4.10).

Let m ∈ Z and s = ±1. One can easily verify, that on the space Hs,m we have:

ε|γ| ⊗ I = |a|
− 1

2a,

ε|α∗| ⊗ I = q|a|
− 1

2a

(
I +

1

q2a

) 1
2

,

I ⊗ |γ| = q−m|a|
1
2 ,

I ⊗ |α∗| = q1−m|a|
1
2

(
I +

sq2m

q2a

) 1
2

.

Inserting these data into (4.17) and (4.18) we obtain (4.15) and (4.16).
Q.E.D.

Let s = ±1 and m ∈ Z. For the moment we restrict our considerations to the
Hilbert space Hs,m. The Hilbert spaces on the right hand side of the decomposition
(4.11) are eigenspaces of a: if λ1λ

−1
2 = sqm, then

H̃(λ1, λ2) = Hs,m
(
a = λ1|λ1|

)
. (4.19) hsm
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It shows that |a| has pure point spectrum and the eigenvalues are of the form q2n, where
n ∈ Z. The operator v is an isometry acting on Hs,m. It commutes with ε⊗I = Phase a
and (by Statement 6 of Proposition 3.1) it maps eigenvectors of a onto eigenvectors of
a dividing the eigenvalue by q2. In other words va ⊃ q2 av.

We claim that
vv∗ ≥ χ(|a| > qn0), (4.20) ess1

where n0 = min(−1,m − 1). Indeed, taking into account Statement 3 of Proposition
3.1 we see that vv∗ = χ(ε|γ| 6= −q−1)⊗ χ(ε|γ| 6= −q−1) ≥ χ(|γ| > q−1)⊗ χ(|γ| > q−1).
Restricting the last formula to Hs,m we obtain (4.20).

The reader should notice that the functions:

fT (λ) = λ, gT (λ) = λ

(
I +

sq2m

q2λ

) 1
2
(
I +

1

q2λ

) 1
2

,

fS(λ) = λ

(
I +

sq2m

q2λ

) 1
2

, gS(λ) = λ

(
I +

1

q2λ

) 1
2

behaves for large λ in the way described by (2.11). Summing up we see that the theory
of balanced extensions developed in Section 2 (with µ = q2) may be applied to operators
(4.15) and (4.16).

Let RY be the Y -reflection operator associated with π1 and RX be the X-reflection
operator associated with π2. Remembering that reflection operators anticommute with
ε one can easily show that RY ⊗RX acting on (4.3) changes the signs of λ1 and λ2:

(RY ⊗RX)H̃(λ1, λ2) ⊂ H̃(−λ1,−λ2).

Therefore λ1λ
−1
2 remains unchanged and (4.11) shows, that Hs,m is RY ⊗RX - invariant:

(RY ⊗RX)Hs,m ⊂ Hs,m. Using (3.28) one can easily show, that RY ⊗RX is selfadjoint,
it commutes with |γ|2 ⊗ I = |a| and anticommutes with ε ⊗ I = Phase a. By (3.28)
vH(RY ⊗ RX = ±1) = (v

Y
⊗ v

X
)H(RY ⊗ RX = ±1) ⊂ H(RY ⊗ RX = ±1). Moreover

(RY ⊗ RX)2 = χ(|γ| ≥ q−1) ⊗ χ(|γ| ≥ q−1). The latter operator restricted to Hs,m

coincides with χ(|a| ≥ qn0), where n0 = min(−1,m− 1). It shows (cf (2.37)), that the
restriction of (−1)mRY ⊗ RX to Hs,m is the reflection operator associated with some
balanced extensions T s,mmin ⊂ T s,m and Ss,mmin ⊂ Ss,m.

Let T s,m and Ss,m be balanced extensions of T s,mmin and Ss,mmin corresponding to the
same reflection operator (−1)mRY ⊗ RX . Then using Theorem 2.3 and Remark 2.10
we see that

D(T s,m) = D(Ss,m) =

x ∈ H
s,m :

Sequence
(
q−kP n1,n2 (v∗)k x

)
k∈N

is q2-converging and its limit

θn1,n2(x) ∈ Hs,m
(
RY ⊗RX = (−1)m

)
 . (4.21) Dtilde2

In this formula n1, n2 are negative integers such that n1−n2 = m. The right hand side
does not depend on the particular choice of n1, n2.
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Let
T =

∑
s=±1

⊕∑
m∈Z

⊕
T s,m, (4.22) dsdT

S =
∑
s=±1

⊕∑
m∈Z

⊕
Ss,m. (4.23) dsdS

Then T and S are extensions of Tmin and Smin respectively.
DtildeP

Proposition 4.3 Let

D̃0 =
⋃
n∈Z

H̃
(
qn ≤ |γ ⊗ γ−1| ≤ q−n

)

and (for any p > 0)

D̃p =

x ∈ D̃0 :

For any integers n1, n2 < 0, the sequence(
q−kP n1,n2(v∗)kx

)
k∈N

is q2p-converging and

its limit θn1,n2(x) ∈ H̃
(
RY ⊗RX = (−1)n1−n2

)
 (4.24) Dtildep

Then:

1. For any p ≥ 1, D̃p is a core for T , S, T ∗ and S∗.

2. T , S, T ∗ and S∗ map D̃3 into D̃1.

3. For any p ≥ 0, (Phase γ)∗ ⊗ Phase γ maps D̃p onto itself.

4. For any p ≥ 0, ε(Phase γ)∗ ⊗ (Phaseα)∗ maps D̃p onto itself.

Proof: Clearly each Hs,m is contained in D̃0. A moment of reflection shows that D̃0 is
the linear span of the union of all Hs,m. Moreover D̃1 is the linear span of all D(T s,m)
(compare (4.21) with (4.24)). Statement 1 follows now from Proposition 2.6. Similarly,
Statement 2 follows from Proposition 2.7.

Statement 3 is trivial: the unitary operator Phase γ⊗ (Phase γ)∗ commutes with all
operators appearing in the definition of D̃p.

