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ABSTRACT. We develop a general framework to deal with the unitary representations of quantum
groups using the language of C*-algebras. Using this framework, we prove that the duality holds
in a general context. This extends the framework of the duality theorem using the language of
von Neumann algebras previously developed by Masuda and Nakagami.

0. INTRODUCTION

When we look at quantum groups, we still have the shortage of examples which are studied
in detail from all points of view. This applies mostly to noncompact groups. As long as we
deal with the examples of the quantum groups of the compact type, the existence of the Haar
measure, the (relative) invariance of the Haar measure with respect to the scaling automorphism
group etc. are all clear even from a very general point of view. Due to the Peter-Weyl theorem
for quantum groups of classical type, we can characterize the object by making use of the set of all
matrix elements W = {w;;},; of all possible finite dimensional (unitary) representations without
using functional analysis.  However, even in the compact case, the C*-algebraic framework is
essential to guarantee the existence of the Haar measure, from which almost all the theory of
representations has been developed [33].

However, once we become interested in quantum groups of non-compact type, we are faced
for instance with a serious necessity for the convergence of the infinite sums of matrix elements
of infinite dimensional unitary representations. Furthermore, the Haar measures correspond to
unbounded linear functionals and the elements which generate the coordinate ring of the quantum
group are unbounded linear operators, which cause analytical difficulties. Therefore we are obliged
to work with some appropriate notions and the basic tools of functional analysis, in particular the
language of operator algebras. Despite these difficulties, there are some quite explicitly studied
quantum groups like quantum Lorentz groups, E,(2), quantum ‘az + b’ group, quantum ‘ax + b’
group, gﬁq(l,l) etc. of non-compact type [22], [38], [32], [36], [37], [11], [10] with infinite di-
mensional irreducible unitary representations. Furthermore we are still discovering new explicitly
computable quantum groups of non-compact type. All of them should be investigated from the
point of view of algebra, analysis and geometry.

Now, the history of the operator algebraic study of the classical locally compact groups (with
the duality theorem) goes back to Stinespring who transferred the regular representation to what
we nowadays call the multiplicative unitary operator for the purpose of generalizing the Tannaka-
Krein’s duality to unimodular locally compact groups. Then it was Kac and Takesaki who inde-
pendently used this unitary operator to extend the duality theorem for the category which is much
wider than that of locally compact groups. Immediately after that, it was Tatsuuma who recog-
nized the importance of this unitary operator and named it the "Kac-Takesaki operator”. After
that, Enock-Schwartz and Kac-Vainermann completed the theory of generalized locally compact
groups, which they called “Kac algebras” and introduced the “fundamental unitary” playing the
role of Kac-Takesaki operator. The details concerning the Kac algebras including the history of
the development of the subject (before the appearance of quantum groups) can be found in their
book [7]. It is also remarked that in the development of those theoretical frameworks to deal with
the general theory of locally compact groups including the duality theorem, all the achievements
were made on the basis of von Neumann algebras by the heavy use of the Tomita-Takesaki theory.
The only approach based on the language of C*-algebras was proposed by Vallin [26], in which the
theory was not developed in full generality due to the lack of the reasonable integration theory
for C*-algebras. It is also emphasized that the condition which we now call the strong (right)
invariance had been used from the early stage for the development of the subject.

In the middle eighties, after the famous discoveries of Leningrad school, Drinfeld and Jimbo
introduced quantum groups as deformations of enveloping algebras of semisimple Lie algebras. At
1
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the beginning these objects were of purely algebraic nature. In particular only finite-dimensional
representations and no *-involutions were considered.

A little later the third author introduced a noncommutative analogue of the algebras of func-
tions on compact groups. Then the x-involution was an essential part of the considered structure.
It allowed to distinguish compact and noncompact quantum groups and to consider unitary rep-
resentations of quantum groups. For noncompact groups unitary representations can be infinite
dimensional which requires the use of analytical methods. One of the aims of this publication is
to draw attention to the importance of the functional analytical methods from this point of view.

It was the paper of Baaj and Skandalis [1] who first gave a reasonable framework to deal with
such problems on the basis of the multiplicative unitary operator. Their approach avoided the
discussion of Haar measures while the duality and the fact that the dual of the dual is isomorphic
to the original object were a trivial consequence of the definitions. Their theory in large part
worked with C*-algebras.

In [19], the first and the second authors gave an alternative formulation of the theory including
the discussion of the Haar measures with the duality being a deep theorem. That paper was based
on the straightforward use of the Tomita-Takesaki theory to deal with the Haar measure following
the above mentioned theory of Kac algebras. We were obliged to sacrifice the topological nature of
the underlying quantum groups which we believe to be important nowadays. This is why we need
a reasonable framework to deal with the quantum groups as a generalization of locally compact
groups. For this purpose, the right choice of the language and the axioms are important.

While the present version of the paper was being developed, Kustermans and Vaes [15] found
an alternative approach to the theory of locally compact groups starting with a different set of
axioms. Their very elegant approach was based on the assumption of existence of left and right
Haar weights. It is very interesting that their theory anticipated non-non-trivial behavior of Haar
weights with respect to the scaling group. It was a great achievement at that time in all known
examples of quantum groups the Haar weight was invariant under scaling automorphism, One
should point out that our theory and that of Kustermans and Vaes starting with a different set of
axioms describe the same objects.

Here we would like to list a number of requirements that any good axiomatization of the theory
of locally compact quantum groups should satisfy. In our opinion the quantum theory should be
developed in the way parallel to the classical one. In particular this rule determines the choice
of basic concepts. Classically the groups are locally compact spaces endowed with a group rule.
By the famous Gelfand-Naimark theorem locally compact spaces are in one to one correspondence
with commutative C*-algebras (unital if the considered spaces are compact). Following the general
philosophy, passage to quantum spaces consists in using noncommutative algebras. Consequently
the underlying spaces of quantum groups should be described by noncommutative (in general)
C*-algebras. The use of von Neumann algebras seems not to be appropriate. They correspond (in
commutative case) to measure spaces. Of course, one is able to develop the theory of groups with
underlying spaces being measure spaces, but this theory is less natural and more complicated than
the theory of locally compact groups.

The next reason why one should work with the language of C*-algebras is the more natural
description of homomorphisms of (quantum) groups. Assume that we have a locally compact
subgroup H (of lower dimension) of a locally compact group G. Within the C*-algebra language,
the inclusion H C G is described by the restriction map Co(G) 3 a — alg € Chounded (H), which is
a morphism (in the sense of [31]; cf. Definition A.4) from Cy(G) into Co(H). In the von Neumann
algebra setting the corresponding restriction map L™ (G) — L°°(H) does not make sense.

Now we pass to the second ingredient of the concept of a group which is the binary operation
called the group rule. Let G be a group. Classically the group rule is a continuous mapping
from G x G onto GG. Passing to the quantum theory we replace Cartesian product of spaces by
tensor product of algebras (alternative choice would be the free product of algebras but then all
the classical groups would be lost). Let a be a C*-norm on the algebraic tensor product A ®ag B
of C*-algebras A and B. By definition, tensor product A ®, B is defined as the completion of
A ®a1g B with respect to the norm a.

Let A be a C*-algebra related to a quantum group. The correspondence between spaces and
algebras is a contravariant functor. It changes the direction of morphisms. Therefore the group
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rule corresponds to a morphism § from A into A ®, A. This is the so called comultiplication (we
use small letter d, because the symbol A is reserved to denote the modular operator in Tomita-
Takesaki theory). In this context one has to pay some attention to the notion of morphism of
C*-algebras. The usual *x-algebra homomorphisms are not appropriate to use in the context of
quantum spaces. They correspond (in the commutative case) to the proper continuous mappings
of underlying locally compact spaces. On the other hand the group rule is not a proper mapping
from G x G into G if G is not compact. Therefore one has to modify the notion of morphism
creating a new category of C*-algebras. Restricted to commutative algebras the category should
be (anti)-equivalent (via Gelfand Naimark theorem) to the category of locally compact spaces and
(all) continuous mappings. Such a category of C*-algebras was proposed in [29] (see also [26], [30],
[31]). For reader’s convenience we recalled the definition of morphisms of C*-algebras in Appendix
A (Definition A.4).

In general we have more than one C*-norm on A ®,; A. Among them there is the minimal
one that corresponds to the spatial tensor product of C*-algebras denoted simply by A ® A. Due
to the minimality, for any C*-norm a we have canonical epimorphism ¥, : A ®, A — A ® A.
Replacing § by ¥,od we obtain a morphism from A into A ® A. Therefore the choice of spatial
tensor product as the operation corresponding to the Cartesian product of spaces produces the
theory with larger (than with other choices) class of examples. It is also worth mentioning that in
most known examples the algebra A is nuclear and all tensor products A ®, A coincide.

Summing up: The basic concepts of the theory of locally compact quantum groups should be a
C*-algebra (say A) together with a morphism ¢ € Mor(A, A ® A). In the last expression '®’ and
‘Mor’ denote the spatial tensor product of C*-algebras and the set of morphisms in the sense of
Definition A.4.

If A is commutative then by Gelfand Naimark theory A = C,(G), where G is a locally compact
topological space and §(a)(g,¢g’) = a(gg’), where

(0.1) GxG>(9,9)—9g9 €G
is a continuous mapping.

Now we shall discuss the most desired system of axioms. Quantum groups with commutative
A should coincide with the usual groups. In this case our axioms should reduce to the axioms or
simple theorems of the theory of locally compact topological groups. This requirement is satisfied
by axioms of the coassociativity of J, the properness and the cancellation law (see Definitions
1.2 and 1.3 in the next section). The coassociativity clearly corresponds to the associativity of
the group rule (0.1): (g192)g3 = g1(g293) for any g1, 2,935 € G. The properness means that the
mappings G X G 3 (9,9') — (9,99') € G x G and G x G > (g,¢') — (99',¢") € G X G are proper
ie: (g,99") and (g¢’,¢’) tend to infinity when (g,¢’) tends to infinity. The cancellation property
states that for any g, g1, 92 € G we have:

(991 = 992) = (g1 = g2),
(919 = 929) = (g1 = g2)-

A good candidate for an axiom is the statement of Theorem 5.16. Combined with the properness
and cancellation law it reduces (for commutative A) to the postulate saying that the relations
g = hh' and h = g¢’ define a homeomorphism

GxG>(g9,d)— (h,h)eGxG

acting on G x G. Unfortunately at present we are not able to base our theory on axioms of the
form similar to the statement mentioned above.

By simple theorems of the theory of locally compact topological groups (the phrase used in
the previous paragraph) we mean statements that may be derived from axioms by short and easy
reasoning. In principle they should be found (explicitly or implicitly) on first pages of handbooks
devoted to the subject. The Haar theorem stating the existence of the right (or left) invariant
measure does not belong to the category of simple theorems. In a good theory of locally compact
quantum groups, the existence of the Haar weight should be one of advanced theorems.

This is why the existing axiomatizations of the theory of locally compact groups are not sa-
tisfactory. In all the approaches (including that of Kustermans and Vaes [15] and the one used
in the present paper) the existence of the Haar measure is included as one of the axiom of the
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theory. We strongly believe that this is a temporary situation and that in the future we shall have
a theory that will satisfy the requirements listed above. To find a satisfactory axiomatization it is
important to understand well the logical relations between the basic concepts and statements of
the theory. This is the main purpose of the present paper.

Taking the above discussions into account, we aim to present a reasonable framework, as general
as possible, to formulate (within the formalism of C*-algebras) the objects which we recognize as
locally compact quantum groups. We are going to improve our previous approach [19] based on
the language of von Neumann algebras. Our first results were announced by the third author
at Fields Institute and by the first author at Banach Center in 1995. Then the first author also
announced our preliminary results in an expository article [17]. On the way, the third author
modified the theory of multiplicative unitaries [34] replacing the (semi)-regularity condition of
Baaj and Skandalis by a new one better suited to our aims. Next, Kustermans and Vaes [15]
presented their approach to the theory of locally compact quantum groups. However, in both
cases, the existence of the Haar measure(s) is an inevitable assumption. This means that the both
are still on the way to be completed. The existence of the Haar measure should be derived from a
more primitive set of axioms.

Now we have a final comment on the strong right invariance which is one of our axioms. It is the
only axiom that relates the antipode with remaining structure (comultiplication, Haar measure).
On the other hand, Kustermans and Vaes [15] proposed to assume the existence of both the right
and the left Haar measures. Then the existence of the antipode is a sophisticated theorem. It
seems that, in both cases, those conditions are essentially related to the manageability which plays
an important role in both approaches.

In [19] we discussed the properties of the special one parameter automorphism groups which
we now call the scaling groups. This is the symmetry first recognized in [18] which describes an
obstruction of our object to being a locally compact group or a Kac algebra. We also remark that
there are many improvements of the proofs as well as the basic axioms comparing with what is
given in [19]:

(1) The main definition 1.5 is simplified: the commutativity of the coproduct with the unitary
antipode as well as with the scaling group; and the commutativity of the left and the right
Haar weights; are not assumed.

(2) In case of weights (contrary to the states) the commutativity of the two weights ¢ and ¢
does not imply that the Connes’ Radon-Nikodym cocycle (D1 : Dyp); is invariant under
the group of modular automorphism {o{}, .

(3) There is a gap in the proof of Lemma 2.14 in [19]. The assertion is true by Theorem 6.10
of the present paper.

(4) The invariance of the Haar weight with respect to the scaling automorphisms is replaced
by relative invariance.

The relative invariance (instead of the invariance) of the Haar weight under the scaling group
appeared first in the paper of Kustermans and Vaes [15] as a result of their axioms. Recently, Van
Daele [27] found that the quantum groups ‘ax + b’ and ‘az + b’ introduced in [36, 37] have Haar
measures which are relatively invariant but not invariant with respect to the scaling automorphisms.
To include such examples in our framework we assume the relative invariance of the Haar weight.
This modification was very easy, it resulted in a number of minor changes.

Now we summarize the organization of this paper. In Section 1, we give our basic definitions
and the axioms of weighted Hopf C*-algebra which we discuss throughout this paper. Then using
the GNS construction we introduce the Hilbert space and reveal the content of the strong right
invariance. Section 2 is devoted to an investigation of matrix elements of the Kac-Takesaki operator.
We prove the theorems describing the coalgebraic properties of scaling group and unitary antipode.
In Section 3 we show that the Kac-Takesaki operator is a multiplicative unitary and that it is
manageable in the sense of [34]. Then the general theory of multiplicative unitaries enable us
to introduce the basic objects related to the dual weighted Hopf C*-algebra. In Section 4, we
discuss the Radon-Nikodym derivative of the left Haar weight with respect to the right one. This
derivative is determined by two operators p and 7. Later in Section 6 we show that p is affiliated
with the considered C*-algebra and -y is a multiple of unity related to the constant describing the
relative invariance of the Haar weight. In the last part of Section 4 we prove the uniqueness of the
antipode and the Haar weight. Section 5 is devoted to the properties of an operator A which plays
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an important role in our analysis. In Section 6 we introduce the dual GNS-mapping 77. Operator
A introduced in the previous section turns out to be the modular operator related to 7. At the end
of this section we discuss the behaviour of the (right invariant) Haar weight with respect to left
shifts. In Section 7, we introduce the dual Haar weight. This way the construction of dual weighted
Hopf C*-algebra is achieved and the duality is shown. In our work, we deal all the time with the
“regular” representations and the “regular” dual in order to have faithful dual Haar weight. This
means that our multiplicative unitary operator is the “regular” bicharacter. However, we are also
able to discuss the universal dual with the universal bicharacter. This topic will be discussed in a
separate publication. Section 8 is devoted to the quantum codouble construction which is a dual
version to the Drinfeld’s quantum double. It helps to deal with examples like quantum Lorentz
groups.

Then we have six Appendices ranging from A to F. This is where we collect the technicalities
used in our paper. A few fundamental facts on the multiplier algebra and the definition of the
set Mor(A, B) of morphisms are given in Appendix A. Appendix B contains the concepts of
GNS mapping, its commutant (and the corresponding bicommutant theorem) and (exact) vector
presentation of a GNS mapping. These concepts provide a convenient language for the Tomita-
Takeski theory outlined in Appendix D. Appendix C is devoted to weights and their properties
(such as strict faithfulness) on a separable C*-algebras. Tensor products of the GNS-mappings
are discussed in Appendix E. In the last Appendix F we present the basic properties of analytic
generators of one parameter groups acting on Banach spaces.

Some remarks on the terminology used in this paper: First of all, we decided to use the name
“weighted Hopf C*-algebra” for the basic object of this paper. We have to acknowledge that the
terminology “Hopf C*-algebra” is already used in the paper of Vallin [26] and also in the paper of
Baaj and Skandalis [1] in a different context. The word “weighted” means that we deal with the
object with a Haar weight. Then, the one parameter family of automorphism which comes from
the “radial part” of the antipode is called the scaling group. (In [19], we called it the deformation
automorphism group.) We hope that our choice of the terminology will not cause any confusion
to the readers.

Another change which we have to acknowledge is the choice of the particular form of Kac-
Takesaki operator W. In general, the Kac-Takesaki operator is introduced by choosing a certain
linear mapping acting on the tensor product of the function algebra by itself and pushing it down
to the Hilbert space level. There are several possibilities. In [19] we used the mapping

(0.2) a®br— 4(b)(a®1).

This choice forced us to work with the left invariant Haar weight and with the strong left invariance
axiom. In the present paper, we replace (0.2) by the mapping

a®br— d(a)(1®D).

Consequently we work with the right invariant Haar weight and the strong right invariance. This
choice is consistent with the notational convention of Baaj and Skandalis [1] and the framework
developed in [34].

1. BASIC DEFINITIONS AND AXIOMS
The main aim of this section is to introduce the notion of a weighted Hopf C*-algebra.

Some remarks on used notation. The unit 1 = 14 of a C*-algebra A always means the unit ele-
ment of the multiplier algebra M (A). Then id denotes the identity mapping. For the inner product
the physicist convention is used, i.e. (y|z) is linear in = and conjugate linear in y. Throughout
this paper, all C*-algebras and all Hilbert spaces are assumed to be separable. Moreover all tensor
products of C*-algebras are minimal tensor products unless specially mentioned. We shall use
compositions of the form ¢eok, where ¢ € A* and k is a closed operator acting on A. We write
ok € A* if there exists a ¢ € A* such that ¢(a) = ¢(k(a)) for all @ € D(k). Clearly ¢ is unique
and is denoted by (ox.

To understand well the forthcoming definitions and results the reader is advised to look at
Appendices A and C, where the basic notions such as multipliers, morphisms and weights are
explained.

Now, we are ready to give our basic definition of the weighted Hopf C*-algebra.
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Definition 1.1. A pair (A,d) where A is a C*-algebra and § € Mor(A, A ® A) satisfying the
coassociativity condition (§ @ idg)ed = (ida ® §)0 is called a C*-bialgebra.

The mapping § will be called a comultiplication or a coproduct. In what follows we denote by
1 =14 the unit of the multiplier algebra M(A). The relation § € Mor(A, A ® A) does not mean
that §(a) € A®A for a € A. We know only that §(a) € M(A®A). It means that d(a)(b®c) € AQA
and (b® c)d(a) € A® A for any a,b,c € A. Therefore the following definitions are relevant:

Definition 1.2. A C*-bialgebra (A, ) is said to be proper if §(a)(1®b) and (b® 1)§(a) belong to
A® A for any a,b,c € A.

Definition 1.3. Let (A,0) be a proper C*-bialgebra. We say that (A,0) has the cancellation pro-
perty if the linear spans of the sets {0(a)(1®b):a,b e A} and {(b®1)d(a) : a,b € A} are dense
in A® A.

Let (A4, 9) be a proper C*-bialgebra. Then for any continuous linear functionals ¢, ¥ € A* and
any a € A, the convolution products

o a = (id @ )(a),
ax = (Y ®id)d(a).

belong to A. Indeed, by Proposition A.2, we may assume that ¢ = by’ and ¥ = ¢’c, where
@', € A* and b,c € A. Then

p*ra=(ld® ") {(5(a)(1 ®b)},
axp= (¥ ®id) {(c®1)é(a)}

and our statement follows immediately from the properness of the considered bialgebra. We shall
also use the convolution product of functionals:

px1h = (pR)d € A",

(1.1)

One can easily verify that

(p*¥)(a) = p(vh*a) =P(ax ).
Due to the coassociativity of the comultiplication, the convolution product obey the following
associativity laws:

(bxp)xa=vx(p*a),
(ax ) *p=ax(y*p),
(p*a)xy = p*(axp),

(pxx) x ¥ = x (x* V).
In these formulae a € A and ¢, x, ¥ € A*.

Throughout the paper, the concept of a right invariant weight on a C*-bialgebra plays an
essential role. In brief, & is right invariant if (h ® id)d(a) = h(a) 1.

Definition 1.4. Let (A,0) be a C*-bialgebra and h be a locally finite, lower semicontinuous weight
on A. We say that h is right invariant if for any a € Ay such that h(a) < oo and any ¢ € A% we
have

h(p * a) = o(1)h(a).
We shall use standard notation: For any weight h we set:
Ny, ={a € A:h(a*a) < 0},
My, = {a € Ay : h(a) < oo}/mear span
— {a*b:abe mh}linear span
It is known that i extends uniquely to a linear functional on 9.

Assume that h is right invariant. For any ¢ € A% the mapping a — ¢ * a = (ida ® )(d(a)) is
completely positive. Hence, by the Kadison inequality

{oxa}{pxa} <p(){p*(a"a)}.
Now, using the right invariance we see that

(1.2) h((p * a)* (¢ % @) < @(1)*h(a"a) < oo .
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for any a € ;. Remembering that any ¢ € A* can be written by a linear combination of four
positive functionals we conclude that ¢ x a € My, for any a € My, and ¢ € A*. Therefore for any
a,b € Ny, and any ¢, € A* the products (¢* *x a)*b = (¢ * a*)b and a*(¢) * b) belong to M), and
expressions h(( x a*)b) and h(a*(¢) x b)) make sense. We shall use them in our main definition.

The object which we study in this paper is defined as follows.

Definition 1.5. Let (A, §) with A separable be a proper C*-bialgebra with the cancellation property.
We say that (A, 0) is a weighted Hopf C*-algebra if there exist a closed densely defined linear map
k acting on A (called antipode) and a locally finite strictly faithful lower semicontinuous right
invariant weight h on A (called Haar weight) such that

(1) The operator k admits the following polar decomposition:
(13) R = ROTi/Q

where T; /5 15 the analytic generator of a one parameter group T = {Tt}tGR of automorphisms
of the C*-algebra A (called scaling group) and R is an involutive antiautomorphism of A
(called unitary antipode) commuting with automorphisms 7 for all t € R.

(2) The weight h is relatively invariant under {1}, p : there exists a positive scalar X such
that hory = X'h for all t € R.

(3) (Strong right invariance) For any ¢ € A* with pox € A* we have

h((¢ * a*)b) = h(a* ((per) * b))
for all a, b €My,

It should be noted that the scaling constant A is 1 for the most examples of quantum groups
constructed so far. The first examples with A # 1 appeared in [36, 37] (cf. [27]). This possibility
was foreseen for the first time in [15].

It is understood that the group 7 is pointwise norm continuous: for any a € A, ||7(a) —a|| — 0
when ¢t — 0. We refer to Appendix F for the definition of the analytic generator. Clearly, x? = 7.
Performing the holomorphic continuation in the formula 7;(ab) = 7;(a)7¢(b) we see that D(7;/2)
is a subalgebra in A and 7;/5(ab) = 7;/2(a)7;/2(b) for any a,b € D(7;/2). Similarly performing
the holomorphic continuation in the formula 7;(a*) = 7;(a)* we see that D(7;/2)* = D(7_;/2) and
T_ij2(a*) = 7;2(a)* for all a € D(7;/2). Therefore (7;/2D(7;/2))* = D(7;/2) and 7;/5(7;/2(a)*)* = a
for any a € D(7;/). Remembering that R is an involutive antiautomorphism of A commuting with

7+ we conclude that
r(ab) = k(b)r(a),

k(k(a)*)* =a
for any a,b € D(k). In other words the mapping a — «(a)
involution acting on D(k).

*

is a conjugate linear multiplicative

Remark 1.6. The polar decomposition (1.3) is unique. The scaling group and the unitary antipode
are determined by x. Indeed 7; = k? and using Corollary F.4 we obtain the uniqueness of 7. In
particular 7;/5 is unique and the uniqueness of R follows immediately from (1.3).

Remark 1.7. We have to point out that the automorphism 7; was denoted in [19] by 7,/ and
called the deformation automorphism. However, in this paper, we call it the scaling automorphism
following the terminology of [34].

Remark 1.8. The strong right invariance is a condition which establishes the connection between
comultiplication and antipode: it replaces the well known formula

(1.4) m(id ® k)d(a) = m(k ®id)d(a) = e(a)l
of the usual theory of Hopf algebras. This means the following. If A is a Hopf algebra, then
the linear mapping W : A® A - A® A defined by a ® ¢ — §(a)(1 ® ¢) (where a, ¢ € A) is
bijective due to the existence of the explicit inverse V : b®@ d — (ida ® k)(4(b))(1 ® d). The proof
that V = W~ uses (1.4). On the Hilbert space level W should unitary. Therefore we require the
equality W* =V, i.e.

(hah)(1ec)ie)(bad)=((hah)((a" ®c)(id®k)(0(b)(1®d)).
This is the strong right invariance with ¢(z) = h(c*zd).

Some of our main assertions in this paper are summarized as follows:



8 T. MASUDA, Y. NAKAGAMI, AND S. L. WORONOWICZ

Theorem 1.9. Let (A,6) be a weighted Hopf C*-algebra. Then
(1) The unitary antipode R, the scaling group {7i},cp and the Haar weight h are uniquely
determined.
(2) The coproduct § commute with the unitary antipode and the scaling group :

doR = O'O(R ® R)O(S, dory = (Tt ® Tt)(’(s, t € R,

where o is the flip automorphism on A® A.
(3) There exists a pointwise norm continuous one parameter x-automorphism group {Ut}tGR
of A such that
h(cis2(a)oisa(a)’) = h(a*a)
for any a € D(0;/3). The group {oi},cp is the modular automorphism related to the Haar
weight h. Clearly, the above formula is the KMS-condition for h.
(4) For any t € R we have
(500'75 = (O’t X Tt)O(S.
(5) There exists a strictly positive element p affiliated with the C*-algebra A such that for any
a € Ay with h(a) < oo and any ¢ € A% we have

h(a @) = p(p)h(a),

np
nl+p

where by definition p(p) = lim ¢( ). Moreover we have : §(p) = p® p, 7e(p) = p and

R(p)=p~ "
(6) The composition h* = hoR is the left Haar weight on A. The Connes’ Radon-Nikodym
cocycle is of the form
(DR : Dh), = A7/2 i,
where X is the constant appearing in Definition 1.5. Moreover o(p) = A" 'p.

The strong right invariance plays an essential role in our theory. We end this Section with a
number of equivalent formulations of this condition. By the way we introduce Hilbert space objects
that will be used throughout of the paper. The most important one is the Kac-Takesaki operator
W (in other words the right regular representation of the considered quantum group). In this (and
the next) section the matrix elements of W are defined and their properties are investigated. The
operator itself will be introduced in Section 3.

Till the end of this section we shall deal with a proper C*-bialgebra (A, §) with the cancellation
property equipped with a faithful locally finite, lower semicontinuous right-invariant weight h and
with a closed densely defined linear map « satisfying the first two conditions of Definition 1.5.
Therefore our results will be independent of the strong right invariance condition and the strict
faithfulness of the weight h.

Using the GNS construction we obtain a Hilbert space H and a representation m of A acting
on H. Since h is faithful, so is 7 and we shall identify A with its m-image: A C L(H). The
corresponding GNS map will be denoted by 7. It is a densely defined closed linear mapping from
A into H with the domain D(n) = Ny, = {a € A : h(a*a) < oo} such that

(n(c)lan(b)) = h(c*ab), a € A, b,ceD(n),

The GNS mapping 7 plays a crucial role in the entire paper. It is closed with respect to the strong
topology on A and the norm topology in H. The separability of A implies that of the Hilbert space
‘H. See Appendices B and C for the details.

We start with some technicalities which we use throughout this paper. For any =,y € 'H, wzy
will denote the functional on £(H) such that

way(a) = (z]ay)
for a € L(H). It is clear that the set of all such functionals is linearly dense in the predual £(H).
of L(H). In general, if A is a C*-algebra acting on H then A is endow with the o-weak topology

coming from £(H). In what follows A, will denote the set of all o-weakly continuous functionals
on A. It is known that

A ={pla:pc LH).}.
Consequently we set A, = A, NA,.
We already know (see the paragraph containing formula (1.2)) that

(1.5) ¢ *xa € D(n)
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for any a € D(n) and any ¢ € A*.
Proposition 1.10. For any ¢ € A*, there exists W, € L(H) such that

(1.6) Wen(a) = nlp *a)
for any a € D(n). The mapping A* 3 ¢ — W, € L(H) is injective, linear and bounded. Moreover,
(1.7) W oWy = Wy

for all v, ¢ € A*.

Proof. Formula (1.6) defines W, on a dense linear subset of H. We have to show that W, is
bounded. If ¢ is positive then using (1.2) we get ||n(¢ * a)|| < ¢(1)|[n(a)| and [[W,| < ¢(1).
For general ¢ we have ||[W,|| < 4[¢||. This is because any continuous linear functional on A is a
linear combination of four positive functionals with norms not larger than the norm of the original
functional.

If W, =0 then ¢+ a = 0 for all a € A. Hence (id ® ¢) ((b®1)d(a)) = b(¢ * a) = 0 for all
a,b € A and using the cancellation property we get ¢ = 0. It shows that the mapping ¢ — W, is
injective.

Formula (1.7) follows immediately from the associativity of the convolution product. O

Proposition 1.11. For every x, y € H, there exists a unique element W(x,y) € A such that

(1.8) p(W(z,y)) = (x[Wey)
for any @ € A*. Furthermore, W(x,y) is sesquilinear in (z,y) and |W (z,y)| < 4|z|/|y]-

Proof. The uniqueness, the sesquilinearity and the estimate follow from the formula. It is enough
to prove the existence of operators W(x,y) for a dense set of vectors x, y. We shall use the
commutant 7" of the GNS map 7 (see Appendix B). For any a € D(n), ' € D(r) and z € H we
put :
W(d' z,n(a)) == a * Wy (ar)-

Then for any ¢ € A* we have

e(W(a""2,n(a))) = ¢(a*wsuya)) = (x| (¢ a)y'(a’))

= (zla'n(p*a)) = (a""z[Wyn(a)) ,

where the second equality due to the cyclic property of the convolution product. This proves the
assertion. 0

Proposition 1.12. The set {W(x,y) : x, y € H} is linearly dense in A.

Proof. Suppose ¢ € A* satisfies (W (z,y)) = 0 for all z, y € H. Then (z|n(pxa)) =
(x|Wen(a)) = ¢(W(x,n(a))) = 0 and ¢ xa = 0 for all a € D(n). Therefore SW, = 0 and
hence ¢ = 0. This proves the assertion. O

Theorem 1.13. Let (A,0) be a proper C*-bialgebra with the cancellation property, h be a faithful
locally finite, lower semicontinuous right invariant weight on A and k be a closed densely defined
linear map acting on A. Assume that the first two conditions of Definition 1.5 are satisfied. Then
the following statements are equivalent :

1. The strong right invariance (Condition 3 of Definition 1.5).
2. For all o € A* such that por € A* we have
(19) W‘P* == (Wg;o,g)* .

3. Formula (1.9) holds for all ¢ from a weakly* dense subset Dy of A* such that oty € Dy for
all v € Dy and t € R.

4. For any x, y € H, the element W (z,y) is in the domain of & and k(W (x,y)) = W(y,x)*.

Proof. Assume that the strong right invariance holds. Then for any ¢ € A* with wex € A* and
any a,b € D(n) we have

(Ween(a)[n(b)) = (n(e* * a)|n(b)) = h((¢ * a™)b)
= h(a*((per) + b)) = (n(a)[n((per) b)) = (n(a)|Weern(b)),
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where we used the equality p*a* = (p* xa)* for the second equality. Remembering that the range
of 1 is dense in H, we obtain relation (1.9). It shows that Statement 1 implies Statement 2.

Clearly Statement 2 implies Statement 3. Assume that Statement 3 holds. Then for any z,y € H
and any ¢ € Dy we have

(por)(W(z,y)) = (2[Weory) = (Werly)
= YWerz) = o*(W(y,z)) = o(W(y, z)").

,tz

Inserting wer; instead of ¢, multiplying the both sides by e
bering that x commutes with 7, we obtain

(gor) (R+(W(z,y)) = ¢ (R+(W(y,2)")) ,
where R is a linear operator acting on A introduced by the formula

Ro(a) = % /_ O; o

for any a € A. It is known (cf. Appendix F) that the range of R, is contained in D(7;/3) = D(k).
Therefore (¢or) (R-(W(z,y)) = ¢ (k (R+(W(z,y))). Remembering that ¢ runs over a weakly*
dense subset Dy C A* we obtain

K (Re(W(z,y))) = Re(W(y,2)").

Theorem F.7 shows now that W(z,y) € D(x) and that x(W(z,y)) = W(y,z)*. This shows that
Statement 3 implies Statement 4.

, integrating over ¢ € R and remem-

To complete the proof we have to show that Statement 4 implies the strong right invariance.
Let a,b € My, Inserting x = n(a) and y = n(b) in Statement 4, we see that W(n(a),n(db)) € D(k)
and (W (n(a),n(d))) = W(n(b),n(a))*. Therefore for any ¢ € A* with per € A* we have

(b

h((¢*a”)b) = (n(e” *a)\n( )) ‘Ww «n(a)) = ¢*(W(n(b),n(a)))
= (W ): n(a),n(b))))
= (peo )( n())) = ( \an b))

= (n(a)|n ((won)*b)) h(a*((por) * b)).

2. MATRIX ELEMENTS OF KAC-TAKESAKI OPERATOR

In this Section we derive the simplest consequences of axioms listed in Definition 1.5. Let (A, §)
be a weighted Hopf C*-algebra. We shall use the notation and results of the previous Section. In
particular all four Statements of Theorem 1.13 hold.

We assumed that the weight h satisfies the relative invariance condition: hory = Ath for ¢ € R.
Therefore D(n) is {74}, invariant and there exists a positive self-adjoint operator  on H with
ker(Q) = {0} such that

(2.1) Q**n(a) := A""*n(r(a)), a€D(n).
In [19] the operator @ was denoted by H. For any a € A and b € D(n) we have
Q* an(b) = Q**n(ab) = X\~"*n(ry(ab)) = A="*r(a)n(7e(b)) = :(a)Q*" (D).
Therefore
(22) i(a) = Q*aQ "
for all t € R and a € A.

By Lemma C.5, the strict faithfulness of h implies that the mapping n(a) — n(a*) (where a
runs over D(n) ND(n)*) is a closable conjugate linear involution. We denote by S its closure. Let

F := S5*. Then there exist an involutive antiunitary J and a strictly positive self-adjoint operator
A such that S = JAY? and F = JA~'/2 by the fact that S? = 1 on D(AY/?).

Taking into account (2.1) we see that the set {n(a): a € D(n) N D(n)*} is a {Q”}teR - invariant
core of S. Moreover for any x = n(a) in this set we have

Q2itSl, Q22t ( ) A~ t/2 (t(a*)),
SQ*¥x = A"2Sn(mi(a)) = A" Pn(ri(a)”)



A C*-ALGEBRAIC FRAMEWORK FOR QUANTUM GROUPS 11

and the right hand sides of the above equalities coincide. Therefore Q?*SQ~%" = S for any t € R.
By the uniqueness of the polar decomposition, we have

(23) QQitAQ—Qit _ A7
QQitJQ—Q'L't =]

The first equation means that A strongly commutes with (). The second one is equivalent to the
formula

(2.4) JQJ =Q 1.
The operators @ and A play an essential role in all our considerations.
Lemma 2.1. Let x € D(AY?) and y € D(A™Y2). Then W(JAY 2y, JAY2z) = W (y,z)*.
Proof. Since 7(D(n) N'D(n)*) is a core for A2, it is sufficient to prove the statement for = = 7(a)
where a € D(n) N D(n)*. For any ¢ € A*, we have
(W (JAT 2y, JAV2z)) = (JATV 2y Wen(a™))
= (JAT2yln(p x a*)) = (JATV2Y|JAY 2n(p” + a))
= (n(¢" * a)ly) = (yW,-n(a)
= ¢*(W(y,n(a))) = o(W (y,n(a))*).

Combining Statement 4 of Theorem 1.13 with Lemma 2.1, we get
(2.5) k(W (2,y)) = W(JA™2y, JAY ?x)
for all 2 € D(AY?) and y € D(A~1/2).

Proposition 2.2. For any x, y € H, we have

(1) 7(W(z,y)) = W(A%z, Atty) fort € R.
(2) R(W(z,y)) = W(Jy, Jx).

Remark 2.3. This proposition shows that the unitary antipode and the scaling group are uniquely
determined by the Haar weight. So is x. Unfortunately the proof of the uniqueness of the Haar
weight requires the prior knowledge of the uniqueness of k. See the proof of Theorem 4.10.
Proof. Let € D(A) and y € D(A~1). Then using twice (2.5), we get
W(Az, A= y) = W(JA-Y2JAY 22 JAY2 JA=1/2y)

= k(W (JAY 2y, JAY21))

— (W (2,y)) = 1(W(2,))
It shows that W(z,y) € D(r;) and

(W (z,y)) = W(Az,A™y).
Using now Theorem F.3, we obtain the first statement. Moreover, for any = € D(A'/2) and
y € D(A~1/2), the element W (z,y) € D(7;/2) and
Tip2(W (2, y)) = W(AY 2z, A12).