Let x ∈ H̃, x′ =
[
ε(Phase γ)∗ ⊗ (Phaseα)∗

]
x and

y = lim
k→∞

q−kP n1,n2(v∗)kx,

y′ = lim
k→∞

q−kP n1,n2+1(v∗)kx′.

The reader should notice, that the rate of convergence of the two sequences is the same
and the limits are related by the formula

y′ =
[
ε(Phase γ)∗ ⊗ (Phaseα)∗

]
y. (4.25) vey1

If x ∈ D̃p, then

y ∈ H̃
(
RY ⊗RX = (−1)n1−n2

)
. (4.26) vey
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Using (4.25) and remembering, that RXε1 = −ε1RX one can easily show that (4.26) is
equivalent to

y′ ∈ H̃
(
RY ⊗RX = (−1)n1−n2−1

)
.

The latter relation means that x′ ∈ D̃p.
Q.E.D.

44

Proposition 4.4 There exist unique closed operators α̃ and γ̃ acting on H̃ such that
(cf (4.14))

T =
[
Phase γ ⊗ (Phase γ)∗

]
α̃,

S=
[
ε(Phase γ)⊗ Phaseα

]
γ̃∗.

(4.27) TS2

Moreover

1. Operators α̃, γ̃ and ε̃ = ε⊗ ε satisfy Conditions 1, 2 and 3 of Definition 1.1.

2. Operators α̃, γ̃ and ε̃ = ε⊗ ε satisfy Statement 1 of Theorem 1.4.

Proof: The uniqueness of α̃ and γ̃ and the existence of α̃ are obvious. To prove the
existence of γ̃ it is sufficient to show, that

Range (S) ⊂ H1 ⊗ Range (Phaseα). (4.28) egamma

Let x ⊥ H1 ⊗ Range (Phaseα). Then

x =
∑
s=±1

∑
m∈Z

xs,m,

where xs,m ∈ H1(ε|γ| = −sqm−1) ⊗ H2(ε|γ| = −q−1). Clearly xs,m ∈ D(Ss,mmin) ⊂
D(Ss,m) ⊂ D(S) = D(S∗). Remembering that S∗ ⊂ (Smin)∗ and using (4.14) we see
that S∗xs,m = (Smin)∗xs,m = 0. Therefore xs,m ∈ kerS∗, x ∈ kerS∗ and (4.28) follows.

By Propositions 4.3 and A.1, for any p ≥ 1, the domain D̃p introduced by (4.24) is
a core for α̃, γ̃∗, α̃∗ and γ̃.

Comparing (4.14) with (4.27) we see that α̃min ⊂ α̃ and γ̃+
min ⊂ γ̃∗. Consequently

α̃∗ ⊂ (α̃min)∗ and γ̃ ⊂
(
γ̃+

min

)∗
. We know that (α̃min)∗ is an extension of α̃+

min and
(
γ̃+

min

)∗
is an extension of γ̃min. Therefore α̃∗x = α̃+

minx and γ̃x = γ̃minx for any x belonging

to D(α̃∗) ∩D(α̃+
min) ∩D(γ̃) ∩D(γ̃min). In particular these relations hold for x ∈ D̃min.

Remembering that D̃min is a core for α̃+
min and γ̃min we see that α̃+

min ⊂ α̃∗ and γ̃min ⊂ γ̃.

Statement 1 of Theorem 1.4 is proven.

The operator ε̃ = ε ⊗ ε is obviously unitary and selfadjoint. Moreover the spaces
entering the direct sum decomposition (4.10) are eigenspaces of ε̃. Therefore ε̃ commutes
with T and S. Consequently it commutes with α̃ and γ̃∗ and Conditions 1 and 2 of
Definition 1.1 are satisfied by our operators.

Let x ∈ D̃min and y ∈ D̃3. By virtue of (4.8),(
y α̃minα̃

+
minx

)
= (y ε̃x) + q2

(
y γ̃+

minγ̃minx
)
.
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Remembering that α̃∗ ⊂ α̃∗min and γ̃ ⊂
(
γ̃+

min

)∗
we obtain:

(
α̃∗y α̃+

minx
)

= (ε̃y x) + q2 (γ̃y γ̃minx) .

According to Proposition 4.3, α̃∗y, γ̃y ∈ D̃1. The latter domain is contained in D(α̃)
and D(γ̃∗). Therefore

(α̃α̃∗y x) = (ε̃y x) + q2 (γ̃∗γ̃y x) .

By density of D̃min, this relation holds for all x ∈ H̃. Assuming that x ∈ D̃3 we get:

(α̃∗y α̃∗x) = (ε̃y x) + q2 (γ̃y γ̃x) .

This relation holds for all x, y ∈ D̃3. Remembering that D̃3 is a core for α̃∗ and γ̃ we
see that D(α̃∗) = D(γ̃) and that the above relation holds for all x, y ∈ D(γ̃). In the
same way, starting with relations (4.4) – (4.7) we can prove that operators α̃, γ̃ and ε̃
satisfy the remaining requirements of Condition 3 of Definition 1.1.

Q.E.D.

By (4.27), |γ̃| = |γ̃∗| = |S|. Formula (4.23) shows that |γ̃| respects the direct sum
decomposition (4.11). It means that |γ̃| strongly commutes with ε⊗ ε and |γ ⊗ γ−1|.

We say that x ∈ H̃ is homogeneous if it belongs to one of the subspace Hs,m.

core4

Proposition 4.5 Let D′ be a linear dense subset of H̃. Assume that

1. D′ contains D̃comp,

2. Any element of D′ is a finite sum of homogeneous elements belonging to D′,

3. For any negative integers n1, n2 and x ∈ D′, the sequence
(
q−kP n1,n2 (v∗)k x

)
k∈N

is q2-converging.