Combining this with (2.5), we see that R(W(AY2x, A=12y)) = W(JA~/2y, JAY?z) for = €
D(AY?) and y € D(A~'/?). Now the continuity of W shows that the second statement holds in
full generality. U

By the above proposition the set {W(x,y) : x,y € H}is R and {7;},. invariant. By Proposition
1.12 this set is linearly dense in A. Using Theorem F.5 we obtain

Corollary 2.4. The linear span of the set {W(a:,y) tx,y € H} is a core for K.

Proposition 2.5. For any ¢ € A*, we have
(1) Wyor = J(ng)*J, _
(2) Wepor, = AW, A™.
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Proof. Ad 1. For z, y € H and ¢ € A*, we have
(@[Weory) = o R(W(z,y)) = (W (Jy, Jz))
= (JyWyJz) = (JW,Jzly)

where we used Proposition 2.2 for the second equality. This proves the equality J(W,)*J = Wor.
Ad 2. Similarly, we have

(@|Wegor,y) = or(W(z, y))
= p(W(A"z, A'y)) = (A"z|W,A"y).
This proves the equality A" W,A® = Wor,. O

Proposition 2.6.
(1) §oR = 0o(R ® R)°d, where o is the flip automorphism on A® A.

(2) 507'1; = (Tt ®’Tt)0($.
Proof. Ad 1. By Proposition 2.5, for any ¢, ¥ € A* we have
Wipspyor = J (Wewy)*J = J(W, Wy )*J
= J(Wy)*JI(Wy)*J = WyorWeor.

By Proposition 1.10 , W, = 0 implies ¢ = 0. Therefore (¢ * ¥)oR = (¢oR) * (poR) and hence we
obtain (¢ ® ¥)edoR = (¢ ® 9)ece(R ® R)od for ¢, 1) € A*. This proves Assertion 1.
Ad 2. By Proposition 2.5, we have

W(LPDTt)*(ont) = tho-,-thoTt = (A_itWy,Ait)(A_itVV;pA”)
= A_itWLprAit = A_itWWMpAit = W(tﬁ*w)oﬂ'
We then have (o) * (1hory) = (¢ * 1)y and hence we obtain
(e @) (1 @ 7¢)00) ((pore) @ (¢pory))od
= (pomt) x (Yo1i) = (@ x Pp)or = (p @ p)obory
for all ¢, 1 € A*. This proves Assertion 2. O

Corollary 2.7. 0ok = 0o(k ® Kk)od on D(k).

Proof. By Assertion 2 of Proposition 2.6, a € D(7;/,) if and only if §(a) € D(7;/2 ® 7;/2). Since
D(k) = D(7;2) and D(k ® k) = D(7;/2 ® T;/2), our statement is immediate from Proposition
2.6. O

Lemma 2.8.
(1) Q**W,Q 2" = Wyo, , for p € A* and t € R.
(2) For any z, y € H, we have 7,(W (z,y)) = W(Q**x, Q*'y) for t € R.
Proof. Ad 1. Let o € A* and a € D(n). Then
T_t(p * 7e(a)) = T_po(ida ® p)od(7e(a))
(idg ® poti)od(a) = (wott) * a

and applying 7 to the both sides, we get
Q_ZitW«JQQitW(G) = Wor,n(a) .
Ad 2. For z, y € H and ¢ € A*, we have
p(r(W(z,y))) = (2[Weor,y)
— (1‘|Q_2itW<pQ2ity) — (p(W(Q%tJJ, Q%ty))
by Assertion 1. This completes the proof. O

Proposition 2.9. Let ¢, ¢ € A*. Assume that W, = Wy, Then ¢ = ¢*ok.
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Proof. We have to show that ¢(a) = ¢*(k(a)) for any a € D(x). By Corollary 2.4 we may assume
that a = W(x,y), where x, y € H. Now we compute

Y(W(z,y)) = (@[Wyy) = Wezly) = (y[Wez) = (W (y, z))
=" (W(y,2)*) = p*(c(W(x,y))).

3. PENTAGONAL EQUATION AND MANAGEABILITY

In this section, we construct the Kac-Takesaki operator W and prove that this operator is a
multiplicative unitary. We also prove that W is manageable in the sense of [34].
We start with a lemma of Dini type.

Lemma 3.1. Let {a,},cy be an increasing sequence of elements in A

(1) If a € A and for any ¥ € A7, the sequence {1(an)},cn converges to (a), then the
sequence {an}, cy converges in norm to a.

(2) If for any w € A%, the sequence {w(an)}, oy converges to ||wl|, then the sequence {a,}
converges strictly to the unit 1 of M(A).

neN

Proof. Ad 1. We put A := {¢) € A% : ||| < 1}. Then A is a compact subset of A* with respect to
the weak™ topology. By the assumption, {1/(a) — % (an)}, cy is a decreasing sequence converging
to zero. By the Dini’s Theorem this convergence is uniform on A. Therefore we have

la = an|| = sup [¢(a) = ¢(an)] — 0.
YEA
as n goes to infinity and the assertion follows.
Ad 2. Since w(a,) < ||w| for all w € A% | a,, satisfies 0 < a,, < 1. Let b € A. Then the sequence

{b*anb}, oy is increasing and for any ¢ € A%, Y(b*anb) = (bpb*)(an) — [|bb*| = (bypb*)(1) =
¥(b*b) when n — co. Using Assertion 1 we see that b*a,b converges in norm to b*b. Therefore

11 = an)20)1 = [[b" (1 = an)bl| = [[b*anb — b*b] — 0
and
(1 = an)b]l < [1(1 = an) 2|11 = an)"/?b] — 0,
for ||(1 — a,)Y/?|| < 1 for all n. It shows that a,b converges to b in norm.

Similarly, we get a proof that the sequence {bay}, oy converges to b in norm. This proves the
strict convergence of the sequence {an}, .y to 1 € M(A). O

The following proposition is a consequence of the right invariance of the Haar weight.

Proposition 3.2. Let {e,},cy be an orthonormal basis of the Hilbert space H. Then for any x, y
belonging to the range of the GNS-mapping 1, we have

(3.1) Zw(emx)*w(emy) = (z[y)1
n=1
where the series converges with respect to the strict topology on M(A) .

Proof. Let w € A% and (M., 7., Qw) be the GNS-triple associated with w. To proceed our
computation we choose an orthonormal basis {(y},,cy in He. Then for any x € H we have

W(W (e, 2) W (en, )) = |10 (W (en, 2))Q0|? = ZICkIm (en, 7))

o0

=Y e W) = 3 (enl W) ?
k=1

k=1
where @y, are linear functionals on A introduced by the formula

or(a) = (Clmw(a)h)
for all @ € A and k € N. Summing over n =1,2,..., N and setting N — oo, we obtain

g o (Wl Wit ) = 3 Y W = 32 Wl
k=1

n=1k=1
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Assume now that x = n(a), where a € D(n). Then the right hand side of the above relation
equals to

Do IWel? = Y lnlerx )l =D hl(er * a)* (o1 * a))
k=1 k=1

k=1
K
= (oo
k=1
It turns out below (see the last part of the proof) that
K
(3.2) Z(gpk xa) (pp*xa) —wx(a*a)|| =0 as K — oc.
k=1

Using the lower semicontinuity and the right invariance of h, we obtain

N
I&iinoow (T; W(en, a:)*W(en,x)> = h(w * (a*a))
= |wl|h(a*a) = [wll(z]z).

This result holds for any w € A%. By Assertion 2 of Lemma 3.1 we see that the series
>0 W(en,x)*W ey, ) is strictly converging to (z|z)l. To obtain (3.1) in full generality, we
apply the polarization argument.

To end the proof we have to show (3.2). Let ¢ € A%, (Hy, 7y, Qy) be the GNS-triple associated
with ¢ and {£,,,},,cn be an orthonormal basis in H,. Then

Y(ws(a*a)) = (¥ Ow)(d(a"a)) = [|(ry @ m)(8(a)) (2 ® )

|(€m @ Cil (M ® 70) (8(a)) (R ® Q))I?

|(Emlmy (1 © 1) (8())2) [P = D Iy (o0 * @)1

32 32
=M =[]#

1 k=1
s} K
= D d((pr*a) (ppxa) = A (Z(@k *a)" (i * a)) ~
k=1 k=1
Now (3.2) follows from Assertion 1 of Lemma 3.1. O

Proposition 3.3. Let {e,},cy be an orthonormal basis of the Hilbert space H. Then for any x, y
such that Jxr and Jy belong to the range of n, we have

(3.3) D W(wen)W(y,en)" = (zly)1
n=1
with respect to the strict topology.

Proof. Replacing in the previous Proposition {e,} x and y by {Je,} Jy and Jx respec-

tively, we obtain

neN? neN?

> W(Jen, Jy)*W(Jen, Jz) = (Jy|lJz)l = (z|y)1.

n=1
The unitary antipode R can be extended to the multiplier algebra M (A) and the extension denoted
by the same symbol is continuous with respect to the strict topology. Remembering that the above
series is strictly converging, we have

D R(W(Jep, Ja))R(W (Jen, Jy))* = (xly)1.
n=1

Thus (3.3) follows. (cf. Second formula of Proposition 2.2) O

Remark 3.4. In what follows, relations (3.1) and (3.3) will be used to prove the unitarity of the
Kac-Takesaki operator. For this purpose, it is sufficient to know that the series (3.1) and (3.3)
converge weakly. However to prove (3.3) by using (3.1) we have to use strict topology ; at the
moment the continuity of R with respect to the weak operator topology is not established yet.
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The Kac-Takesaki operator W is introduced by the following theorem. It plays a role of the right
regular representation for the ”quantum group” associated with the weighted Hopf C*-algebra. We
recall that, for any x, y € H, w,, denotes the linear functional on L(H) defined by wy 4(a) =
(z]ay).

Theorem 3.5. There exists a unique unitary operator W acting on H @ H such that

(3-4) (z @ 2[W(y ©u)) = (z[W(z,y)u),
(3:5) (Wey @1d)(W) = W (z,y),
(3.6) (id® )W =W,

for any x,y,z,u € H and ¢ € L(H).. On the right hand side of the last relation ¢ € A* denotes
the restriction of ¢ € L(H). to A. Each of the above equations determines W uniquely.

Proof. Clearly (3.4) and (3.5) are equivalent. The computation
(z[(ld @ wy o) (W)[u) = (z 0 y|W(u @ z)) = (yW(z,u)x) = (2[W,

shows the equivalence of (3.4) and (3.6). The uniqueness of W is obvious.

w)

Y,

Let Dy be the range of the GNS-mapping n and Dy = JDy. Then Dy and D, are dense linear
subsets of H. We choose an orthonormal basis {e,}, oy in H. For any y € Do, x € D1, z,u € AH
we set

Wy ®u) = Z en @ Wien,y)u
n=1
and

o0
Wiz ®z) = Z en @ W(x,e,)" 2.

n=1
Using (3.1) and (3.3) one can easily show that the series on the right hand sides are norm converging
in H ® H. Clearly the above formulae introduce linear mappings W : Dy ®qg AH — H ® H and
WT: Dy ®uy AH — H @ H. Using (3.1) and (3.3) once more, we can show that these mappings
are isometries. Extending these mappings by continuity, we obtain isometric operators W and Wt
defined on the whole H ® H.

To show that W is unitary, it is sufficient to prove that the adjoint W* is an isometry. We claim

that W* = WT. Indeed, for any y € Dy, = € Dy, z,u € AH, we have

o0

(2 ® 2len © W(en,y)u) = Y (leq) (2| W (en, y)u)

1 n=1

= (z w (Z en(en|x)7y> u) = (z|W(z,y)u)

M8

(z@z[W(you) =

3
Il

and
Wiz@z)lyou) = D (en@W(ren) zly®u)
= D (enly) AW (2, en)u)
n=1
= (Z w (337 Z en(€n|y)> u) = (Z‘W(x7y)u)
n=1
By the way we proved (3.4). O

We shall use the leg numbering notation [1], for example:

(1 @ 22 ® 23|Wis(y1 @ y2 @ y3)) = (1 ® x3|W (Y1 @ y3))(z2]y2)

for z;, y; € H for j =1, 2, 3. We shall also use an exact vector presentation (see Appendix B)

of the GNS map n:
n(a) = Z afly,

neN
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for any a € D(n), where ,, € Hforn =1,2,..., AQ,, L AQ,, whenever n # m and D(n) coincides
with the set of all @ € A such that the above series is convergent. Moreover ) A€, is norm
dense in H, this is because the range of 7 is dense.

In the following Proposition we collect basic properties of the Kac-Takesaki operator.

Proposition 3.6.
(1) The coproduct § is implemented by W :
(3.7) 0(a) =W(a® 1)W*

for any a € A.
2) The pentagonal equation WioWi3Was = WosWio holds. In other words

(
(3.8) (id® §W = Wi W3 .
(3) The operator W commutes with the operators Q@ @ Q and A ® Q?:
(3.9) W (QeQQW=01Q,
(3.10) W (A2QHW =AxQ*.
Proof.

Ad 1. For any z, y, z € H and a € D(n) we have
(z @ z[W(n(e) @y)) = (2|(id ©® ws,, ) (W)n(a)) = («[We. ,1(a))

= (@ln(wsy x @) = ) (@](wsy * @) Q).

neN

Let p,, be the projection onto the closure of Af),,. Then p, € A’ and > nenPn = 1. Replacing x
by pnz, we obtain:

(z®z|(pn ® YW (n(a) ® y)) = (2|(w2,y * a)$y)
= (2]((id ® w2,4)(6(a)))2n) = (z ® 2|6(a) (2 ® ).
Therefore
(P @ YW (n(a) @ y) = 6(a)(Qn @ y).
It shows that
(3.11) W(n(a) @y) =Y _ 5(a)(Q @)
neN

where the right hand side converges in norm.
Now for any a € A, b € D(n )andyEHwehave

(@)W (n(b) @ y) = d(a) >_ 6(b)(

neN

= 6(ab)(Q @ y) = W(n(ab) @ y) = W(a® 1)(n(b) ©y).
neN

Therefore 0(a)W = W(a® 1) and §(a) = W(a ® 1)W*.
Ad 2. Let ¢, ¥ € L(H).. For any a € L(H) we set
pla) = (p@P)(W(a@ )WT).
Then p € L(H).. Moreover
(3.12) (id @ p)(W) = (ild @ ¢ ® 1) (WasW12Wo3).
If @ € A, then by the previous assertion p(a) = (¢ ® ¥)(d(a)) = (¢ * 9)(a). It shows that the
restriction of p to A coincides with ¢ * ¢. Using the first assertion we have
(id @ p)(W) = Weuy = WoWy, = (id ®@ ¢ @ ¢) (W12 Wh3).
Comparing this with (3.12), we see that WaysWioW3; = Wi2Wi3 and the pentagonal equation
follows. Taking into account (3.7), we obtain (3.8).

Ad 3. Let ¢ € L(H)«, t € R and @;(a) = p(Q*'aQ2") for any a € L(H). By (2.2), ¢¢
restricted to A coincides with @or;. Therefore

([d®e)(1e QWA ® Q™)) = (i[d® ) (W) = Wor,.
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Using now Proposition 2.5 and Lemma 2.8, we obtain:
Weor, = ATHW,AY = (id @ o) (A" @ )W (A" @ 1))
Wior, = Q7' W,Q*" = (i[d @ p)(Q*" @ NW(Q*" @ 1)).
Comparing these with the previous relation, we get
1WA ) =(A""2)W(A"x1)
= Q@)W (@* @1).

It shows that A ® Q?* and Q%" ® Q?* commute with W and our statement follows. O
Combining (1.9) with (3.6) we obtain
(3.13) (id @ per)W = (id @ ¢)(W™)

for any ¢ € A* such that pox € A*.

Let us recall the basic setup of the theory of multiplicative unitaries discussed in [1, 34]. Let
‘H be a separable Hilbert space. A unitary operator W acting on H ® H is called a multiplicative
unitary if it satisfies the pentagonal equation WosWio = WisWi3Was. Let J be a conjugate linear
bijection H > z +— Jx € H with (Jz|Jy) = (y|z). A multiplicative unitary W is said to be
manageable if there exist a strictly positive self-adjoint operator @) acting on H and a unitary
operator W acting on ‘H ® H such that

1) W(QeQW=QeQ, B
(2) (21 @ 22|[W(y1 @ y2)) = (Jy1 @ Qua|W (Jx1 @ Q7 1y2)) for all 21, y1 € H, 22 € D(Q) and
y2 € D(Q7Y).
Clearly the definition and the operator ) are independent of the choice of J.

Proposition 3.7. The Kac-Takesaki operator W is manageable.

Proof. Let J be the involutive antiunitary introduced in the paragraph preceding Lemma 2.1. We
shall prove that the above two conditions are satisfied by the operator @ introduced in (2.1) and
W =W*. We already know that @ is strictly positive and that @ ® @ commutes with W.

Let x,y € H. By Proposition 2.4, W(z,y) € D(k) and k(W (z,y)) = W(y,x)*. Taking into
account the definition of k and using the second formula of Proposition 2.2, we see that W (z,y) €
D(7;/2) and

Tij2g(W(z,y)) = R(W(y,z)") = W(Jz, Jy)".
Let z,u € H. Then for any t € R we have:
(@ 2|r(W (2, 9))Q*"u) = (2|Q ™" 7 (W (2, 9))Q*"u)
= (z[W(z,y)u).
Assume that z € D(Q) and u € D(Q~!). Making the holomorphic continuation up to the point
t =i/2, we obtain
QAW (Jz, Jy)* Q™ u) = (2|W (x,y)u).
Therefore

(z@2[W(y©u) = (z[W(x,y)u) = (@~ u|W (Jz, Jy)Qz)
= (Jz@ QW (Jy® Qz)) = (Jy ® Qz[W*(Jz ® Q™ 'u)).

(3.14)

Let us recall the properties of manageable multiplicative unitaries obtained in [1, 34].

Theorem 3.8. Let H be a Hilbert space and W be a manageable multiplicative unitary on H Q@ H.
We set:

(3.15) A= {((p ®id)(W) : ¢ € L(H).

}norm closure

)

o~

(3.16) A= {(id®<p)(W*) Lo € L(H),

Then

(1) A and A are C*-algebras acting non degenerately on H.
(2) The operator W is an element of the multiplier algebra M(A ® A).

}norm closure
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(3) There exists a unique § € Mor(A, A® A) such that (id®)(W) = Wi2Whs. The pair (A, 0)
18 a proper C*-bialgebra with the cancellation property. The comultiplication is given by
the formula

(3.17) 0(a) =W(ax1)W*

for alla € A.
(4) There exists a unique closed linear mapping k : A — A (A is treated as a Banach space)
for which the set {(¢ @ id)(W) : ¢ € L(H)4} is a core and

(3.18) (e @id)(W)) = (¢ @id)(W7)
for any ¢ € L(H).. Furthermore the set D(k) is a subalgebra of A and the mapping & :
D(k) — A is antimultiplicative. Moreover, k(D(k)) = {a: a* € D(k)} and k(k(a)*)* = a

for a € D(k).
(5) The operator k. admits the following polar decomposition :

KR = RDTi/Q,

where ;5 is the analytic generator of a one parameter group {T;},.p of automorphisms of
the C*-algebra A and R is an involutive antiautomorphism of A commuting with 7+ for all
t € R. In particular, D(k) = D(7;/2). In this case R and {74}, p are uniquely determined.
(6) We have
0oy = (e @ 1¢)od  for t€R; JoR = 00(R® R)d.
(7) R is normal, i.e. continuous with respect to the o-weak topology on A.
(8) Let W and Q@ be the operators in the deﬁm’tion of manageability for W. Then they satisfy
mi(a) = Q**aQ %" fort € R and W'®F = W* where bT = Jb*J.

We shall apply this theorem to the Kac-Takesaki operator W introduced in Theorem 3.5. We
know that the set {wy, : z,y € H} is linearly dense in £(H).. Inserting in (3.15) ¢ = w,, and
using (3.5) we obtain

}closed linear envelope

(3.19) A= {W(x,y) zyeH

Now Proposition 1.12 shows that the algebra (3.15) coincides with the original algebra A that we
started with. Comparing (3.17) with (3.7), we see that new ¢ coincides with the original one.
Inserting in (3.18) ¢ = w, , for z,y € H, we obtain

(W (z,y)) = w((wey @Id)(W)) = (wey @ id) (W)
— (w0 @A) (W)* = W(y,2)".
Comparing now Statement 4 of Theorem 1.13 and Corollary 2.4 with Assertion 4 of the above
theorem, we see that new k coincides with the old one (they have the same core on which they

act in the same way). By the uniqueness of the polar decomposition, we see that the new R and
7 coincide with the old ones.

Now we are ready to construct the dual weighted Hopf C*-algebra (/l, g) associated with our
weighted Hopf C*-algebra (A,d). Let ¥ € L(H ® H) be the flip map : ¥(zx ® y) = y ® = for all
x, y € H. According to the general theory [1, 34], the operator

(3.20) W=sw*s
is a manageable multiplicative unitary. We shall apply Theorem 3 8 to W. Clearly, replacing W
by W we interchange the roles of A and A. The comultiplication Se Mor(A A 1® A) related to W

satisfies the relation (id ® 5)W = W1sWis and is given by the formula 5( ) = W(b ® l)W* where
b runs over A. Using (3.20), we obtain

(3.21) 0 @ i) W™ = WisWi

and
5(b) = SW*(1 @ )W

~

By Theorem 3.8, (g, ) is a proper C*-bialgebra with the cancellation property. It will be proved
in Section 7 that (A4, ¢) is a weighted Hopf C*-algebra. We say that (A, J) is the dual of (4, 9).



A C*-ALGEBRAIC FRAMEWORK FOR QUANTUM GROUPS 19

Assertion 4 of Theorem 3.8 provide us with the closed linear mapping k acting on A such that
the set {(id ® )(W*) : ¢ € L(H).} is core for K and

Kid @ @)(W)) = (id © ) (W).
Clearly, 7 is the antipode related to (A, 3\) By Assertion 5,
R = Ro7ypo,
where {Tt}tE]R is a one parameter group of automorphisms of A and R is an involutive antiauto-
morphism of A which commutes with 7 7 for t € R. Clearly, {7;},.p and R are the scaling group
and the unitary antipode related to (A, 5).
According to Statement 3 of Proposition 1.4 of [34], Wis manageable. Inspecting the proof of

this statement, we see that the operators @ and W entering the definition of the manageability
are given by the formulae

@ =Q, W = (ZW*Z)T(@T.
We know (cf. the proof of Proposition 3.7) that W = W*. Therefore

W=EWws) e = (Jo)SW*S(J®.J).
Using now Assertion 8 of Theorem 3.8, we obtain
(3.22) 7(b) = Q2itpQ 2t
foranytERandbeﬁand
WToR = (J o )SWE(J @ J).
Applying the flip and *-conjugation to both sides, we obtain
WET — (Jo NW*(JoJ)=WTeT.
Therefore
(3.23) wEeTed _ .

Let (A,d) be a C*-bialgebra. In concrete cases one of the difficult task is to show that a given
weight h on A is right invariant and that the strong right invariance holds. To this end we shall
use the following

Theorem 3.9. Let (A,0) be a proper C*-bialgebra with the cancellation property, k be a closed
operator acting on the Banach space A admitting the polar decomposition

KR = R"Ti/g,

where T; 5 is the analytic generator of a one parameter group {7i},.p of automorphisms of the
C*-algebra A and R is an involutive antiautomorphism of A commuting with ¢ for allt € R and
let h be a strictly faithful locally finite lower semicontinuous weight on A such that hory = Xth for
some fized A > 0 and for allt € R. We shall use the GNS triple (H,m,n) related to h and identify
A with m(A) C L(H).

Assume that a unitary element W € M(K(H) @ A) satisfies the following two conditions:
1. For any a € D(n) and any ¢ € A* we have:
p*xa € D(n) and
(e *a) = (id ® @) Wn(a), }
2. For any @ € A* such that pox € A* we have:
(3.25) (id @ por)W = (id ® p)(W™).

Then (A, 0) is a weighted Hopf C*-algebra and h, R, 7 and W coincide with the right Haar weight,
the unitary antipode, the scaling group and the Kac-Takesaki operator related to (A, 9).

(3.24)

Proof. We have to show that h is right invariant and that the strong right invariance holds. We
shall follow the proof of Assertion 1 of Proposition 3.6. Let

b) = by,

neN
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be an exact vector presentation of the GNS map 7. Then

h(b) = Z (Qn‘an)

neN
for any b € A,. Take x,y,z € H and a € D(n). Then, by (3.24), we have

(z @ z|Wn(a) @ y) = (z|(id @ w2, )W(n(a)) = (z|n((id ® w: 4)d(a)))

(326) = 3 @4 © w )(@)R) = 3 (2. 216()| 20 @)
neN neN
Therefore
(3.27) W(n(a) @y) =Y 8(a)(Q @y).
neN

Computing the norm of the both sides, we obtain:

wyy(Dh(ata) = JyllPh(a*a) = Y 116(a)( QR @ 9)I> = D (2 @ yl6(a"a)| 2 ®y)
neN neN

= Z (Qnfwy,y * (a*a)[Qn) = h(wy,y * (a*a)).
neN

In this way we proved that ¢(1)h(a*a) = h(¢) * (a*a)) for all ¥ of the form w, , (y € H) i.e. for all
1 € Ayy. We have to show that this formula holds for all 1 € A7 .

Let p, be the projection onto the closure of AQ,. Then p, € A" and ) _ypn = 1. Replacing
in (3.26), « by p,x, we obtain:

(z @ z(pn ® )W n(a) @ y) = (z @ 2[6(a) [ @ y) .
Therefore

(Wan(a) ®@1d) [(pn © YW] = (w20, ©@id)d(a) € A,
Let 7’ be a representation of A acting on a Hilbert space H’. Then

(Wa,n(a) @ ™) [(Pn @ YW] = (wa,0, ® 7)d(a)
and for any z’,y’ € H' we have
(z® 2 |(po @ 1)(id @ 7 )W n(a) @ y) = (z @ 2'|(id @ 7)d(a) |2, @ ¥/) .
This way we showed that
(pr ® 1(id® 7" )W(n(a) ®y') = (id @ 7)(a)(Qn @ y')

and summing over n we obtain

(ider)W(n) @y) = (ider)éa)(Q, ©y)

n

with the norm convergent sum on the right hand side. This relation holds for any a € D(n).
Computing the square of the norm of both sides, we obtain:

(3.28) (n(a)|n(a)) (¥'|y') =D (@ y|(idex)i(a"a)| 2 @ y') .

For any b € A we set:
(3.29) »(b) = (/' [7'(b)y) -
Then formula (3.28) takes the form
h(a*a)y(1) = Z (Qn|(iId @ ¥)d(a*a)|2,) = h(¢ x (a*a)).

n

To end the proof of the right invariance we notice that any positive functional 1) on A is of the
form (3.29) by the GNS construction.

We pass to the strong right invariance. It follows immediately from Theorem 1.13 (Equivalence
of Statements 1 and 2). Therefore (A, d) is a weighted Hopf C*-algebra. Formula (3.27) is identical
with (3.11). It shows that W is the Kac-Takesaki operator related to (4, ). O

The reader should notice that Assumption (3.24) was used only with ¢ of the form w, , where
z,y € H. On the other hand the set of pairs (p,a) € A* x D(n) satisfying (3.24) is closed with
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respect to the norm topology on A* and the graph topology on D(n). This observation leads to
the following

Remark 3.10. Tt is sufficient to verify condition (3.24) for all ¢ in a norm dense subset of A, and
for all a in a core of 7.

Taking into account the equivalence of Statements 2 and 3 of Theorem 1.13 |, we obtain

Remark 3.11. Tt is sufficient to verify condition (3.25) for all ¢ from a weakly* dense T-invariant
subset of A*.

4. MODULAR STRUCTURE FOR HAAR WEIGHT

In what follows W always denotes the Kac-Takesaki operator for (A4, d), and A, denotes the set
of all o-weakly continuous functionals on A. In this section, we investigate the Connes’ Radon-
Nikodym cocycle of the left invariant Haar weight h” := hoR with respect to the right invariant
Haar weight h. For this purpose, we have to work on the von Neumann algebra M = A” which
is the weak closure of the C*-algebra A acting on the GNS Hilbert space H. By (2.2) and (3.7),
the scaling automorphisms 7¢ and the comultiplication § are weakly continuous with respect to the
weak operator topology, so they admit weakly continuous extensions to M. Clearly

d(a) =W(a@h)W*, 7(a) = Q**aQ ™"
for any element a € M. By Theorem 3.8 the unitary antipode R is normal (i.e. weakly continuous),
so it admits a weakly continuous extension to an involutive antiautomorphism acting on M. If

necessary, we shall use the notations 6, RM and 7™ for them. The involutivity of the unitary
antipode and the commutativity of the unitary antipode and the scaling group follow immediately.

The scaling group 7 = {7} - is no longer (pointwise) norm continuous so the theory
presented in Appendix F can not be applied. Nevertheless one may speak about the analytic
generator of this group in the weak sense: an element a € M belongs to the domain of Ti]\/g and
b= TZ%(G) if and only if for any z,y € H there exists a continuous function F}, , defined on the strip
{z € C:0 < 2z < 1/2} holomorphic on the interior of this strip, such that F, ,(t) = (x| (a)y)
for all t € R and F, ,(i/2) = (x|by). The antipode ™ on M is defined by

M _ M M
K = i/QOR .

In a sense Tl%
elements of D(7;/5) converging to a such that 7;/5(a:) — b when € — 0 (both convergence in the
M

is a closure of 7;/5. If a € D(TZ%) and b = TZ% (a) then there exists a net {a.} . of

sense of o-weak topology). Indeed a. = \/% fe_tQ/ETt(a) dt does the job. In the same sense x
is the closure of k.

Let n be the GNS-map associated with the right invariant weight h on the C*-algebra A. By
the theory presented in Appendix B the double commutant n” is an extension of 7 and D(n) is a
core for n”’. It is a GNS-map defined on the von Neumann algebra M.

M

Using (2.1) one can easily show that D(n”) is 7" - invariant and

(4.1) Q¥n'"(a) = X2 (7 (a))
for all a € D(n").

Proposition 4.1. Let a € D(n”) N D(Tz%) and 1" (a) € D(QY). Then Tz%(a) € D(n") and
(42) 1" (@) = A/1Q 1" (a).

Proof. Let b € D(n) and = € H. Applying b to the both sides of (4.1) and using (B.3), we obtain:
b (a) = A~27 (a)of ()
and
(x[bQ* " (@) = A= (2| (a)rf (b))
for any t € R. Remembering that a € D(TZ%) and n”(a) € D(Q™!), we see that both sides of

the above formula admit continuations to continuous functions on the strip {t € C: 0 < 3t < 1/2}
holomorphic on the interior of this strip. Inserting ¢t = i/2 we obtain

(2b@~ " (@) = 7% (2| =(a) )
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and bQ 10" (a) = A~/ 4TM i/2(@)n’(b). Therefore (cf. (B.3)) 7 1/2( a) € D(n") and (4.2) follows. O

Let 7/(b) = Q**bQ~2" for b € A’. Since the scaling group {7}, on A is implemented by
{Q%t}teR, {7{},cr is a one parameter group of automorphisms of A’. Let b € D(n’). Then for any
a € D(n) we have

T (b)n(a) = XN2Q* by(_i(a)) = N2Q* " m_y(a)n’ (b) = A"/2aQ*"n (b).
Hence 7/(b) € D(') and

(4.3) n'(7/(b)) = A2Q "1 (b).
Proposition 4.2. The set {c € D(') : 1/'(c) € D(Q™H) ND(Q)} is a core forn'.

Proof. For c € A’ we put

C /—t/a/
\/7

Let ¢ € D(n'). The mapping ¢ — 7{(c) is strongly continuous and the mapping t — n/(7{(c)) =
A/2Q2y (¢) is norm continuous. Since 7/’ is closed, we find that R.(c) € D(n’) and

1 2
VR = o= [ e (e
1 , )
— — /R)\t/Qe_t2/EQ21tdt 77I(c) _ e—a(logQ—zlogA/4)2 77/(0)~

Using this formula one can easily verify that 7' (R.(c)) € D(Q~!) N D(Q). Clearly n'(R.(c))
converges in norm to 7)/(c) as € tends to 0. One can also easily verify that R.(c) converges strongly
to c. Therefore the set {c € D(1') : /(c) € D(Q™') ND(Q)} is a core for 7'. O

One can easily verify that the right hand sides of (1.1) make sense for a € M and ¢, 9 € A,. In
other words the convolution products ¢ *a and a v (with ¢, 9 € A,) defined originally for a € A
admit strongly continuous extension to a € M.

Using (1.6) and remembering that D(n) is a core for 1", we see that ¢ xa € D(n") and

(4.4) Wen'(a) = 1" (¢ = a).
for any a € D(n"") and ¢ € A,.

In what follows, we denote by the same letter i the natural extension of the right Haar weight
to M. By definition h is the semifinite normal weight on M related to the GNS map 7" via formula
(C.8). By the strict faithfulness of the Haar weight, h is faithful. Remembering that R is normal
we conclude that h” := hoR is also a faithful semifinite normal weight on M. This is the left Haar
weight. Let {oy},cp and {of be the modular automorphism groups of M associated with h

and hL.

e

Lemma 4.3. The following four formulae hold on the von Neumann algebra M.

(1) ReoioR = ok, fort e R.

(2) ooy = (O’t ®Tt)o(5 forteR.
(3) dool = (1_s @ aL)os for s € R.
(4) opool = oLogy fort,s € R.

Proof.
Ad 1. Follows immediately from Proposition D.8.
Ad 2. Using (3.10) we compute:

(5(0}((1)) = AdWOAdAit®Q2it (a ® 1)
= AdAit®Q2it0AdW(a X 1)
= (0t @ 1¢)o0(a).

Ad 3. We know (cf. (2.3)) that @ and A strongly commute. Therefore scaling automorphisms
7¢ commute with modular automorphisms os. Furthermore 7, commute with R. Using Assertion
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1 we see that 74 commute with oZ. The rest is a matter of computation. Denoting by o the flip
automorphism acting on A ® A and using twice the first formula of Proposition 2.6, we obtain

Sool = doRec_;oR

= 0o(R ® R)odoo_soR

= 0o((Reo_t) ® (ReT_¢))edoR

= 0o((Reo_toR) ® (ReT_toR))ocod

= (1_¢ @ ol)ed.
Ad 4. We already know that the scaling automorphisms commute with the modular automor-
phisms. Therefore (7_; ® 0F)o(0, @ 75) = (05 @ T5)o(T_t ® oF) and

Sooloos = (-4 @ ol )obooy = (T4 @ oL )o(0s @ T4)0d
= (05 @ Ts)o(T_t ® 0F)ob = (05 @ T4)od00F = Goosook.

Now, using the injectivity of the comultiplication we obtain ofoo, = oso0r. O
Corollary 4.4. If h is a trace then k coincides with the unitary antipode R.

Proof. Let t € R. If h is a trace then o; = id and by Statement 2, id ® 73 coincides with the identity
on §(A). It follows that id ® 7 coincides with the identity on (A ® 1)6(A). By the cancellation
property the latter set is linearly dense in A ® A. Hence 74 = id for all ¢ € R. Formula (1.3) shows
now that k = R. g

We now consider the relative modular operator determined by h and h” = hoR. Let h’ be the
weight on M’ associated with the commutant n’ of the GNS-mapping 1 (see Appendices C and B)
and let A, denote the spatial derivative dh’/dh’ in the sense of Connes [3] (see Appendix D).
Then A, is a strictly positive self-adjoint operator with a core {n”(a) : a € D(n"), h*(aa*) < oo},
such that

2
|afr@| i v e @l
hE(aa*) =
“+o0 otherwise
for any a € D(n”). It is known that the modular automorphism group o% is implemented by A,
O ( ) AZtlaAlrel

for any a € M and t € R. Moreover the Connes’ Radon-Nikodym cocycle (Dh* : Dh); is expressed
by the formula

(4.5) (DAY : Dh); = A, AT € M.
Proposition 4.5. There exist a strictly positive self-adjoint operator v affiliated with the center

of the von Neumann algebra M and a strictly positive self-adjoint operator p affiliated with the von
Neumann algebra M such that

(4.6) (DhE : Dh), = /2t

for allt € R. Operators p and v are uniquely determined by the above formula. They satisfy the
following commutation relations:

(47) AitpAfit _ ’thv Ait,YAfit =
(4.8) Q'pQ ™" =p,  QMQ "=
for allt € R.

Proof. For any t, s € R, we set
(4.9) v(t,s) = ATA ATIEAE,

rel

Clearly Ad.y(t,s)|M = owolo_ol,. By Assertion 4 of Lemma 4.3, the latter automorphism coin-

cides with the identity on M. Therefore (¢, s) commutes with all elements of M: ~(¢,s) € M’.
On the other hand one can easily verify that

¥(t,5) = Adaw (A AT) (A A7) = 5, (DhY : Dh),) (DY : Dh)?.
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Therefore y(t, s) € M. This way we showed that the unitary (t, s) belongs to the center of M. It is
known that central elements are invariant under the action of modular automorphisms. Therefore
v(t,s) commutes with A and A%

rel®

Rewriting now (4.9) in the form (¢, s) A%, = A" A% A~ one can easily show that v(¢, s+s') =

rel — :
v(t,s)v(t,s’) for all t,s,s" € R. Similarly using the formula A~%"~(¢,s) = A% A*A"1* one can
easily show that y(t +t',s) = y(t, s)vy(t, s) for all t,t',s € R.

By the above results (¢, s) is of the form
st

2t s) =",
where  is a strictly positive self-adjoint operator affiliated with the center of M. Clearly v strongly
commutes with A and A,q. Therefore the second formula of (4.7) holds.