4. For any negative integers n1, n2 the set{
θn1,n2(x) : x ∈ D′

}
is a dense subset of H̃

(
|γ| ⊗ I = qn1 , I ⊗ |γ| = qn2 , RY ⊗RX = (−1)n1−n2

)
.

Then D′ is a core for α̃, γ̃, α̃∗ and γ̃∗.

Proof: Comparing Assumptions 3 and 4 with (4.21), we see that D′∩Hs,m ⊂ D(T s,m).
Using Proposition 2.5 (modified in the way described in Remark 2.10) and Assumption
4 one can easily show, that D′ ∩ Hs,m is a core of T s,m. Therefore D′ is a core of T .
The first equation of (4.27) shows now, that D′ is a core of α̃.

To end the proof we recall that α̃, γ̃ and ε̃ satisfy Condition 3 of Definition 1.1. By
Remark 1.2 any core of α̃ is a core for γ̃, α̃∗ and γ̃∗.

Q.E.D.
Now we are able to show that operators α̃ and γ̃ satisfy the Statement 2 of Theo-

rem 1.4.
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Proposition 4.6 Let D′ be the linear span of D̃comp and all vectors x of the form

x = Es,m(εm x1 ⊗ x2), (4.29) Dalpha1

where Es,m = χ
(
|γ ⊗ γ−1| = qm, ε⊗ ε = s

)
, x1 ∈ D(γY ), x2 ∈ D(γX), s = ±1 and

m ∈ Z. Then D′ is a core for α̃, γ̃, α̃∗ and γ̃∗.

Proof: We have to verify that D′ satisfies the assumptions of Proposition 4.5. Clearly
Assumptions 1 and 2 are satisfied.

Let x1 ∈ D(γ1Y1), x2 ∈ D(γ2X2) and n1, n2 be negative integers. By Proposition
3.4, the sequence (

q−
k
2χ (|γ1| = qn1)

(
v∗
Y

)k
x1

)
k∈N

is q3-converging to a vector y1 ∈ H1(|γ| = qn1 , RY = 1). Similarly, by Proposition 3.6,
the sequence (

q−
k
2χ (|γ2| = qn2)

(
v∗
X

)k
x2

)
k∈N

is q3-converging to a vector y2 ∈ H2(|γ| = qn2 , RX = 1). We know, that the tensor prod-
uct of q3-converging sequences is q3-converged (cf the paragraph preceding Proposition
2.1. Therefore the sequence(

q−kP n1,n2 (v∗)k (εmx1 ⊗ x2)
)
k∈N

is q3-converging to εmy1 ⊗ y2. Let x be the element of D′ introduced by (4.29). We
know that the spaces Hs,m are P n1,n2 and v -invariant. Therefore Es,m commutes with
P n1,n2 and v and the sequence (

q−kP n1,n2 (v∗)k x
)
k∈N

is q3-converging and its limit θn1,n2(x) = Es,m(εmy1⊗y2). Clearly q3-convergence implies
q2-convergence. It shows that D′ satisfies Assumption 3 of Proposition 4.5.

One may assume that n1−n2 = m (otherwise θn1,n2(x) = 0). In this case θn1,n2(x) =
χ(ε⊗ ε = s)(εmy1 ⊗ y2).

By the last Statements of Propositions 3.4 and 3.6, the set
{
θn1,n2(x) : x ∈ D′

}
coincides with the linear span ofχ(ε⊗ ε = s)(εmy1 ⊗ y2) :

y1 ∈ H1(|γ| = qn1 , RY = 1)
y2 ∈ H2(|γ| = qn2 , RX = 1)
m = n1 − n2, s = ±1

 .
Therefore

{
θn1,n2(x) : x ∈ D′

}
is a dense subset of the linear span of

⋃
s=±1

χ(ε⊗ ε = s)
[
εn1−n2H1(|γ| = qn1 , RY = 1)⊗H2(|γ| = qn2 , RX = 1)

]
. (4.30) bigcup

39



The linear span of {χ(ε⊗ ε = −1), χ(ε⊗ ε = 1)} clearly coincides with the linear span
of {I ⊗ I, ε⊗ ε}. Moreover

H̃(RY ⊗RX = 1) = H1(RY = 1)⊗H2(RX = 1)⊕H1(RY = −1)⊗H2(RX = −1)
= H1(RY = 1)⊗H2(RX = 1)⊕ εH1(RY = 1)⊗ εH2(RX = 1).

It shows, that the linear span of (4.30) equals to

(εn1−n2 ⊗ I) H̃ (|γ| ⊗ I = qn1 , I ⊗ |γ| = qn2 , RY ⊗RX = 1)

= H̃ (|γ| ⊗ I = qn1 , I ⊗ |γ| = qn2 , RY ⊗RX = (−1)n1−n2) .
(4.31) bigcup1

We proved that
{
θn1,n2(x) : x ∈ D′

}
is a dense subset of (4.31). It shows that D′ satisfies

Assumption 4 of Proposition 4.5. By virtue of the last Proposition, D′ is a core of α̃,
γ̃, α̃∗ and γ̃∗.

Q.E.D.

Let α̃max = (α̃+
max)

∗
. Then α̃max is an extension of α̃. A moment of reflection shows

that
α̃max = [(Phase γ)∗ ⊗ Phase γ]Tmax,

where
Tmax =

∑
s=±1

⊕∑
m∈Z

⊕
T s,mmax,

where operators T s,mmax are related to the operators T s,mmin in the way described in Sec-
tion 2. Combining the Statement 1 of Theorem 2.2 and the last expression for D(T )
given by (2.21) with Remark 2.10 one can easily prove the following

kryterium

Proposition 4.7 For any x ∈ D(α̃max) and any negative integers n1, n2 the sequence(
q−kP n1,n2 (v∗)k x

)
k∈N

is q2-converging. Denoting its limit by θn1,n2(x) we have:

D(α̃) =

{
x ∈ D(α̃max) :

For any negative integers n1, n2,

θn1,n2(x) ∈ H̃(RY ⊗RX = (−1)n1−n2)

}
. (4.32) Dtilde6

Taking into account (4.12) we have:

θn1,n2(x) = lim
k→∞

q−k
[
χ(|γ| = qn1)

(
v∗
Y

)k
⊗ χ(|γ| = qn2)

(
v∗
X

)k]
x (4.33) kryterium1

5 Dilations and wave operators.
S5

In many considerations, the non-unitarity of Phaseα causes some technical problems.
To avoid them we shall use the theory of unitary dilations of isometric operators [4].

dilation

Proposition 5.1 Let α, γ and ε be closed operators on a Hilbert space H satisfying the
first three Conditions of Definition 1.1. Assume that ker γ = {0}. Then there exist a
Hilbert space Hex and operators Phase exα, γex, εex acting on Hex such that:
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1. The space H is a subspace of Hex. In what follows, H⊥ will denote the orthogonal
complement of H in Hex.

2. Operator Phase exα is unitary, Phase exα restricted to H coincides with Phaseα
and ⋃

n∈N

(
Phase exα

)−n
H

is dense in Hex.

3. Operators γex and εex respect the decomposition Hex = H ⊕H⊥. Restrictions of
γex and εex to H coincide with γ and ε. Moreover

H⊥ = Hex

(
εex = −1,
|γex| < q−1

)
.

4. Phase exα commutes with εex and

(Phase exα) γex (Phase exα)∗ = qγex.

Proof: Clearly Phase exα is a unitary dilation of Phaseα. Statements 1 and 2 belong
to the general theory of unitary dilations. Let K = H (ε|γ| = −q−1). Then K is the
orthogonal complement of (Phaseα)H in H and

H⊥ =
∞∑
n=0

⊕
H⊥n ,

where H⊥n = (Phase exα)−(n+1) K. We know that Phaseα commutes with unitary ope-
rator Phase γ. Using the functorial properties of unitary dilations we see that there
exists unique unitary operator Phase exγ acting on Hex such that

1. Phase exγ commutes with Phase exα,
2. The restriction of Phase exγ to H coincides with Phase γ.

Obviously Phase exγ maps each H⊥n onto itself. We set:

εexx =

{
εx for x ∈ H,
−x for x ∈ H⊥n ,

γexx =

{
γx for x ∈ D(γ),

qn(Phase exγ)x for x ∈ H⊥n .
(5.1) gammaex

Using Statement 3 of Theorem 3.1 one can easily show that the operators γex and
εex introduced above satisfy the requirements of our theorem. The reader should notice
that Phase exγ = Phase γex.

Q.E.D.

The reader should notice that only the fermionic part of H is subject to the extension
(Phaseα is unitary on the bosonic sector). Therefore denoting by γex

± the restriction of
γex to Hex(εex = ±1) we have:

γex
+ = γ+. (5.2) noex
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Moreover taking into account Statement 3 of Proposition 3.1 and formula (5.1) we get

Sp γex
− = qZ ∪ {0}, (5.3) spex

provided the fermionic sector is not empty.

Many operators considered in Section 3 admit a natural extension to the space Hex.
In particular

vex
Y

= εex(Phase exα)(Phase γex),

vex
X

= −(Phase exα)(Phase γex)∗,

V ex = [−εex(Phase γex)2]
log |qγex|

,

Rex
Y

=
∑
n∈Z

(
vex
Y

)−n
u
(
vex
Y

)n
,

Rex
X

=
∑
n∈Z

(
vex
X

)−n
u
(
vex
X

)n


(5.4) exwzory1

are unitary operators acting on Hex. vex
Y

, vex
X

and V ex map H into itself and their
restrictions to H coincide with v

Y
, v

X
and V respectively. Rex

Y
and Rex

X
restricted to

K = Hex(|γex| = q−1) coincide with u. Clearly Rex
X

= V exRex
Y

(V ex)∗. Repeating the
derivation of (3.27) we obtain:

Rex
X

= (−1)log |qγex|Rex
Y
. (5.5) RX2ex

One can easily verify that γex is a normal operator and

vex
Y
γex = q γex vex

Y
,

vex
Y
Rex
Y

= Rex
Y
vex
Y
,

εexRex
Y

= −Rex
Y
εex,

vex
X
γex = q γex vex

X
,

vex
X
Rex
X

= Rex
X
vex
X
,

εexRex
X

= −Rex
X
εex.

 (5.6) exwzory

Now let π1 = (α1, γ1, ε1, Y1) and π2 = (α2, γ2, ε2, Y2) be SqŨ(1, 1)-quadruples of
unbounded type acting on Hilbert spaces H1 and H2 respectively. We shall use the
notation introduced in Section 4. In particular α̃ and γ̃ will denote operators on H̃ =
H1 ⊗H2 introduced by (4.27). Copying (3.15) and (3.23) we set:

ṽ
Y

= ε̃ (Phase α̃)(Phase γ̃), (5.7) vytilde

ṽ
X

= −(Phase α̃)(Phase γ̃)∗. (5.8) vXtilde

With this notation we have:

Proposition 5.2 There exists bounded operators b1, b2 ∈ B(H̃) such that[
(I ⊗ v

Y
)− ṽ

Y

]
γ̃∗x = b1|γ ⊗ γ−1|x+ b2x (5.9) WO1

for any x ∈ D(γ̃)∩D(γ⊗γ−1). Operators b1 and b2 respect the direct sum decomposition
(4.10).
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Proof: Let

b1 =


εPhaseα⊗ ε(Phaseα)

[
|γ| − |α|

]
|γ|

+(Phase γ)∗ ⊗ ε(Phase γ)
[
|α∗| − q|γ|

]
|γ|,

b2 =


ε̃(Phase α̃)

[
|α̃| − |γ̃|

]
−ε(Phaseα)

[
|α| − |γ|

]
⊗ ε(Phaseα)

[
|α| − |γ|

]
.