Let ¢, s € R. Then (4.9) shows that A™*A = 4~ #sA A~ Therefore
,.yfitQ/QA;itelAfit,yf’iSQ/QA:;ZlAfiS _ ,Yfitz/27itsfi52/2AiZ-leAfitfis
_ ,y—i(t—&-s)z/QAiS-FS)A—i(t+s).
It shows that {y_itQ/QA?elA_”} . is a one parameter group of unitaries. By (4.5) these unitaries

€
belong to M. Therefore there exists a strictly positive self-adjoint operator p affiliated with the
von Neumann algebra M such that

i —it? it A —i
pit =~ PAL AT
for all t € R. Clearly (4.6) is equivalent to the above formula.
Inserting % instead of ¢ and taking the n-th power of the both sides we get

pit — ,yit2/2n (Ait/nAfit/n>n _

rel

Letting n — oo we obtain

(4.10) pt = slim (A" A=)

This formula shows the uniqueness of p (and 7).

To prove (4.8) we notice that 7, scales h and h” by the same factor A! (this is because 7
and R commute). Therefore the Connes’ Radon-Nikodym cocycle (4.5) is 7, invariant. Using the
uniqueness of p and v we obtain: 7:(p) = p, 7t(y) = v and (4.8) follows.

By (4.6), A% = ~it"/2it Ait  Therefore for any ¢, s € R we have:
i(t4+8)2/2 i(t+s) Ai(t+s) _ it?/2 it At is?/2 is Ais
A IE9)? /2 i) Ai(t+s)  it?/2 it At yis® /2 pis Alls
By simple computation this formula reduces to
(411) ’yitspiSAit _ Aitpis.
Therefore (v'p)'® = Aipis A=it and the first formula of (4.7) follows. O

Formulae (4.7) and (4.8) show that

(4.12) oi(p) =7"'p, o(y) =1,
(4.13) 7(p) = p, T(y) = 7.
for all t € R.

Proposition 4.6. The operators p and v satisfy R(p") = p~ and R(y*) = 4 fort € R. In
other words R(p) = p~! and R(y) = 7.
Proof. Inserting h; = h” in Assertion 2 of Proposition D.8 we obtain
(DhL : Dh)t =R ((DhL . Dh)_t) =R (Pyit2/2p7it> _ R(,y)itg/zR(p)f’it.
Using the uniqueness of p and v we get: R(p) = p~! and R(vy) = 7. O

Formula (4.11) shows that one parameter groups {p"}, o, {A"}, . and {y"}, . generate a

unitary representation of the Heisenberg group. Using the formula A% = ~i/2pit Ait we see that



A C*-ALGEBRAIC FRAMEWORK FOR QUANTUM GROUPS 25

{Aifel teR is an another one parameter group appearing in this representation. Its infinitesimal
generator log A,e] = log A + log p. Then (4.10) is the Trotter product formula corresponding to

the relation log p = log Arel — log A. (cf. [25]).

Inserting s = ¢ in (4.11) we obtain 7' pi! A = A pit. Combining (4.6) with (4.5) we get
(4.14) AL = ,yit2/2pitAit _ ,yfit2/2Aitpit
for t € R. Now we put ¢ := —i/2 to obtain

(4.15) AM2 — SIS GI20NTT2 = /AT /20p1/2 |

rel

In particular D(p'/20Al/2) C D(A:e/f). In these formulae X denotes the closure of an oper-

ator X and XoY denotes the composition of operators X and Y. By definition D(XoY) =
{reDY): Yz e D(X)}.

The following result plays an important role in the paper.

Proposition 4.7.
1. Ifa € M and 6(a) = 1® a then a € C1.
2. Ifae M and §(a) =a®1 then a € C1.
3. MNA =Cl.

Proof.
Ad 1. By Proposition 2.6, § commutes with the scaling group. Therefore the set

{aeM:(a)=1®a}

is 7 invariant and we may assume that a is an entire analytical element for 7. Using Statement 2 of
Lemma 4.3 we have: §(o¢(a)) = (0: @ 7¢)(1 ® a) = 1 ® 7¢(a). It shows that a is an entire analytical
element for the modular automorphism group. Hence (see Theorem D.7), for any b € D(n) we
have ba € D(n"). Therefore for any x € H we have

W(n'"(ba) @ ) = Z(S(ba)(Qn ®x) = Zé(b)(Qn ® ax)
n=1 n=1

=W(n() @ az).
Hence 7" (ba) ® x = n(b) ® ax and for any ¢ € D(n’) we have:
ban'(c) @ x = cn’ (ba) ® © = en(b) ® ax = bny'(c) ® ax.
It shows that a ® 1 = 1 ® a and a must be a scalar multiples of the identity.
Ad 2. Using the first Statement of Proposition 2.6 we have:
§(RM(a)) = go(RM @ RM)j(a) = 0o(RM @ RM)(a® 1) = 1 ® RM(a).
Therefore, by Statement 1, RM (a) € C1 and finally a € C1.

Ad 3. We know that W € M(A® A). Formula (3.7) shows that §(a) = a®1 for any a € M N A’
and Statement 3 follows immediately from Statement 2. O

Let LS (‘LS’ stays for left shifts) be the set of all automorphisms « of the von Neumann algebra
M such that

(4.16) doar = (v ® id)od.

We shall use the u-topology (cf. [23, Section 2.23]) on the set of automorphisms of M. By definition
a net «,, is u-convergent to a, if for any ¢ € M,, the net of functionals ypoa,, converges in norm
to woas. One can easily verify that LS endowed with the u-topology is a topological group. In

particular o, ! — a ! if a, — Qso-

Let t € R. Combining Statement 2 of Proposition 2.6 with Statement 2 of Lemma 4.3, one can
easily verify that degior_; = (oper_t ® id)ed. It shows that

(417) 00Tt € LS

It is easy to see that the mapping R > ¢ — oyo7_; is u-continuous.
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Proposition 4.8. Let a € A. Then a(a) € A for any o € LS. Moreover the mapping
LS>avr—afa) € A

is norm continuous (we use u-topology on LS).

Proof. Tt is sufficient to prove this statement for a running over a linearly dense subset of A. Let
a € LS. Using (3.8) and (4.16), one can easily verify that

(4.18) (id®0) ((i[d® a)(W)W*) = ((d @ a)(W)W*) @ 1.
Indeed
(id ® 0) ((id ® a)(W)W*) = (id @ dea) W (id ® 5)W* = (id ® a ® id)(id ® §)W (id @ §)W*
= ((ld ®a® id)W12W13) (W12W13) = ((ld X Oé)(W)W*) 12
and (4.18) follows. Using now Statement 2 of Proposition 4.7 we conclude that (id ® a)(W)W* is
of the form v ® 1, where v € L(H). Hence
(id ® Q) (W) = (v © V.
Clearly v is unitary. Passing from H ® H to H ® H ® H we obtain:
(ld Ra@ ld)(ng) = (1} R1I® 1)W12,
([d®id®a)(Wi3) = (v@1® 1)Wis.
Eliminating (v ® 1 ® 1) we get:
(ld Ra® a) (WF2W13) = Wl*2W13
and finally
(4.19) (id ® id ® o) (Wi,Wi3) = ([d® o™ @ id) (Wi, Wis) .
Let z,y € H and p € M,. Applying w, , ® u* ® id to the both sides of (4.19) we obtain:
e (W(Wum,y)) =W (Wuooﬁlx,y) )
The reader should notice that the right hand side of the above formula belongs to A and depends
continuously on «. This way our statement is proved for all a of the form a = W(W,z,y). To

end the proof we recall that A act on ‘H in a nondegenerate way. Therefore the set of vectors
{Wyz:p€ L(H)«,x € H} is dense in H. Proposition 1.12 shows now that the set

{WWyz,y) :p € L(H) 2,y € H}
is linearly dense in A. d

We shall use Proposition 4.8 with « replaced by (4.17). It shows that ozor_; acts within A and
that for any a € A, oro7_;(a) depends on ¢ € R in a norm continuous way. Combining this result
with the known properties of the scaling group, we obtain

Proposition 4.9. The modular automorphism group {ot},cp of M associated with the Haar weight
h may be restricted to A. It defines the pointwise norm continuous one parameter group of auto-
morphisms of A.

In this way we have shown Assertion 3 of Theorem 1.9. Restricting the second formula of Lemma
4.3 to A, we obtain Assertion 4 of Theorem 1.9.

The end of this Section is devoted to the proof of the uniqueness of the antipode and the Haar
weight.

Theorem 4.10. Let (A,0) be a weighted Hopf C*-algebra with the Haar weight h and antipode
k. Assume that we have another antipode k1 with corresponding Haar weight hq satisfying all the
requirements of Definition 1.5. Then k1 = k and hy = ph for some positive scalar .

Proof. Let (Hi,71,m1) be the GNS triple related to hy. Then we have another Kac-Takesaki
operator Wy € L(H; ® H;) that gives rise to (A4,4). By a Theorem in [35] we may assume that
H1 = H and m; = w. Combining the formula (id ® §)(W1) = (W1)12(W1)13 with (3.7) we obtain:
Was(W1)12Way = (W1)12(W7)13. It means that W is adapted to W in the sense of [34, Defini-
tion 1.3]. Statement 4 of Theorem 1.6 of the same reference shows now that 1 C k. Interchanging
the roles of W and W; we obtain the converse inclusion. Therefore

(4.20) K1 = K.
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We shall use the relative conjugate linear Tomita-Takesaki operators S = F*. By definition the
set {n(a) : a € D(n) N D(n1)*} is a core for S and

(4.21) Sn(a) = mi(a”)
for any a € D(n) N D(m)*. For any a € D(n) ND(m)" and ¢ € A" we have ¢* xa € D(n) and
p*a* € D(n1). Therefore for any z € D(F') we have
p(Wi(z,m(a"))) = (z[(Wi)pm(a®)) = (zlm(p *a®))

= (2l Sn(¢" * a)) = (Fz|W,-n(a))

= " (W(Fzn(a)) = (W (Fz,1(a))").
Hence we have Wi (z,m1(a%)) = W(Zj’wz,n(a))*kRemembering that {n(a) : a € D(n) ND(n1)"} is a
core for S, we conclude that Wi(z, Sx) = W(Fz,x)* for any x € D(S). Setting y = F'z we get
(4.22) Wi (F~ 1y, Sz) = W (y,z)*.

This formula holds for any z € D(S) and y € D(F~1).
Let S = JA'/2 be the polar decomposition of S. Then F = AY/2J~1. For any z € D(ﬁ) and

y € D(A™1), we have Sz € D(F) and F~ly € D(S1). Using (4.22) and (4.20) and Proposition
2.4 we get

KW (x,y)) = £(W(y,2)*) = (W1 (F 1y, Sx)) = k1 (Wi (F 'y, Sx))
= Wy (Sz, F~ly)* = W(FSz, S F~1y) = W(Az, A~1y).
Remembering that x? = 7; and using Theorem F.3 , we obtain
Tt(W(xv y)) = W(Zitxy Elty)
for all ¢ € R. On the other hand, 7(W(z,y)) = W(A"z,A"y) by Proposition 2.2. Therefore
W (A%z, Ay) = W(A%z, Ay) and A" A" commutes with W, for all ¢ € A*. Hence it belongs
to the commutant of A. On the other hand the Radon-Nikodym cocycle (Dhy : Dh)_; = A" A ¢
M. Therefore by Proposition 4.7, it must be a scalar multiple of the identity and there exists a
positive scalar p such that A" = u"A™ for all t € R. Hence A = pA. In particular D(S) =
D(A/?) = D(AY/?).
The reader should notice that D(n)* is a right ideal and D(n;) is a left ideal in A. Therefore
D(n)*D(n1) € D(n)*ND(n1). Using the norm density of D(n)* one can easily show that D(n)*D(n;)

is a core for n1. So is D(n)* N D(m). Let a € D(n)* N D(m1). Then (cf. (4.21)) n(a*) € D(S) =
D(A'/?) and using Theorem D.5 we see that a € D(n). Moreover

(4.23) (@) = FAV2n(a®) = ETAYy(a") = Vi TTn(a).
Remembering that D(n)* N D(n) is a core for n; we see that D(n;) C D(n) and that the above

formula holds for all @ € D(n;). Interchanging the roles of 77 and 7; we obtain the converse inclusion.
Hence D(n1) = D(n). Formula (4.23) shows now that hq(a*a) = ph(a*a) for any a € A. O

5. MODULAR STRUCTURE FOR THE DUAL

We now go into the discussion on the density theorem. Combining (2.4) and (4.8), we know
that Jp~'J and Q are strongly commuting strictly positive self-adjoint operators. Therefore the
operator

~

(5.1) A= Jp=1JeQ)?

is also strictly positive and self-adjoint. This section is devoted to the proof of the following
theorem. It contains the inverse of the square root of (5.1).

Theorem 5.1. Let

(5.2) Do = {beD(n")ND(KM): kM) € D)} .
Then the set {n (b) : b € Do} is a core for A=Y/2 and
(5:3) 1A= 2 )] = [l (=™ (5)")]]

for any element b € Dy.
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We shall use the notation introduced in the previous section.

Lemma 5.2. Let a be an element in D(n"). If n''(a) € D(Al/z), then R(a) € D(n") and

rel

(5.4) " (R(@)|| = A" (@)

Proof. If a is an element in D(n") satisfying 7" (a) € D(A1/2)7 then h(R(a)*R(a)) = h%(aa*) =

rel

|AL 27" (a)|? < oo. Hence we obtain R(a) € D(y”) and ||l (R(a))|| = | A0 ()]]. O

Lemma 5.3. Let a be an element in D(n") with " (a) € D(AY?). If n"(a) € D(Jp*/2J), then
R(a)* € D(n") and

(5:5) " (R(a)*)I| = [17p"2 T/ (a)].

Proof. Since 0’ (a) € D(AY?), we have a* € D(1") (cf. Theorem D.5) and
77//( ) JA1/2 //( ) A_l/QJ’I]H(a);
hence, n”(a*) € D(AY?) and AY21"(a*) = Jn'(a). Assume that 7 (a) € D(Jp'/2J). Then
Jn"(a) € D(p'/?) and n"(a*) € D(p'/2AY?) C D(A1/2). Now we apply Lemma 5.2 with a
replaced by a* to obtain R(a)* = R(a*) € D(n) and
" (R = " (R )] = 18,57" @)
I 2 A 2" (@) = [lp"2 " (@) = 172 " (a)].

O

Next we have an improved version of the above statement, which plays the fundamental role in
the subsequent argument.

Proposition 5.4. Let a be an element in D(n"). If 7" (a) € D(Jp'/2J), then R(a)* € D(n") and
(5.6) " (R(a)*)| = [|1p"2In" (a)].

Proof. For any b € D(n"), b*a € D(n") and 1" (b*a) € D(AY/?). Moreover due to the assumption
7" (a) € D(Jp'/2J) and the operator inclusion Jp'/2Jb* > b*Jp'/2.J, we have 1" (b*a) = b*n"(a) €
D(Jp'/2J). Therefore the element b*a satisfies the conditions of the previous Lemma and hence
we have R(b)R(a)* = R(b*a)* € D(n") and ||n"(R(b*a)*)| = ||Jp*/2Jb*n" (a)||. Therefore we have
1" (R(O)R(a)*)I| = [1b"T o'/ T5" (@) < [|BI] [|7p*2 " ().
Now we shall use an exact vector presentation (see Definition B.6 and Theorem B.7):
n(a) = Z afly,
neN

of the GNS mapping 7. Then n”(R(b*a)*) = >, oy R(b)R(a*)2y, so for any natural k and any
b e D(n”) with ||b]] <1 we have

Z IR(D)R(a")2ull* < || 7p"2 75" ()],

The set {be A” : b€ D(n"),||b]| < 1} is weakly dense in the unit ball of the von Neumann algebra
A”. Tt follows that for any natural k,

ZIIR )Qull? < |17p"2 00" ().

and the series Y, - [|R(a*)Q,|? is convergent. Remembering that our vector presentation is exact
we see that R(a*) € D(""). Now by taking elements b in the unit ball of D(n"), we obtain
(a

7" (R(@ )l = sup [[R(b)n"(R(a"))]
bl <1
= 6% Tp" 2 00" (@)|| = [|Tp"/2 " (@)
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Let
"(a) € D(Q~Y)ND(Jp'/2J
(5.7) Dy = {aeDy)n D@y "W EP@INDUPIT)
and Q11" (a) € D(Jp'/2J)
Proposition 5.5. D; C Dy and
(5.8) 0" (kM (a)*)|| = | Tp*2TQ ™ " (a)|| for a€D:.

Proof. Suppose that a« € D;. We know (cf. Proposition 4.1) that Ti%(a) € D(n') and
n/’(Ti]‘/g(a)) = XN/4Q "' (a). By our assumption, Q'n"(a) € D(Jp'/2J). Applying Proposi-
tion 5.4 to the element Ti%(a) instead of a, we see that £ (a)* = R(TZ%((J,))* € D(n”). In this
case equality (5.6) converts into (5.8). O

Up to this point, it is not clear whether the sets Dy and D; are not trivial. To show that they
are large enough, we have to tame unbounded operators that appear in our theory. In order to
tame p and -, for any € > 0 we introduce two elements in A” as follows:

I, :=exp {—¢ ((log p)* + (log7)?) } ,
I := exp {—¢ ((log p)* — i(log p)(log 7)) } -

Notice that 0 < T'; <1 and I', is bounded. Moreover, I'; and I', converges strongly to 1 as ¢ tends
to 0.

Lemma 5.6. Let a be an element in D(n"). Then al'c € D(n") and n"(al'.) = JTLJIn" (a).

(5.9)

Proof. Using (4.7), we can easily check that

. » 1
() = AT A = exp { = ((logr'o)? + J1ogn)?) }.

The right hand side admits the holomorphic continuation for ¢ running over all C. It means that
I'. € D(0}),) and setting in the above formula t = i/2 we obtain

0i/2(Te) = exp {—8 <(logp+ ;log'v)Q + i(10g7)2> } = (Fé)* -

Now our statement follows immediately from Theorem D.7. O

In order to tame the effects coming from the unboundedness of log @, for any € > 0 and any
a € M we set

1 2
(5.10) Re(a) = — [ M (aT )NV /4L,
VET Jr

Remark 5.7. By (4.8), p and v are {7}, invariant. So is I'.. Therefore I'. € D(7;/2) and
7i/2(L's) = Te. Applying R to the both sides, we conclude that I'. € D(k*) and kM (I';) = R(I'.) =
I'.. The latter equality follows from Proposition 4.6. Since D(x) is a subalgebra and that x
is antimultiplicative, we see that al'. € D(k™) and ™ (al'.)* = kM (a)*T. for any a € D(kM).
Using this result together with the closedness of k™, one can easily show that R.(a) € D(k™) and

(5.11) Re(r™(a)*) = kM (Re(a))*
for any a € D(kM).

Lemma 5.8.
1. For any a € M, R.(a) converges strongly to a when ¢ — 0.

2. Let a € D(n") and e > 0. Then R.(a) € Dy and
(5.12) n"(Re(a)) = exp {—e(log Q)*} JTLJn" (a).
In particular " (R<(a)) converges in norm to n''(a) when ¢ — 0.