By virtue of Proposition 3.2, ‖b1‖ ≤ 1+q−1 and ‖b2‖ ≤ 2. Clearly b1 and b2 respect the
direct sum decomposition (4.10). Let D̃min be the domain introduced in Proposition
4.1 and x ∈ D̃min. Performing simple computations we get:

b1|γ ⊗ γ−1|x =
[
v
Y
γ∗ ⊗ (v

Y
γ∗ − εα)

]
x+

[
γ∗ ⊗ (v

Y
α∗ − qεγ)

]
x,

b2x =
[
ε̃α̃− ṽ

Y
γ̃∗
]
x−

[
(εα− v

Y
γ∗)⊗ (εα− v

Y
γ∗)

]
x.

Moreover in this case, computing α̃x and γ̃∗x we may replace α̃ by α̃min given by (4.1)
and γ̃∗ by γ̃+

min given by (4.2). Using these data one can easily verify (5.9) for all
x ∈ D̃min.

To end the proof we notice, that the intersection of domains of γ̃(I ⊗ v∗
Y

), γ̃ṽ∗
Y

,

b∗1|γ ⊗ γ−1| and b∗2 is dense in H̃. Indeed, it contains D̃min. Using now Proposition A.2
we get (5.9) in full generality.

Q.E.D.

Using the same technic one can prove

Proposition 5.3 There exists bounded operators b1, b2 ∈ B(H̃) such that[
(v

X
⊗ I)− ṽ

X

]
γ̃x = b1|γ−1 ⊗ γ|x+ b2x (5.10) WO3

for any x ∈ D(γ̃)∩D(γ−1⊗γ). Operators b1 and b2 respect the direct sum decomposition
(4.10).

Proof: In this case

b1 =


(Phaseα)

[
|α| − |γ|

]
|γ| ⊗ Phaseα

+ε(Phase γ)∗
[
q|γ| − |α∗|

]
|γ| ⊗ Phase γ,

b2 =


(Phase α̃)

[
|α̃| − |γ̃|

]
+(Phaseα)

[
|α| − |γ|

]
⊗ (Phaseα)

[
|α| − |γ|

]
.

The computational details are left to the reader.
Q.E.D.
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We already know (cf Proposition 4.4) that operators α̃, γ̃ and ε̃ satisfy the first
three Conditions of definition 1.1. So we may use Proposition 5.1. This way we obtain
a Hilbert H̃ex ⊃ H̃ and operators Phase exα̃, γ̃ex and ε̃ex. We shall also use operators:

ṽex
Y

= ε̃ex(Phase exα̃)(Phase γ̃ex),

ṽex
X

= −(Phase exα̃)(Phase γ̃ex)∗,

Ṽ ex = [−ε̃ex(Phase γ̃ex)2]
log |qγ̃ex|

.

 (5.11) exwzory1tilde

These are unitaries acting on H̃.

Γ1 = qγ ⊗ |γex|(Phase exα) + εα∗ ⊗ γex

Γ2 = γex ⊗ α + εex|γex| (Phase exα)∗ ⊗ γ

Φ = s -lim
r→∞

(
I ⊗ vex

Y

)−r (
ṽex
Y

)r
Φ∗ = s -lim

r→∞

(
ṽex
Y

)−r (
I ⊗ vex

Y

)r
Φ ṽex

Y
=
(
I ⊗ vex

Y

)
Φ (5.12) PvY

Φ ṽex
Y

Φ∗ = I ⊗ vex
Y

Φ γ̃exΦ∗ = Γ1 (5.13) PGamma1(
I ⊗Rex

X

)∗
Γ1
(
I ⊗Rex

X

)
= Γ1 (5.14) RGamma1

Ψ = s -lim
r→∞

(
vex
X
⊗ I

)−r (
ṽex
X

)r
Ψ∗ = s -lim

r→∞

(
ṽex
X

)−r (
vex
X
⊗ I

)r
Ψ ṽex

X
=
(
vex
X
⊗ I

)
Ψ (5.15) PvX

Ψ ṽex
X

Ψ∗ = vex
X
⊗ I

Ψ γ̃exΨ∗ = Γ2 (5.16) PGamma2(
Rex
Y
⊗ I

)∗
Γ2
(
Rex
Y
⊗ I

)
= Γ2 (5.17) RGamma2

Φ∗
(
I ⊗Rex

X

)
Φ = (−1)log |qγ̃|Ψ∗

(
Rex
Y
⊗ I

)
Ψ (5.18) Fund

6 Tensor product II
S6

In this Section we achieve the construction of the tensor product of two SqŨ(1, 1)-
quadruples. We shall use the notation introduced in Section 4. Let π1 = (α1, γ1, ε1, Y1)
and π2 = (α2, γ2, ε2, Y2) be SqŨ(1, 1)-quadruples of unbounded type. In Section 4 we
constructed the first three elements α̃, γ̃ and ε̃ of the tensor product π1©> π2. We
already know, that α̃, γ̃ and ε̃ satisfy the first three conditions of Definition 1.1. Now
we shall show that γ̃ satisfies the spectral condition (1.6):
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SPCONtildeP

Proposition 6.1 Let γ̃+ be the restriction of γ̃ to H̃(ε̃ = 1). Then

Sp (|γ̃+|) ⊂ qZ ∪ {0}. (6.1) SPCONtilde

Remark: This result (in a more general version) appeared first in the Korogodski paper
(see Proposition A1 of [8]). The proof presented below seems to be different that the
one of Korogodski. We include it to the paper, because it is not clear, to what extend
our setting coincides with the one used by Korogodski.

Proof: Let R̃ex
Y

be the unitary operator introduced by

R̃ex
Y

= Ψ∗
(
Rex
Y
⊗ I

)
Ψ. (6.2) RYtilde

Combining (5.16) with (5.17) one can easily show that γ̃ex commutes with R̃ex
Y

. There-
fore (

R̃ex
Y

)∗
|γ̃ex|R̃ex

Y
= |γ̃ex|. (6.3) inv62(

R̃ex
Y

)∗
Phase (γ̃ex)R̃ex

Y
= Phase (γ̃ex). (6.4) inv63

Clearly R̃ex
Y

anticommutes with ε̃ex. Formula (6.3) shows that the restrictions |γ̃ex
± | of

|γ̃ex| to H̃ex(ε̃ex = ±1) are unitarily equivalent. In particular

Sp |γ̃ex
+ | = Sp |γ̃ex

− |.

Using now (5.2) and (5.3) (with γ replaced by γ̃) we immediately obtain (6.1).
Q.E.D.

Now we shall introduce the forth element of the SqŨ(1, 1)-quadruple π1©> π2 =
(α̃, γ̃, ε̃, Ỹ ). According to Proposition 3.3, Ỹ is determined by a unitary involution ũ
acting on K̃ = H̃(|γ̃| = q−1). ũ should commute with Phase γ̃ and anticommute with
ε̃.

Let R̃ex
Y

be the operator introduced by (6.2). By (6.3), subspace H̃ex(|γ̃| = q−1)

is R̃ex
Y

-invariant. Using Statement 3 of Proposition 5.1 one can easily show that

H̃ex(|γ̃| = q−1) coincides with H̃(|γ̃| = q−1) = K̃. By definition ũ is the restriction
of R̃ex

Y
to K̃. Relation (6.4) shows that ũ commutes with Phase γ̃. We know that Ψ

commutes with ε̃. Remembering that Rex
Y

anticommutes with ε, one can easily show

that R̃ex
Y

anticommutes with ε̃. So does ũ. The construction of π1©> π2 = (α̃, γ̃, ε̃, Ỹ )
has came to the end.

Combining (5.5) with (5.18) we may rewrite (6.2) in the following way:

R̃ex
Y

= (−1)log |qγ̃ex| Φ∗
(
I ⊗ (−1)log |qγex|Rex

Y

)
Φ. (6.5) RYtilde1

Using the first relation of (5.6) one can easily show that v
Y

anticommutes with

(−1)log |qγex|. Consequently ṽ
Y

anticommutes with (−1)log |qγ̃ex|. Taking into account
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(5.12) and remembering that v
Y

commutes with Rex
Y

(cf (5.6)), we see that ṽ
Y

commutes

R̃ex
Y

. Therefore

R̃ex
Y

=
∑
n∈Z

(
ṽex
Y

)−n
ũ
(
ṽex
Y

)n
.

It shows that R̃ex
Y

is the extended Y -reflection operator associated with the SqŨ(1, 1)-

quadruple (α̃, γ̃, ε̃, Ỹ ).

We shall also need the formulae for the extended X-reflection operator R̃ex
X

asso-

ciated with this quadruple, parallel to (6.2) and (6.5). According to (5.5), R̃ex
X

=

(−1)log |qγ̃ex|R̃ex
Y

. In particular R̃ex
X

restricted to K̃ coincides with ũ. Taking into ac-
count (5.18) we obtain:

R̃ex
X

= Φ∗
(
I ⊗Rex

X

)
Φ

= (−1)log |qγ̃ex| Ψ∗
(
(−1)log |qγex|Rex

X
⊗ I

)
Ψ.

(6.6) RXtilde

The rest of the Section is devoted to the proof of Statement 3 of Theorem 1.4.

Statem3

Proposition 6.2 Let K̃ = H̃ (|γ̃| = q−1) and

z = χ
(
|γ̃| |γ ⊗ γ−1| = qn

)
(x⊗ εn−ry), (6.7) DYtdow

where n, r ∈ Z, x ∈ H1(|γ| = qr) and y ∈ D(Y2). Then:

1. The sequence
(
q−

k
2χ(|γ̃| = q−1)

(
ṽ∗
Y

)k
z
)
k∈N

is q-convergent and its limit

θ̃
Y

(z) = q
r−n

2 χ
(
|γ̃ex| = q−1

)
Φ∗
[
x⊗

(
ε vex

Y

)n−r
θ
Y

(y)
]
, (6.8) theta6’

where

θ
Y

(y) = lim
k→∞

(
q−

k
2χ(|γ| = q−1)

(
v∗
Y

)k
y
)
. (6.9) theta6

2. θ̃
Y

(z) ∈ K̃(ũ = 1).

3. The set {
θ̃
Y

(z) :
n, r ∈ Z, y ∈ D(Y2)

x ∈ H1(|γ| = qr)

}

is linearly dense in K̃(ũ = 1).

Proof: Let
ζk = q−

k
2χ(|γ̃| = q−1)

(
ṽ∗
Y

)k
z. (6.10) dzetak

We know (cf Statement 6 of Proposition 3.1) that Phase α̃∗ multiplies the eigenvalues
of |γ̃| by q. So does ṽ∗

Y
. Therefore

χ(|γ̃| = q−1)
(
ṽ∗
Y

)k
= χ(|γ̃| = q−1)

(
ṽ∗
Y

)k
χ(|γ̃| = q−1−k).
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Remembering that |γ̃| and |γ ⊗ γ−1| strongly commute we get:

χ
(
|γ̃| = q−1−k

)
χ
(
|γ̃| |γ ⊗ γ−1| = qn

)
= χ

(
|γ̃| = q−1−k

)
χ
(
|γ ⊗ γ−1| = qn+k+1

)
We assumed that x ∈ H1(|γ| = qr). Therefore

χ
(
|γ ⊗ γ−1| = qn+k+1

) (
x⊗ εn−r y

)
= x⊗ εn−rχ

(
|γ| = qr−n−k−1

)
y.

Finally, by virtue of (5.6),

χ
(
|γ| = qr−n−k−1

)
=
(
vex
Y

)k+n−r
χ
(
|γ| = q−1

) (
vex
Y

)−k−n+r
.