3. The set Dy is a core forn'.

Proof. Ad 1. One can easily verify that

55(t) — \/ﬁ/\ft/2eft /e
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is a d-like sequence when € — 0. More precisely: 0.(¢t) > 0 for all t € R and £ > 0, fR t)dt =1
and for any neighborhood O of 0 in R, fR\O 0 (t)dt — 0 when e — 0. Therefore for any contlnuous
bounded function ¢ on R we have

(5.13) lim [ o(t)d:(¢)dt = ©(0).
e—0 Jr

Let x € H. Then
IR:(a)x — azx|| = H/ a)l x—am) 5€(t)dtH

< /R 7 (a) (Tex — 2) || 6 (t)dt + /R |7 (a)x — ax|| 6-(t)dt

< lla]l Tz — 2] + / 1M (@) — ax| 6. (t)dt
R

The first term on the right hand side converges to 0 as & goes to 0. Inserting in (5.13), ¢(t) =
|7 (a)x — az|| we see that also the second term converges to 0. It shows that R.(a)x converges
in norm to ax.

Ad 2. Assume that a 6 D(n"). We already know by Lemma 5.6 that aI'. € D(n”) and
i’(ale) = JULJy"(a). By (4.1), 7M(ale) € D(") and " (r}(ale)) = N/2Q* JTLJIn"(a).
Therefore

(ars))Aft/Qeftz/sdt \/ﬁ/@%t —t? /e T J77N( )

= ¢ c(0gQ)? JTLJIn" (a).

L /n”(T
\VET R ¢

Remembering that 7" is closed, we conclude that
1
(5.14) R:(a) = T / M (aT)A"2e~/2dt € D(y")
R

and 7"(Re(a)) = e~<10s@” T Jy"(a). Due to the dumping factor e=<1°s@” JTJ  the vector
7" (R.(a)) belongs to D(Q~') and the vectors 1 (R.(a)) and Q™" (R.(a)) belong to D(Jp'/2J).

One can easily verify that R.(a) is an entire analytic element for the scaling group. Therefore
Re(a) € D(T 2/2) D(kM). Tt means that R.(a) € D;.

Ad 3. Follows immediately from the first two assertions. O
Now we recall a fact concerning a core for positive self-adjoint operators

Lemma 5.9. Let H be a strictly positive self-adjoint operator on H. Let K be a bounded operator
such that K'H is dense in H, KH C D(H), HK € L(H) and HKx = KHx for x € D(H). Then,
for any dense linear subset D of H, KD is a core for H.

Proof. Tt suffices to show that the set (H + 1)KD is dense in H. Suppose that y is orthogonal
to the above set. Then (y|(H + 1)Kz) = 0 holds for any vector « in D. Since HK € L(H) , it
holds for z in H. Therefore (y|K(H + 1)z) = (y|(H + 1)Kz) = 0 holds for any € D(H). Since
(H+1)D(H) = 'H and K has a dense range, it follows that y = 0. O

Now we shall use the operator A introduced by (5.1). Clearly, A=12 = Jpl/2 JoQ1.
Proposition 5.10. The set {n(b) : b € Dy} is a core for A=1/2.

Proof. At first we notice that {n’’(b) : b€ Dy} C D(A~1/2) by (5.7). We use the previous lemma
with H = A=1/2 = Jpl/2JoQ— 1, K = JT,Je~(98@” and D = {n"(a) : a € D(y")}. It is clear
that K is bounded and the range is dense in H. Let x € D(H). There exists a sequence {x,}, oy
in D(Jp'/2JoQ~') such that x,, — x and Hx, — Hz in norm. For x,, we see that
KHz, = JT,Je 108Q7 512707 g, = Jpl/2T) Je~1os @715,
T2, JQ e 108 @7y = Jpl/2 JQ LT Je 5@y = HKx,,.

Since Kz, —» Kz and HKz, = KHx, — KHz, the closedness of H implies that Kz € D(H)
and HKx = KHz. Hence K'H is contained in the domain of H and the operator H K is bounded
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on H. Thus above lemma tells us that KD is a core for A=1/2. On the other hand, according to
Lemma 5.8 (with e = 1), KD is contained in the set {n”'(b) : b € D1} and assertion follows. O

We are now ready to prove the main theorem of this section.

Proof of Theorem 5.1. First we prove that
(5.15) {n"'(b) : b€ Dy} c D(A/?)

Let b € Dy. Then, Lemma 5.8 shows that R.(b) € Dy for any € > 0. Inserting a = R.(b) — R (b)
in (5.8) and using (5.11), we get
(5.16) 1A (Ro(b)) = A2 (Res (0)) ] = 1" (Re (5™ (1)) = " (Rer (5™ () ),
for any ¢, & > 0. According to Assertion 2 of Lemma 5.8, 1”(R.(b)) and 7" (R.(xM(b)*))
converge in norm to 7”(b) and 7" (k™ (b)*) respectively as ¢ tends to 0. By the Cauchy crite-
rion, A™/2p"(R.(b)) has a norm limit when ¢ tends to 0. Since A~'/2 is closed, we see that
7" (b) € D(A~'/2) and (5.15) follows.

The rest is easy. Remembering that D1 C Dy (cf. Proposition 5.5) and using Proposition 5.10,
we see that the set {n/(b) : b € Dy} is a core for A=1/2. Let b € Dy. Replacing a in (5.8) by R.(b)

and setting ¢ — 0, we obtain the norm equality (5.3).
a

Now, we shall consider the conjugate linear operator
(5.17) T A0 (b) v 0 (M (b)),

where b runs over Dy. By Theorem 5.1, Jis a densely defined isometry. By the same letter we
denote its continuous extension on the whole H. Let

(5.18) F=JA2,
Then
(5.19) Fn"(b) = 0" (5™ (b)")

for all b € Dy. Moreover the set {n”(b) : b € Dy} is a core for F, because it is a core for A=1/2. In
other words, F' is the closure of the mapping

0" (b) = " (k" (0)")
where b runs over Dy.

The mapping b +— xM(b)* is an involution acting on Dy. Therefore F is also an involution.
Clearly (5.18) is the polar decomposition of F. Now the relation F'~! = F' implies that

(5.20) J?=1 and JAJ=A"".
It means that the operator J is an antiunitary involution.

Theorem 5.11. We have:

(5.21) R(a) = Ja*J,
(5.22) (JRNHW(IJ®J)=W*
(5.23) JAJ = A.

The first formula holds for all a € A.

Proof. Ad (5.21). Let a € D(k) and b € Dy. Using (5.2), one can easily check that ab € Dy.
Therefore an’ (b) = i (ab) € D(A~1/2?) and replacing b in (5.17) by ab, we get

ﬁ_lman”(b) _ j&—l/zn//(ab) _ n'/(/@M(ab)*)
= 1" (k(a)* &M (0)*) = r(a)" JAT/ 27" (b).
Since {n(b) : b € Dy} is a core for A=1/2, we see that
(5.24) Jr(a)* JA™Y? ¢ A=1/2q,

On the other hand, using (2.2), one can show that 7;/5(a)Q ™' C Q 'a. For z € D(Jp'2JQ ™)
we see that

7i/2(0) Jp2IQ e = Jp 2T 0 (a)Q = JpH2IQ  ax = R-1/24,.
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Hence 7; /o (a)£*1/2 c A=1/2q. Comparing this inclusion with (5.24), we obtain
Tr(a)*J = Tis(a).
Replacing a by k7 1(a), we get
Ja*J = R(a)

for all @ in the range of k. To end the proof we notice that the range of x equal to D(k)* is dense
in A.

Ad (5.22). Remembering that R(W (z,y)) = W(Jy, Jx) (cf. Assertion 2 of Proposition 1.11)
and R(a) = Ja*J, we compute
(Jx ® jz‘W(Jy ® ju)) = (jz‘W(Jx, Jy)ju)
= (jz‘R(W(y,x))ju> = (jz‘jW(y,x)*u> = (u|W(y,x)z)

=yuWEe:z)= (Jx@jz‘(.]é? f)W*(y@u)) )

~ o~

Thus we have W(J @ J) = (J @ J)W™*.
Ad (5.23). By (3.16) it follows immediately from (5.22). O

Remark 5.12. By definitions (5.1) and (5.17), we see that Q* commute with A and J for all
t € R. It implies that @ and A strongly commute and

(5.25) JQJ=Q L.

In Section 3 we used the transpose mapping acting on £(H). It was defined in the following
way :

m' =Jm*J

for any m € L(H). Formula (5.23) shows that this transpose maps A onto itself. Remembering
that T is an involution, we have W T T®d = 1¥/. Comparing this formula with (3.23), we see that
R = T. More explicitly
(5.26) R(b) = Jb*J
for all b € A.
Proposition 5.13. Let n, be a linear mapping from A to H with the domain D(nL) = R(D(n)*) =
{a € A: R(a*) € D(n)} defined by the formula
(5.27) ni(a) = Jn(R(a”)).
Then 1y, is a closed GNS-mapping and the weight corresponding to ny, coincides with h™ = hoR.

Proof. Let a € D(nr) and b € A. Then R(a*) € D(n) and R((ba)*) = R(b*)R(a*) € D(n).
Therefore ba € D(n,) and using (5.21) in the last step, we obtain
i (ba) = Tn(R(V)R(a®)) = TR(")JTn(R(a")) = by (a).

It shows that 1y is a GNS-mapping. The closedness of 7y, follows from that of . To show the last
statement we notice that

(heR)(a*a) < 0o < h(R(a)R(a*)) < o0 & R(a*) € D(n) < a € D(nL).
Moreover, in this case

(heR)(a*a) = [[n(R(a*))|* = | Tn(R@*)I* = |z (a)].

Let
®
(5.25) a(a) =3 s,
k
where a € D(n), be a vector presentation of the GNS map 7 (see Definition B.4 and Theorem B.7).
Then for any a € D(n,) we have:

~ ~ b ~ D~ ~ O ~
n(a) = Jn(R(a)*) =T R(a)'Q =0 JaJQ=> alQy.
k k k
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Clearly

(5.29) nea) =3 adey,

k
is a vector presentation of the GNS map ny. If (5.28) is exact, so is (5.29).

Proposition 5.14. For any a € D(n") we have

(5.30) (a e D(ng)) — (77”((1) e D(Jpl/QJ)) .
If this is the case, then
(5.31) ni(a) = A" 2 " (a).

Furthermore D(n") N D(n}) is a core for ' and ny.

Proof. We know that R is normal. Passing to the weak closures in (5.27), we obtain D(n}) =
{a € M : R(a)* € D(n")} and

nz(a) = Jn"(R(a)").
Using Proposition 5.4, we see that

a€D(n}) and
(n”(a) < D(Jp1/2j)) - ( 4 1/2 7.1
Inz(a)ll = IJp" 2 Jn" (a)]-
Therefore there exists a linear isometry V such that
(5.32) (@) = Vo2 (a)
for any a € D(n") such that 1" (a) € D(Jp'/?J). We have to show that V = \~%/*1.
Let b € Dy (cf. (5.7)). Then 7;5(b) € D(n") and 1" (7;/2(b)) = A/*Q~1n"(b) € D(Jp*/2J).
Replacing a in (5.32) by 7;/2(b) and using (5.1), we obtain
(5.33) 0 (rij2(0)) = N4V I 2IQ M (b) = XAV ATV ().
On the other hand R N
L (7i2(0)) = Ji" ((Romy2(0))*) = T (M (b))
We know that J is an involution. Combining the above formula with (5.17), we get n7(Ti/2(b)) =
A~=1/2)'(b). Therefore from (5.33) we have VA=Y/2p" (b) = A=1/4AA=1/2y/" (b).
By Proposition 5.10 the set {n”(b) : b € Dy} is a core for A=*/2, Hence { “12p(b) 1 b € Dl}
is dense in H, V = A""/*1 and (5.31) follows.
Assume now that a € D(n”). By Lemma 5.6, we see that o', € D(n"’) and
0 (al.) = JTLJn" (a) € D(Jp/2).
Using the part of the proposition proved so far, we obtain aI'c € D(n}) and
ny(al.) = X"V4Tp 2 7 JTL 00" (a).
If moreover a € D(n}), then R(a)* € D(n") and
np(ale) = Jn"(R(ale)") = Jif" (R(a)'Te)
= JJT.Jn"(R(a)*) = JJT.JJn (a).

It shows that R R 4
JITLTTIn (a) = X"V TpY 21T 0" (a).
When ¢ — 0, then JI'.Jn"(a) — 7" (a) and fJF'EJjnZ(a) — 1!l (a). Since Jp'/2J is closed, we see
that 1 (a) € D(Jp'/2J). The proof of (5.30) is complete.
By Lemma 5.8 the set D is a core for 5””. According to definition (5.7), n”(a) € D(Jp*/2J) for

any a € D;. Using (5.30), we see that Dy C D(n}). Therefore D1 C D(n”) N D(n}) and hence
D(n")ND(nY) is a core for . By the symmetry it is also a core for n}. O

With the vector presentations (5.28) and (5.29), formula (5.31) takes the form:
® - , ®
Z aJQy, = )\71/4Jp1/2:] Z ally.
k k
We shall need the following extended version of this formula:
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Proposition 5.15. Let Hi be a Hilbert space, c € M ® L(H1) and y € Hy. Assume that the
vector presentation (5.28) is exact, the series E? c(Q ® y) is norm convergent and that

D
(5.34) > e @y) € DI PT@1).
k
Then
® 7 —i/4 1/2 ©
(5.35) Y Ce(Tu@y) = A (Jp J® 1) Y e o),
k k

where the series on the left hand side is norm convergent.

Proof. We choose an orthonormal basis {es},_; , in H;. Then there exists a sequence {¢s},_; 5
of elements of M such that

(5.36) c(r®y) = Z CsT ® eg

for all x € H. Inserting z = ) and summing over k we get a norm converging double series
@ S2] S2]
S e =Y (z 0y ) |
k s k

In particular for all s the series 3 ¢ ¢, are norm convergent. Therefore (cf. Definition B.6)

¢s € D(n") and
53] @
Z C(Qk ® y) = Z ”(Cs) ® es.
k s
Assumption (5.34) shows now that n”(cs) € D(Jp/2.J) and ¢, € D(n}) for all s. Now we have:

(A0 1) 3 el w0 y) = 30N R ) @ e = 3 e @ e
k s ®

- Z@Z@csfﬂk Qes = Z@C(ij ®y),
s k

k
where in the last step we used (5.36). O

We end this section with the following interesting

Theorem 5.16. The correspondence
(a®1)6(b) — d(a)(b® 1),

where a,b € A, extends to a closed linear mapping acting on A ® A.

Proof. The statement follows immediately from the formula
(5.37) (@ 2|(a®1)3(b)|W(y @u) = (W(x ® JQ'u) ‘5(a)(b ®1) ‘y ® sz) ,

that holds for all a,b € A, z,y € H, z € D(Q) and u € D(Q 1) (the reader should notice that
each of the vectors © ® z, W(y®@u), W(z ® JQ u) and y ® JQZ run over a linearly dense subset
of H®H).

To prove (5.37) we start with the formula (3.14) proving the manageability of the Kac-Takesaki
operator. The right hand side may be rewritten in the following way:

(z@z|W(you) = (JyoQz[W*(Jr®Q 'u))
(J & D)y @ JQz)|W*(Jr© Qu))

(J o DHW*(Jz o Q! ‘y@JQz)

(
((
(W e JreQ u|ye JQz)
(

x®JQ u‘W* Yy JQZ))

where in the fourth step we used (5.22). Replacing in the above formula = by a*z and y by by we
obtain R R
(z@zlee)WEelyou) = (vo JQ_lu‘(a ® )W (b 1)‘3/ ®JQz)
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and (5.37) follows (cf. (3.7)).

6. A GNS-MAPPING ON A

One of the aim of this paper is to show that (ﬁ, g) is a weighted Hopf C*-algebra. To this
end we have to introduce a right invariant weight hoon A. Tt will be related to a GNS-mapping
77: A — H. However the definition of 7 is not simple. We start with the following technical result,
in which the commutant 1’ of the GNS mapping 7 is used.

~

Proposition 6.1. Let z € D(F). Then for any a, b € D(n) and z, y € H we have :
(6.1) (z@ylW(az @/ ®) = (byen'@W (Fzew).

Proof. We may assume that z = n”’(¢) for some ¢ € Dy. Then Fz= 7" (k™ (c)*) by Proposition
4.3. Furthermore, we may assume that z, y € D(Q) and 7/(a), 1'(b) € D(Q~!). For any d € A
we set

p1(d) = (zldn'(a), ¢2(d) = (@' (a)|R(d)Qu)

di(d) = (yldn' (1),  Wa(d) = (Q~ "0 (0)|R(d)Qy).
Then p1, 2, V1, P2 € As, p2 = piok, 2 = Yjor and hence by (1.9) W = W, and W) = Wy,.
With this notation, the left hand side of (6.1)

LHS = (0'(c)[Wya"z) = (Wy,n"(c)la"z) = (0" (b2 * ¢)|a"x)

= (an" (Y2 x c)|x) = (b2 * o) (a)|z) = 1 (Y2 % )
= (p1*92)(c),

where ; * 1y € A,. Replacing in the above computation x, vy, a, b, ¢ by y, x, b, a, M (c)*
respectively, we see that ¢ * o € A, and the complex conjugate of the right hand side of (6.1)
equals (11 * @2) (kM (c)*). For the proof of (6.1) it remains to show that

(%1% 02) (M (0)") = (101 % ¥2) ().

Since
(‘wqbl*WQ)* = (“qﬂlllcpz)* = Il{;2liﬂzl = I¢<p1‘16¢2 = Li{ﬂl*¢2a

M|A_

we have @1 * 1y = (¢1 * p3)*ok by Proposition 2.9. Hence (1 * p2)*ox = (Y1 * pg)*ok is

o-weakly continuous. It shows that
(1 % 02) (M (€)*) = (1 * 2)* (M () = (Y1 * p2)*owM)(c)

= (¥1 % p2)*or(c) = (w1 * ¥2)(c)
and (6.1) follows. O

Relation (6.1) may be rewritten in the following way :

* / — * * 3
(y|W(Z,a x)n (b)) - (b Y mem’(a)FZ)

W(z,a*z)n'(b) = bW n,(a)ﬁz.
This relation holds for all b € D(n’). Therefore
W(z,a*z) € D(n") and 7" (W(z,a*z)) =W}

It shows that

z,n/(a)

Remembering that W(z,a*z) € A and 1|4 = 1, we obtain

~

Proposition 6.2. Let 2 € D(F), a € D(n) and x € H. Then W(z,a*z) € D(n) and
Wz, a'a) = W3, P
It should bAe remarked that the vectors on the right hand side form a dense fubset of H. Indeed,
the range of F'is dense in H, the set of operators Ws. e is dense in A and A is a non degenerate
C*-algebra acting on H.
Let ® be the set :
® ={(z,y) e HxH:W(z,y) € D(n)}.
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By Proposition 6.2 and the above remark, ® is dense in H x H and {n(W(z,y)) : (z,y) € ®} is
dense in H. Therefore the relation

(6.2) (ylaz) = (n(W(z,y))|z) forall (z,y) € .

gives a one to one correspondence between elements a € A and vectors z € H. This correspondence
will be denoted by 77 : we write

z =1)(a),
if the relation (6.2) holds. Clearly 7l is a linear mapping from A to H and the domain D(7}) consists
of all elements a € A such that there exists z € H satisfying (6.2).