Inserting these data into (6.10) we get:

ζk = χ
(
|γ̃| = q−1

) (
ṽex
Y

)−k (
I ⊗ vex

Y

)k+n−r
[
x⊗ εn−rq−

k
2 χ

(
|γ| = q−1

) (
v∗
Y

)k+n−r
y
]
.

We have to show that the sequence (ζk)k∈N is q-convergent. The vector y in the
above formula belongs to D(Y2). By (3.18), the sequence in (6.9) is q-convergent.
Therefore it is sufficient to show that the sequence(

q
r−n

2 χ
(
|γ̃| = q−1

) (
ṽex
Y

)−k (
I ⊗ vex

Y

)k [
x⊗

(
vex
Y
ε
)n−r

θ
Y

(y)
])

k∈N

is q-convergent. This fact follows immediately from (??). Clearly the limit coincides
with (6.8). Statement 1 is proved.

We shall prove Statement 2. Comparing the first two formulae of (5.4) we see that
εex vex

Y
= −(Phase γ)2 vex

X
. Therefore (cf. (5.6)) εex vex

Y
commutes with Rex

X
. We know

that y ∈ D(Y ). According to (3.18), θ
Y

(y) ∈ K(u = 1). Remembering that Rex
X

restricted to K coincides with u we get(
εex vex

Y

)n−r
θ
Y

(y) ∈ Hex(Rex
X

= 1). (6.11) 001

Therefore
x⊗

(
εex vex

Y

)n−r
θ
Y

(y) ∈ (H1 ⊗Hex
2 )((I ⊗Rex

X
) = 1) (6.12) 002

and

Φ∗
[
x⊗

(
εex vex

Y

)n−r
θ
Y

(y)
]
∈ H̃ex

(
Φ∗(I ⊗Rex

X
)Φ = 1

)
. (6.13) 003

Using (6.6) and remembering that R̃ex
X

restricted to K̃ coincides with ũ we get

χ
(
|γ̃ex| = q−1

)
Φ∗
[
x⊗

(
εex vex

Y

)n−r
θ
Y

(y)
]
∈ K̃(ũ = 1). (6.14) 004

Statement 2 is proved.

To prove Statement 3 we notice, that due to Theorem 2.3, the set {θ
Y

(y) : y ∈ D(Y )}
coincides with K(u = 1). Therefore the set of elements of the form (6.11) coincides

with Hex
(
|γex| = qr−n−1, Rex

X
= 1

)
and the set of elements of the form (6.12) is (for fixed
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r, n ∈ Z) linearly dense in H1(|γ| = qr) ⊗ Hex
2

(
|γex| = qr−n−1, Rex

X
= 1

)
. Considering

all possible r, n ∈ Z we see that the set of elements of the form (6.12) is linearly dense
in (H1 ⊗ Hex

2 )((I ⊗ Rex
X

) = 1). Consequently the set of elements of the form (6.13) is

linearly dense in H̃ex
(
Φ∗(I ⊗Rex

X
)Φ = 1

)
and the set of elements of the form (6.14) is

linearly dense in K̃(ũ = 1).
Q.E.D.

Statement 3 of Theorem 1.4 follows immediately from Proposition 6.2 combined
with Theorem 2.3 and Proposition 2.5. The proof of Theorem 1.4 is complete.

7 The associativity of the tensor product
S7

This Section is devoted to the proof of Theorem 1.5. Let π1 = (α1, γ1, ε1, Y1),
π2 = (α2, γ2, ε2, Y2) and π3 = (α3, γ3, ε3, Y3) be SqŨ(1, 1)-quadruples of unbounded
type acting on Hilbert spaces H1, H2 and H3 respectively. We have to show that

π1©> π̃23 = π̃12©> π3,

where π̃12 = π1©> π2 and π̃23 = π2©> π3. To make temporary distinction between the
two threefold tensor products we shall use the following notation. Operators α̃min, γ̃min,
α̃+

min, γ̃+
min, α̃max, γ̃max, α̃+

max, γ̃+
max, α̃, γ̃, ε̃ and Ỹ related to the tensor product π1©> π̃23

will be denoted by
R
αmin,

R
γmin,

R+
αmin,

R+
γmin,

R
αmax,

R
γmax,

R+
αmax,

R
γmax,

R
α,

R
γ,

R
ε and

R

Y (‘tilde’ is replaced by R). The corresponding operators related to π̃12©> π3 will be

denoted by
L
αmin,

L
γmin,

L+
αmin,

L+
γmin,

L
αmax,

L
γmax,

L+
αmax,

L
γmax,

L
α,

L
γ,

L
ε and

L

Y (‘tilde’ is
replaced by L). We have:

π1©> (π2©> π3) = (
R
α,

R
γ,

R
ε,

R

Y ),

(π1©> π2)©> π3 = (
L
α,

L
γ,

L
ε,

L

Y ).

We shall keep ‘tilde’ to denote operators related to the tensor products πi©> πi+1

(i = 1, 2). The value of i will be clear from the context. For example in (??), α̃ denotes
the first component of π12. Like in Section 4 the components of πi we be simply denoted
by α, γ, ε and Y . The value of the omitted index i follows from the position of the
considered operator in the tensor product.

Iterating the third formula of Statement 1 of Theorem 1.4 we get:

R
ε= ε⊗ ε̃ = ε⊗ ε⊗ ε,
L
ε= ε̃⊗ ε = ε⊗ ε⊗ ε.

Therefore
R
ε=

L
ε .

We know, that the comultiplication (0.7) is coassociative on the Hopf ∗-algebra level.

Therefore
R
α and

L
α coincide on D(α)⊗alg D(α)⊗alg D(α). It shows that

R
α and

L
α are
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balanced extensions of one operator. The same statement holds for
R
γ and

L
γ. We have

to show that
R
α=

L
α and

R
γ=

L
γ. By Propositions 0.2 and Remark 1.2 it is sufficient to

prove
prfinal

Proposition 7.1 D(
R
α) contains a core of

L
α.

Let Λ be the set introduced by (1.7). For any λ = (λ1, λ2, λ3) ∈ Λ3 we set

≈
H (λ) = H1(ε|γ| = λ1)⊗H2(ε|γ| = λ2)⊗H3(ε|γ| = λ3).

Any vector x ∈
≈
H= H1 ⊗H2 ⊗H3 is of the form: x =

∑
x(λ), where x(λ) ∈

≈
H (λ). By

definition the support of x is the set suppx = {λ ∈ Λ3 : x(λ) 6= 0}. Remembering that
R
α and

L
α coincide on D(α)⊗alg D(α)⊗alg D(α) one can easily show that(

x
R
α y

)
=
(

L ∗
α x y

)
and

(
x

R ∗
α y

)
=
(

L
α x y

)
(7.1) finsup

for any vectors x, y ∈
≈
H with finite supports. A moment of reflection shows that (7.1)

holds for any x ∈ D(
L
α) and y ∈ D(

R
α) provided the intersection supp x ∩ supp y is

finite.

Let

x = χ

(
|γ1 ⊗ γ−1

2 | = qm

ε1 ⊗ ε2 = s

)
(εm1 x1 ⊗ x2)⊗ x3, (7.2) npx

y = y1 ⊗ χ
(
|γ2 ⊗ γ−1

3 | = qm
′

ε2 ⊗ ε3 = s′

)
(εm

′

2 y2 ⊗ y3), (7.3) npy

where x1 ∈ H1, x2 ∈ H2, x3 ∈ H3(|γ3| = qn), y1 ∈ H1(|γ1| = qn
′
), y2 ∈ H2, y3 ∈ H3,

n,m, n′,m′ ∈ Z and s, s′ = ±1. One can easily verify that the intersection of the
supports of x and y is empty if n′ −m 6= m′ + n. If n′ −m = m′ + n then any point
λ ∈ supp x∩supp y is of the form λ =

(
±qn′ ,±qm′+n,±qn

)
. In any case the intersection

is finite. According to Statement 2 of Theorem 1.4, operator
L
αmin has a core consisting

of linear combinations of vectors of the form (7.2) and vectors with finite supports.

Similarly operator
R
αmin has a core consisting of linear combinations of vectors of the

form (7.3) and vectors with finite supports. Therefore (7.1) holds for any x ∈ D(
L
αmin)

and y ∈ D(
R
αmin). It shows that

L
αmin⊂

R
αmax,

R
αmin⊂

L
αmax .

(7.4) porownanie

Appendices
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A Unbounded operators
A1

mnozenieProposition A.1 Let T be a closed operator acting on H and w be a bounded operator
such that inf Sp (w∗w) > 0. Then operators wT , T ∗w∗ are closed, densely defined and
(wT )∗ = T ∗w∗. Operators wT and T have the same cores. If D′ is a core for (wT )∗,
then w∗D′ is a core for T ∗.

Proof: Let c be the strictly positive number such that c2 = inf Sp (w∗w). Then
‖w‖ ‖x‖ ≥ ‖wx‖ ≥ c‖x‖ for any x ∈ H. Therefore for any xn ∈ H (n = 1, 2, . . .), the
convergence of (xn)n∈N is equivalent to the convergence of (wxn)n∈N. Using this fact
one can easily show that wT is closed and that wT and T have the same cores.

Let x ∈ D ((wT )∗). Then for any y ∈ D(T ) we have: ((wT )∗x y) = (x wTy) =
(w∗x Ty). It shows that w∗x ∈ D(T ∗) and T ∗w∗x = (wT )∗x. Therefore (wT )∗ ⊂ T ∗w∗.
Conversely if x ∈ H and w∗x ∈ D(T ∗), then for any y ∈ D(T ) we have: (x wTy) =
(w∗x Ty) = (T ∗w∗x y). It shows that x ∈ D((wT )∗) and (wT )∗x = T ∗w∗x. Therefore
T ∗w∗ ⊂ (wT )∗ and T ∗w∗ = (wT )∗. In particular T ∗w∗ is densely defined and closed.

Let D′ be a core for (wT )∗ = T ∗w∗. Strict positivity of w∗w implies that w∗ is
surjective. Therefore w∗D′ is dense in H. Clearly w∗D′ ⊂ D(T ∗). Let T+ be the
restriction of T ∗ to w∗D′. Then T+ ⊂ T ∗ and T ⊂ (T+)∗.

Let x ∈ D((T+)∗). Then for any y ∈ D′ we have: (w(T+)∗x y) = ((T+)∗x w∗y) =
(x T+w∗y) = (x T ∗w∗y) = (x (wT )∗y). Remembering that D′ be a core for (wT )∗ we
conclude that x ∈ D(wT ) = D(T ). Therefore D((T+)∗) ⊂ D(T ) and (T+)∗ = T . We
showed that T+ and T ∗ have the same adjoint. Therefore the closure of T+ coincides
with T ∗. It means that w∗D′ is a core for T ∗.

Q.E.D.

WO2

Proposition A.2 Let T1, T2 be a closed operators acting on a Hilbert space H and D0

be a dense subset of H such that D0 ⊂ D(Ti) (i = 1, 2) and

T1x = T2x (A.1) sumaa

for any x ∈ D0. Assume that D(T ∗1 ) ∩D(T ∗2 ) is dense in H. Then (A.1) holds for any
x ∈ D(T1) ∩D(T2).

Proof: Let y ∈ D(T ∗1 ) ∩D(T ∗2 ). Then for any x ∈ D0 we have:

(T ∗1 y x) = (y T1x) = (y T2x) = (T ∗2 y x) .

Remembering that D0 is dense in H we see that T ∗1 y = T ∗2 y.

Now, let x ∈ D(T1) ∩D(T2). Then for any y ∈ D(T ∗1 ) ∩D(T ∗2 ) we have:

(y T1x) = (T ∗1 y x) = (T ∗2 y x) = (y T2x)

and (A.1) follows.
Q.E.D.
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