Let p € A*. We say that ¢ is L2-bounded if there exists z,, € H such that

p(a) = (z¢[n(a))
for all a € D(n).

Proposition 6.3. Let ¢ € A* be an L?-bounded functional. Then ¢ is o-weakly continuous.

Proof. At first we notice that for any b € D(n) the functional by is o-weakly continuous. Indeed
for any a € A, ab € D(n) and

(bp)(a) = p(ad) = (zg|n(ab)) = (zp|an(b)).

The set of o-weakly continuous functionals is norm closed. Inserting b = e, (where {e,} is an
approximate identity for A) and using Appendix A, we see that ¢ is o-weakly continuous. d

Remark that the set of all L2-bounded functionals is norm dense in A, (cf. the proof of Assertion
1 of Proposition 6.5).
Theorem 6.4.

(1) The domain D(7) is dense in A and the range of 7 is dense in H.
(2) The set D(7) is a left ideal in A and 7j(ba) = bij(a) for allb € A and a € D(7)).
(3) The mapping 7 of A to H is injective and closed with respect to the strong topology on A

and the norm topology on H.
(4) Let @ be an L?-bounded functional on A. Then Wi € D() and (W}) = z,.

Proof.
Ad 4. Using Proposition 6.3 we see that ¢ € A, and hence W, € A. For any (x,y) € ® we have

WWwoz) = (@[Wey) = o(W(z,y))
= (zpln(W(z,9))) = (W (z,y))l|z,)-
It shows that W € D(7) and (W) = 2.
Ad 1. Now, let y € H, ¢ € D(n') and
(6.3) o(b) = (y|bn'(c)) for be A.

Then ¢ € A, and for any b € D(n), p(b) = (c*y|n(b)). By Assertion 4, W7 € D(7) and (W) =
c*y. The set of functionals ¢ of the form (6.3) is linearly dense in A,. Therefore D(7) is dense in
A. Moreover, the set of vectors of the form ¢*y (where ¢ € D(1)') and y € H) is dense in H. So is
the range of 7.

Ad 2. Let (z,y) € ® and ¢ € A,. Then for any ¢ € A* we have
o W(z,y)) (W @)W (z,y)) = (@[ Wyspy)
= (z|WyWoy) = (W (z, Wyy)).

It shows that ¢ * W(z,y) = W(z, W,y). Since W(z,y) € D(n), we see that W(z, W,y) € D(n).
Hence (z, W,y) € . We also have

n(W(z, Wey)) = Wen(W(z, y)).

Let a € D(7). Then for any (z,y) € ® we have (n(W(x,y))|n(a)) = (y|lax). Replacing (z,y) by
(2, Wyy) we obtain

(Wen(W (2, y))[1(a)) = (Weylaz).
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Therefore (n(W(z,y))[Win(a)) = (y|Wiax). It shows that Wia € D(7)) and (W ia) = Wii(a).
Remembering that {W3 : ¢ € A} = {(id® o)(W*) : ¢ € L(H).} is dense in A (cf. (3.16)), we
obtain Assertion 2 in full generality.

Ad 3. Tt follows immediately from (6.2). O

In this way we have shown that 7 : A—Hisa closed, densely defined GNS-mapping. In what
follows 7' : A" — H will denote the commutant of 7).

If ¢ € A* is L*-bounded, then according to Assertion 4, W € D(7)) and @(b) = (7(W})|n(b))
for any b € D(n). Remembering that ¢ is o-weakly continuous (the same letter will denote its
o-weakly continuous extension to A”) and that n” is the extension of n with D(n) being a core for
7’ (cf. Theorem B.2), we obtain

(6.4 o(8) = OV " (1))

for any b € D(n”). Let

(6.5) Ay = {W; D, pfok € A® and ¢, p*ok are L2—bounded}
and

(6.6) A = {W; tp, p*or € A* and ¢ is L*-bounded} .

Proposition 6.5.

(1) Ay is a norm dense linear subset of A.

(2) Ay is a *-subalgebra of L(H).

(3) Ay C D(7) and 7(Ay) is dense in H.

(4) Ifa € Ay, then 7j(a) € D(F*) and F*7j(a) = 7i(a*).

Proof. Clearly A\O - ﬁl. Assume that ¢, 1 are L2-bounded functionals in A* such that ¢*ok,
1*ok € A*. Then using (1.7) and (1.9) we obtain

W W5 = (WyWeron)* = Wi, (pron) »
WQPWIZ = thWw*OH = Ww*(w*%)'

Let p = ¢ * (p*ok). Using Proposition 2.9, we see that p*ok = @ * (¢p*ok) € A*. We shall prove
that p and p*or are L2-bounded. Let a € D(n). Then (cf. (1.5)) (p*ok) x a € D(n) and

pla) = (= (por))(a) =Y((¢ oK) x a) = (z¢[n((¢ oK) * a))
= (2g|Weronn(a)) = (Wpzpln(a)).

Hence p is L?-bounded. Exchanging the role of ¢ and 1 in the above argument, we see that p*ox
is L2-bounded. Hence WWy, =W, € Ag. In this way we showed that

(6.7) ArA, C Ay C Ay

Ad 1. Let y € D(Q) and ¢ € D(n’) such that n'(c) € D(Q™') and ¢ = wy (). Then for any
a € D(n) we have
(6.8) p(a) = (ylan'(c)) = (ylen(a)) = (c"yln(a))-
It shows that ¢ is L?-bounded. On the other hand, ¢* = Wy (e),y and
TR = Wyr(e) y°Tis2oR = Wo-14y(c),0y° R € A™.
Therefore W$71.77/(c) € A;. One can easily check that the set of functionals Wy (b)) (Where b and

¢ satisfy the above condition) is linearly dense in £(H). by Proposition 4.2. Hence A; is dense in

~

A (cf. (3.16)). The first inclusion in (6.7) shows now that Ay is dense in A.
Ad 2. It W7 € Ag, then Wieo, € Ay and Wy = W3, by (1.9). Hence Ay is invariant under

the involution. Formula (6.7) shows now that Ay is a subalgebra.

Ad 3. Statement 4 of Theorem 6.4 shows that A; C D(7). Let y, c and ¢ be as in the proof of
Assertion 1. Using Assertion 4 of Theorem 6.4 and formula (6.8) we see that

(69) AOVZ, ) =<0

Using Proposition 4.2, we find that 7(A;) is dense in H. So is 7(Ag); by (6.7), 7(Ay) contains
(AT A) = AJij(Ay).
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Ad 4. Ifa € 20, then a = W7 and a* = W, where ¢, ¢ are bounded and L?-bounded
functionals on A such that ¢ = ¢*ox. Remembering that ¢ and ¢* are o-weakly continuous and
that M is a closure of x, we see that 1(b) = ¢*ox™ (b) for any b € D(xM).

Let b € Dy (cf. (5.2)). Then b, s (b)* € D(n"") and using (6.4), we have

(" (5™ (6)")[77(a)) p(M (b)) = ¢* (™ (b))
= ¥() = ({(a”) " (0)).

Since {n”(b) : b € Dy} is a core for F and Fn”(b) = n" (kM (b)*), we obtain 7j(a) € D(F*) and
F*ij(a) = (a*). A
Remark 6.6. To show that 121\07'[ is dense in H we suppose that x € H is orthogonal to W, ()
for all b,c € D(n') with n'(b) € D(Q) and 7/(c) € D(Q~'). Then

0 )W (g2 (©) = (WS, yla) =
and hence W(y,z) =0 for all y € H. Using Proposition 3.2 we see that

”xH21_ ZW en, )" W(en,z) =0
neN

and z = 0. Thus AgH is dense in H and hence Ay7j(Ap) is dense in 7(Ay).

Proposition 6.7. Leta € E(H) and z € H. Then the following three conditions are equivalent :
(1) aGD(A) andn (@) =
(2) For any be Ay,

(6.10) bz = an(b).
(3) (z,z) € ® and n(W(z,z)) =a*x for all z € H.

Proof. Ad 1 = 2. It is clear.

Ad 2= 3. Let y, c and ¢ be as in the proof of Assertion 1 of Proposition 6.5. Then W7 € A.
Moreover, ¢(a) = (c*y|n(a)) for all a € D(n) and H(W}) = c*y by (6.9). Replacing b by W in
(6.10), we obtain

Wiz =ac*y.
Let x € H. Then
WIW (z,2)n(c)) = p(W(2,2)) = (Wz|z) = (ac™y|z) = (y|ca )
for all y € D(Q). Therefore W(z,z)n'(c) = ca*z for any ¢ € D(n’) such that n'(c) € D(Q™1).
Using Proposition 4.2, we see that W(z,z) € D(n”) (hence (z,2) € ®) and 0" (W(z,z)) = a*z.
Since W(z,z) € A and n”"|A =1, we see that W(z,z) € D(n) and n(W(z,z)) = a*x for all x € H.
Ad 3 = 1. Assume that (z,2) € ® and n(W(z,x)) = a*z for all x € H. Let be D(7). Then

(zfan(d)) = @ [A(0)) = (n(W (z,2)) b)) = ([b2),
and hence we have bz = 677(3) for all b € D(7). Thus a € Al Ge D(7') and 7' (a) = . O

Corolliry 6.8. The set Ag is a core for i (resp. 0" ) with respect to the strong topology in A
(resp. A" ) and the norm topology in H.

Proof. Let 7o = 7| 4,- By Proposition 6.7 (equivalence of the first two conditions), the commutant
of Mo coincides with 7’. Therefore 7jj = 7. By Theorem B.2, Ay = D(7o) is a core for 7”.
Consequently it is a core for 7). D

Now we shall show that the operator A introduced in (5.1) is the dual modular operator. Let
a, b € D(77'). By Proposition 6.7, W(7'(a),n/ (b)) € D(n) and

n(W (@ (a),7 (b)) = ™7 (b).
Exchanging a and b, we see that W(7)(b),7’(a)) € D(n) and n(W (7' (b),7'(a))) = b*7'(a). More-
over, by Proposition 2.4, W (7 (a), 7 (b)) € D(x) and k(W (7 (a), 77 (b)))* = W (7' (b),7(a)). Let Dy
be the subset of A” introduced in ( 2). Then W (7 (a), 7' (b)) € Dy, and using (5.19), we see that
a*7 (b) € D(F) and

(6.11) Fa*i (b) = b*7 (a).



A C*-ALGEBRAIC FRAMEWORK FOR QUANTUM GROUPS 39

We shall use the Tomita-Takesaki theory for the von Neumann algebra A" and the GNS-mapping
7. In particular, St and Fr (the subscript T refers to Tomita-Takesaki) will denote the left and

the right involution operators, respectively. By definition, the linear span of {Z*ﬁ(a) : a, be D(ﬁ)}

is a core for St and

(6.12) Srb* (@) = ai(b).
Similarly the linear span of {b*7'(a) : a, b € D(i}')} is a core for Fr and
(6.13) Frb*i (a) = a*7 (b).

It is known that Fp = 55‘2 Formula (6.11) shows that Fp C F.

Theorem 6.9. The operator F introduced by (5.19) coincides with Fr.

Proof. We have to show that FCFr. Letaze D(ﬁ ). Let us consider linear operators
T :7(a) — ax,

(6.14) R .

T° : 7j(b) — bFx,

where a and b run over Ay. By Statement 3 of Proposition 6.5, the domains D(T) = D(T") are
dense in H. R R

According to Assertion 2 of Proposition 6.5 a*b, b*a € Aq for any a, b € Ay. Using Assertion
4 of the same proposition, we have

(A(b)|T(a)) = (7(b)laz) = (A(a*b)|z) = (F*7i(b"a)|x)
= (Falij(b*a)) = (bFalij(a)) = (T°7(0) if(a)-
It shows that T° C T*. Therefore T* is densely defined and T is closable. In what follows 7' will
denote the closure of the first operator in (6.14). Replacing a by b*a in (6.14), we obtain
Tv*1(a) = TH(b*a) = b*ax = b*T7(a)
for any a, b € ﬁo. It shows that b*T" C Tb*. Using this formula, one can easily show that T is

affiliated with the von Neumann algebra A
Let f be a continuous function on R, such that {tf(tQ) 'te IR+} is bounded, and Ty =

Tf(T*T). Then Ty € A Tyy = f(IT*)Ty for any y € D(T), and Tjz = f(T"T)T*z for
any z € D(T*). Replacing y by 7j(a), we obtain
Tin(a) = f(TT")ax = af(TT™)z.
This formula holds for all a € Ag. Then Proposition 6.7 shows now that T r € D(@) and 7' (Ty) =
f(T'T*)x. Similarly, replacing z by 7(b), we obtain
T57j(b) = f(T*T)bFa = bf(T*T)Fa.
This formula holds for all b € Ag. Then Proposition 6.7 shows now that T F D) and 7 (T}) =
f(T*T)Fz. Combining the two results, we see that f(TT*)x € D(Fr) and
Frf(TT*)x = f(T*T)Fx.
Making f converge to the constant function 1, we see that x € D(ﬁT) and Frz = Fz. Thus we

have I C ﬁT. The converse inclusion ﬁT C F has already been known. O

Theorem 6.10. The operators A and J (introduced by (5.1) and (5.17) respectively) coincide with
the modular operator and the modular conjugation operator related to the GNS-mapping 0. In
particular,
JA'] = A,
Eit;[//ﬁ—it _ A\//
hold for all t € R.

Proof. See formula (5.18). O
Proposition 6.11. A” N A" = C1.

Proof. We know that JA”J = A and JA"J = A” (cf. (5.21)). Therefore J(A” N A")J = A" N A/
and our assertion reduces to Statement 3 of Proposition 4.7. 0
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Proposition 6.12.

(1) p* € M(A) fort € R and the mapping t € R — p'* € M(A) is strictly continuous.
(2) o(p") = p" @ p" fort € R.
(3) The operator v in Proposition 4.5 is a scalar multiple of the identity.

Proof. Ad 1 and 2. At first we shall prove that

(6.15) §M (pity = pit @ pit.

Since At = JptJQ%t for t € R and AJA\J :Aﬁ by (5.23), it follows that p* = JA#Q-2it ]
implements an action of R on A” : p~# A" pit ¢ A”. Therefore the right hand side of the equation
(6.16) (p~ " @M (") = (p " @ )W (p" © YW,

commutes with A’ ® 1. The left hand side clearly commutes with A’ ® 1. Since A” N A" = C1
by Proposition 6.11, the element in (6.16) is of the form 1 ® v; for some unitary v;. Hence
M (p™) = p' ® vy. It is easy to see that {v;},p is a strongly continuous one parameter unitary
group. Now we use a formula §MoRM = go(RM @ RM)o§M . Since RM (p') = p~* by Proposition
4.6, we find that 6 (pt) = RM (v_;) ® p'*. Thus p"* @ v, = RM (v_;) ® p'’. Therefore v; is a scalar
multiple of p’*. Hence there exists a positive scalar u with v; = p#p?. Inserting this v; to the last
formula, we get p =% = 't for all t € R. Hence we see that 1 = 1 and v; = p™.

Now formula (6.16) takes the form 1 ® p* = (p~% @ 1)W (p" @ 1)W*. All the factors on the
right hand side belong to M (K(H) ® A) and depend continuously on ¢ € R with respect to the
strict topology. Therefore p?* € M(A) and the mapping t — p is continuous with respect to the
strict topology. At this moment one can erase the superscript M in (6.15).

Ad 3. Due to (4.12) and (4.13) we have: o4(p") = 7¥tp' and 74(p') = p® for all t,s € R.
Taking into account Assertion 2 of Lemma 4.3 we compute:

3(v1)d(p™) = (v p™) = d(04(p™))
=(0s® TS)((s(pit)) = US(pit) ® TS(pit)
— ,yistpit ® pit — (,yist R 1)5(pzt)

Thus we get §(7*!) = ¥ ® 1. Using Proposition 4.7 we get 7! € C1. Hence 7 is a positive scalar
multiple of the identity. O

In short, Assertion 1 of Proposition 6.12 means that p and p~! are affiliated to the C*-algebra
A. Assertion 2 says that d(p) = p ® p. In other words

(6.17) W(ipe)W*=pp.

Proposition 6.13. We have

(6.18) y=A"11,

where X is the constant appearing in Definition 1.5.

Proof. We shall use the first formula of (4.12). It shows that os(p) = 75tp for any s,t € R.

Therefore p™ is entire analytic for {o,}, g and o;/2(p') = y~/?p'*. By Theorem D.7, bp'* € D(n)
and

7 P(bp™) = T (p)" In(b) = Jp~ " In(b)
for any b € D(n). Now we have:
A~(b) = Q7" Jp~In(b) = v'2Q M (bp') = (M) *n(r—i(bp™)),
where in the last step we used (2.1).
Let ¢ € A* be L?-bounded. Taking into account (6.4) we get:

(B3 |nm)) = (AW)|A=n(b)) = )2 [GV) |n(r-o(bp™)
= (M) 2p(r—1(bp™)) = (M) (p™or—¢) (b).
This formula holds for all b € D(n). It shows that pifpor_; is L2-bounded and that
AMOVE) = ) 20Wiagor,)-

pit @OT_¢
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On the other hand, according to the Tomita-Takesaki theory (Statement 1 of Theorem D.6

A“ﬁ(W;) = 1(0¢(W3)), where 7 is the modular automorphism group related to the weight

associated with 7 (see (7.1) in the next section). Since 7 is injective, we get

FiW3) = ()W

pitpor_¢*

)
h

Remembering that o; and 7, are implemented by At and Q*"* we obtain

(id® ) (A" @ WA~ © 1)) = (\)"/2(id @ (o' por—e)) (W)
= (W) 2o e) (1o QW (1 Q> p")).
Hence we have N ‘ N o
(Azt ® ()\,y)—t/QQ%t)W — W(Azt ® Q2ztpzt).

In this formula, all entries except (\y)~*/? are unitary operators. Therefore |(Ay)~*/?| = 1 and
y=A"11. O
Remark 6.14. Notice that the last formula of the above proof reduces now to
(619) (ﬁzt ® Q2it)W _ W(ﬁzt ®Q Q2itpit).

At the end of this section we investigate the behavior of the right invariant Haar weight with
respect to left translations. In the following proposition we use a vector presentation of the GNS

ma .
pn o
n(a) = afy
k

for any a € D(n). Then (cf. (3.11)), W(n"(a) @ y) = 3,7 6(a)(% @ y) for any a € D(n") and
y €H.

Proposition 6.15. Let a € D(1") and © € D (p'/?). Then

(6.20) S Y s(a) @) = (T HW (T e J) (p2z @1 (@)
k

Proof. We may assume that a € D(n”") N D(n}) (by Proposition 5.14, the latter set is a core for
7"). Using (5.31) we obtain:

%% (ng(a) ® fpl/Zx) =W (/\’i/4Jp1/2J77”(a) ® jp1/21:>
= AT W™ (p1/2 @ pt/?) (Jn"(a) ® x)
= AT @) (p? @ 1) WH(Jn" (a) @ z)
= (AT 2T @ 1) W (i (a) ® Jx)
= (1727 21) Y ey (k@ Ta) = 3 6(a)(T @ Ta).
k

k

In this computation we used in the second and fourth steps formula (5.22) and in the third step
formula (6.17). At the end we used Proposition 5.15. It shows that the last series is convergent.

Replacing in the above formula a by R(a)* we obtain
~ ~ @ ~ ~
W (Tn"(@) © Tp22) = 32 6(R()) (T4 © Jx).
k

and

RN ~ o) ~ —~
W (Jpl/% ® Jn"(a)) =37 008(R(a)*) (T © T),

k
where o denotes the flip acting on A ® A. Using Assertion 1 of Proposition 2.6 and formula (5.21)
we obtain:

oo8(R(a)*) = (R® R)§(a*) = (J @ J)d(a)(J @ J).

/W* (jpl/Q.%‘ ® jn//(a)> _ Z
k

Therefore
@ ~

(J ® J)8(a)(z @ Q)

and (6.20) follows.
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Proposition 6.16. Let ¢ € A% and b€ A,. Assume that p(p) < oo and h(b) < oo. Then
(6.21) h(b* @) = @(p)h(b).

It shows that p is an analogue of the modular function on the group. It says, how the right
invariant Haar measure transforms under left shifts.

Proof. Let a = b'/?. Computing the norm of the both sides of (6.20) we obtain:
2
> 5@ @ )P = [0/ ha*a) = wrn(p)(D).
k

On the other hand

Z 6(a)(z @ Q)|* = Z (@ Qlo(aa)|z @ Q) = Z (e |b* Wa o | ) = h(b*wy z).
i k k

So we proved (6.21) for all ¢ of the form w, , (z € D(p'/?)) i.e. for all p € A*+ with ¢(p) < co.

Let ¢ € A%. By the GNS construction one may assume that ¢(b) = (Q, |7 ( ) for any b € A.
In this formula 7 is a representation of A acting on a Hilbert space and ng is an element of this
space. Applying the method developed in the proof of Theorem 3.9 to formula (6.20), one may
show that

ZGB (7 @id)d(a)(Q, @ Q) = (7 @id)(J © JYW*(J @ J) (ﬂ(pl/Q)Qq, ® n"(a)) .
k

Computing the norm of the both sides we obtain (6.21) in full generality. The details are left to
the reader. g

7. DuAL WEIGHTED HOPF C*-ALGEBRA AND DUALITY

In Section 3, applying Theorem 3.8 to the multiplicative unitary W, we introduced the proper
C*-bialgebra (/T 3\) with cancellation property together with the unitary antipode R and the scaling
group {Tt}teR actmg on A. In Section 6 we constructed the closed densely defined GNS map 7
from A into H. Let h be the locally ﬁmte lower semicontinuous weight on A related to the GNS
map 7 by Theorem C.3: for any b € A we have

(1) A(bD) = { (#7(b) [7(b)) if b € D(7)
+00 otherwise.

Let a € D(7") and 7"(a) = 0. Then there exists a sequence {an}, y of elements of D(7)
converging strongly to a such that the sequence {7(an)},cy converges in norm 0. Taking into
account (6.2) we obtain: (y|az) = (n(W(x,y))|z) = 0 for all (z,y) € ®. Remembering that & is
dense in H x H we see that a = 0. It shows that 7 is injective. Taking into account Lemma C.5
we conclude that A is strictly faithful.

We shall prove that (A (5) is a weighted Hopf C*-algebra with h playing the role of the rlght
Haar weight. To this end we shall use Theorem 3.9 with A, 6, R, 7, h and W replaced by A 6 R T, h
and W = SW*Y respectively. With this replacement formulae (3.24) and (3.25) take the form:

(7.2) i ((a e 9)3v) = ((de )W) i)
and
(7.3) (id ® por)W = (id ® @) (W*).

We have also to verify that for all t € R,
(7.4) hot, = A'h,
where A > 0 is a fixed number independent of ¢.

Lemma 7.1. Let ¢ € A* and b € D(7)). Then (id ® cp)g(b) € D(n) and formula (7.2) holds.
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Proof. According to Corollary 6.8, the set A\O (cf. (6.5)) is a core for 7). Therefore we may assume
that b = W where 1 is a L?-bounded functional on A*. Applying id ® id ® ¥* to the both sides

of (3.21) we get g(b) = (ild®id ® ¥*) (Wi5Was3). Setting d = (p ® id)(W*) € M(A) we obtain
(id ® )d(b) = (id ® ¢ @ ¥*) (W5 W)

= (i[d®@y*)(W*(1®d))

= (id® dy*)(W*) = W
We have to show that
(7.5) Wi €D@) and ﬁ(W;d*) = di(b).
We shall use formula (6.4). For any a € D(n), we have

(¥d*)(a) = ¢(d*a) = (HW])[n(d"a)) = (dn(Wy)In(a)).

Now, (7.5) follows immediately from Assertion 4 of Theorem 6.4. O

Lemma 7.2. Formula (7.3) holds for any ¢ € A* such that or € A*.

Proof. Let ¢ € L(H),. Formula (3.18) applied to the manageable multiplicative unitary W shows

that (1) ® id)(W) € D(%) and

R((y @id)(W)) = (¢ @ id)(W™).

Therefore we have

o~ o~

P((id © por)(W)) = (por) (¢ @ id)(W))
= o((w @ id) (W) = ((id @ @) (W)
and (7.3) follows. O
Formula (7.4) with X = A~! follows immediately from the following
Proposition 7.3. Let b € D(7)). Then 7¢(b) € D(1)) and
(T (b)) = A~ 2Q*"7(b)
for allt € R.

Proof. Assume that b € D(7}). Then

(7.6) (ylbx) = (n(W (z, y))[7(b))

for all (z,y) € ®. Let t € R. According to the second assertion of Lemma 2.8, 7_+(W(z,y)) =
W(Q~2"z, Q~2"y). Formula (2.2) shows now that (Q~%"z, Q~?"y) € ® and

n(W(Q 2, Q7"y)) = A\72Q ™" n((W(z,y)).
Replacing (x,y) in (7.6) by (Q %"z, Q~?"y), we obtain
(YI7:(0)z) = (n(W () |]A /2 Q"7 (b))
for all (z,y) € ®. Tt shows that 7;(b) € D(7) and 7(7:(b)) = A~H/2Q%*7(b). O
Using now Theorem 3.9 we get

Theorem 7.4. The C*-bialgebra (21\, g) is a weighted Hopf C*-algebra with antipode K, Haar weight
h and scaling constant A equal to the inverse of the corresponding constant A for (A,9).

o~ o~

By definition (A, d) is the dual of the weighted Hopf C*-algebra (A, d). It is easy to see that
the passage W —— W is involutive:
W=SW*s =% (SW*S)" S =W.
Therefore we have the following

Theorem 7.5 (Duality). The dual of the dual of a weighted Hopf C*-algebra is isomorphic to the
original weighted Hopf C*-algebra.
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Developing the theory of weighted Hopf C*-algebras we constructed a number of objects related
to a given weighted Hopf C*-algebra (A, ). We list some of them in order of appearance:

K? h? T) R) )\7 H7 "77 Q7 A) J7 W A\’ /6\7 R? ?7 3’ j and ﬁ'
Clearly the corresponding objects related to the dual weighted Hopf C*-algebra (//1\, 5A) equals:
R 7 RoA=AY M, 5, Q, A, J, W=SW*S, A, 6 R, 7, A, J and n.

The objects dual to p and v will be denoted by p and 7, respectively. Many of the formulae appear-
ing in the paper form dual pairs. The examples are: ((3.8),(3.21)), ((5.25),(2.4)), ((5.26),(5.21)),
etc. The formulae (5.22), (3.9), (7.7), etc. are selfdual.

Proposition 7.6. Let ﬁrel be the relative modular operator determined by the weight h and the
weight h o R (Aye) is the object dual to Ayer). Then

(7.7) A @A =W(A® A) W™

Proof. We start with formula (6.17). Applying to the both sides Ad ; 7 and using (5.22) we obtain
W*(JpJ @ WW = JpJ @ JpJ.

Combining Proposition 4.6 with (5.21) we see that JpJ = p~!. Therefore

(7.8) W*(JpJ @ )WW = JpJ @ p~ L.

We shall also use the dual formula
We(JIpJ @ W)W = JpJ @ p L.

By easy computation it reduces to

(7.9) W*(p ' @ Jp)W =1 JpJ.

Let t € R. Rising both sides of (7.8) and (7.9) to the power —it and multiplying side by side the

two equations we obtain

Remembering that W commutes with Q ® @ we get

(7.10) W*(intJb\itQQit Q jﬁ«ithZit)W = Jpt Q% ® pz'tjﬁithzz‘t_

Formula (5.1) shows that JpJQ2* = A®. By duality Jp*JQ2%* = A®. Consequently,
by (4.14) and (6.18) we have pJpitJQ?%*"t = pitAHl = 'y‘”z/QAiél = /\itz/zAiél. By duality
pitIpitJQt = A=#/2Ait - Replacing t by —t and taking hermitian conjugation we obtain
JptJQ¥tpit = Xi*/2Ait - We know (cf. (4.13)) that p is 7-invariant. Therefore it commutes
with Q. So does p (duality!). Therefore Jp®.JptQ?*t = )\“2/2Aitel. Inserting these data into (7.10)

we obtain:
W*(Afrtl ® Azt)W — Ait ® Ait

e rel

and (7.7) follows. O

We end this Section with an explicit formula for the relative Tomita-Takesaki operator Sye. By
definition Sy is a closed conjugate linear operator acting on H such that

Sretb™n(a) = a*n(b)
for any a € D(n’") and b € D(n}). The self-adjoint part of the polar decomposition of S,e1, denoted
by A2 has been already investigated in Section 4. Let Jy be the antiunitary part of this

rel »
decomposition:

Srel = JrelAl/z

rel *

We shall prove that Jei = A™"/8J. Let a € D(n") and b € D(n}) N D(n"). Then we have
Tl (b) = J I Srab " (a) = JAL b " (a)

I rel rel
— ’Yi/SJpl/QAl/Qb*nN(a) _ vi/8Jp1/2Ja*n”(b)
— ,yi/8>\i/4ng(a*b) _ )\i/Sa*n/é(b)’

where we used (4.15) in the third step, (5.31) in the fifth step and (6.18) in the last step.
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Now we notice that due to the last statement of Proposition 5.14, a*n/ (b) runs over a dense

subset of H. Therefore JJ%, = A/®1, Jyq = A~¥/8J. In this way we showed that
(7.11) Sl = AT/BTALZ,

rel

8. QuaNTUM CODOUBLE

In [22] P. Podles and the third author of the present paper have introduced the so called ‘double
group construction’. It was the construction dual to the quantum double of Drinfeld [6]. In this
section we describe this construction within the framework of weighted Hopf C*-algebras. The
weighted Hopf C*-algebra (B,d7) arising with this construction is built of a weighted Hopf C*-
algebra (A,8) and its dual (A, g) We shall call (B,§P) the quantum codouble of (A4,§). The
theory presented in [22] deals with the case of compact (A,d) (and discrete (4, ).

A weighted Hopf C*-algebra is said to be unimodular, if the right Haar weight is left invariant.
Then heR = h.

Let (A,4) be a weighted Hopf C*-algebra, (A, S) be its dual and W € M(A ® A) be the Kac-
Takesaki operator related to (A,d). We shall consider the twisted flip oy acting from A® A to
A® A defined by

ow = ooAdy~ = Adyo0

where o is the flip map: o(b®a) = a®b for any a € A and b € A. Then oy € Mor(A® A, A® A).
The quantum codouble of (4, d) is by definition the pair (B, §?), where
B=A®A
68 = (id ® ow ®id)e(8 ® 6).
In the second formula 6 ® 6 € Mor(A® A, A® A® A® A) = Mor(B,A® A® A® A) and

id@ow @id e Mor(A® AR AQ AJLA© A A® A) = Mor(A® A® A® A, B® B). Therefore
6B € Mor(B, B ® B). We start with the following

Proposition 8.1. The pair (B,§7) is a proper C*-bialgebra with the cancellation property.

Proof. Clearly B is a separable C*-algebra. Using formulae (3.8) and (3.21) one can easily verify

that
&) (6 ®id)ow = (id ® ow)(ow @id)(id ® J),
' (id ® O)ow = (ow ®1id)(id ® ow ) (8 @ id).

Now the coassociativity of §Z follows from a simple computation. For details see [22, the proof of
Theorem 4.1].

For any subset E C M(B ® B) we denote by CLS {E} the norm-closed linear span of E. To
prove the properness and the cancellation property we have to show that CLS {53 (B)(1® B)} =
CLS{(B®1)6%(B)} = B® B.

We know that the set 9(A4)(1 ® A) is a linearly dense subset of A ® A. Therefore

W, (52) @ 5(4)) Was(10 A0 1® A)} 5y
= S5 CLS { W3, (3(A) @ 6(A) (1@ A)) Was(1@ A 1@1) | T
= S5 CLS { W3, (3(A)

CLS {68(B)(1 ® B)} = ¥a5CLS { W, (

®A®A) W23(1®A®1®1)}223
— 3,5CLS {W23W12 (A R1I®A® A) WiWas(10 A1 1)} Tos,

where in the last step we used the formula g(b) = W(b ® 1)W* The pentagonal equation implies
that Wi, Wag = W13 W, W5, Therefore using in the second step the formula (A®@ A)W = (A® A)
we obtain

CLS {63(B)(1® B)} = £23CLS {Wz*swlz (2® I1®A® A) WisWh,Wi(190 A1 1)} Y3
= 355CLS {W;3W12 (2@ 19 A® A) WiWs(1leAele 1)} Sos
= Y3 W5, CLS {( A oAeA)(leivle 1)} Wiy Das.
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We know that the set 3(21\)(1 ® A\) is a linearly dense subset of A ® A. Therefore
CLS {05(B)(1® B)} = Sa3Wi5(A® A® A® A)W3as

=03 (AR AR A® A)Sas
—A®A®A®A=B®B.
In the similar way one can show that CLS{ B®1)§3(B } B® B. O

Let n, i and 17, be the GNS maps considered in previous sections. We shall also use the GNS
map 7z, defined on A, introduced by the formula

(8.2) AL (b) = JA(R(b"))
dual to (5.27). By definition D(7j) = {b €A:R0b) e D(ﬁ)} As we know, n and 7y, are GNS
maps related to the right and left Haar weights h and heR on (A4,§). In the same way, i and 7.,

are GNS maps related to the right and left Haar weights h and heR on (A\, g) We shall use the
tensor product of GNS mappings (see Appendix E). Let

B o~

no =nL n,
(8.3) L
Mg =NSNL.

Then 1P and n? are closed densely defined GNS maps on B = A ® A with values in H ® H. Let
U € L(H ® H) be the unitary operator introduced by

(8.4) U=W(IJ )W ®.J).
We recall that W € M(A® A) = M(B).

Proposition 8.2. We have: D(n}) = Adw-(D(n?)) and
(8.5) Un®(e) = A *nf (Adw-(c))
for any c € D(nP).

Proof. Recall that S;an(a) = nr(a*) for a € D(n) N D(nL)* and (cf. (7.11)) Sye = A8 A2

rel

By duality §relﬁ(a) =nr(a*) for a € D(n) ND(7)* and Seel = /8 JAY2 . To make the notation

rel

shorter we set Jp = .J @ .J. For any a € D(n) ND(ng)* and b € D(n) ND(N)* we have

Uk (b* @ a*) = WIsW Jp(H(b*) @ ni(a*)) = WIpWJp(S @ Swe) (i(b) @ n(a))
= AW IEW (A @ Ae)V2(7(b) © 1(a))
= AW T (Ave @ A)Y2W (7(b) @ 1(a))
= AW 5 (v @ A) 2 @ ) (W (b ® a))
= AW (S ® ) ([ @ ) (W (b ® a)),
where in the fourth step we used relation (7.7). Since W(b®a) € D(fj®n) and (j@n)(W(b®a)) €
D(Srel ® S), it follows (cf. Theorem D.5) that (b® a)*W* € D(f), ® n). Hence we see that
Ung (b ® a*) = A=W (8 @ $) ([ © 1) (W (b © a))
= XTW (i @ ) (0 @ a* )W)
= A" @ n)(W (0" @ a)W*) = A~/ P (Adw (0" ® a”)).

Since the algebraic tensor product of D(n)ND(7)* and D(n;)ND(n)* is a core for the GNS mapping
nZ, it follows from the above argument that Adw (c) € D(n?) and

(8.6) Ung (¢) = A~ *nP (Adw (c))

for any ¢ € D(nf). Hence we see that Adw (D(nf)) C D(nP). Passing to the dual state-
ment we obtain Adw«(D(n?)) C D(n¥). Combining the two inclusions we obtain the equality
Adw+(D(nP)) = D(nE). To end the proof we notice that (8.6) is equivalent to (8.5).

0

Now we shall introduce the unitary antipode, the scaling group and the Haar weight related to

(B, §B):
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RB = (R® R)oAdy-,
(8.7) P =Temn,
hB = hoR @ h,
where hB = hoR ® h is the weight on B associated with the GNS mapping n? = 7y ® . Using
the properties
(R R)Y(W)=W, (R®R)oAdw- =Adywo(R®R), Fon)(W)=W, =1
one can easily verify the following:

Proposition 8.3. R? is an involutive antiautomorphism of B, {TtB is a strongly continuous

e
one parameter group of automorphisms of B commuting with R® and h® is a locally finite, strictly
faithful, lower semicontinuous weight on B such that hPorB = hB for allt € R. Moreover

(8.8) hBoRB = hB .
Proof. Only the last formula needs a justification. Let hZ be the weight on B related to the GNS
map 77(]13. By definition
hB =h®heR = (heR ® h)o(R® R) = hP+(R® R).
Therefore
hBoRB = hFoAdy . = KB,
where the last equality follows immediately from (8.5). O

Our main aim in this section is to show that (B, §?) is a weighted Hopf C*-algebra. To this end
we shall use Theorem 3.9 with A,§, R, 7 and h replaced by B,d%, RE, 78 and h®. Then the role
of H and 7 is played by H? = H ® H and n® and the unitary W (denoted in the present case by
W) acts on H? @ HP = H ® H ® H @ H. We shall prove that

(8.9) WP = Uy WisU, Way.

satisfies all the assumptions of Theorem 3.9. Remembering that W € M(A® A) C M(K(H) ® A)
and W € M(A® A) C M(K(H)® A) we see that WP € M(K(H) ® K(H) ® A® A) and

(8.10) W8 e M(K(HP) ® B).

In the following propositions we shall use a special notation. For any ¢ € A* and any a € A we
set: p«(a) = ¢ *a. Then @, is a linear mapping acting on A. Similarly for any ) € A* and any
b € A we set: ,(b) =1 xb. Then 1), is a linear mapping acting on A. Clearly

px = (Id ® p)ed,

P = (id © )ed.
One can easily verify that ¢, and v, are comApletely bounded. Consequently v, ® id and id ® .
are bounded linear mappings acting on B = A ® A.

Proposition 8.4. For any ¢ € E*, p € A* we have:
(deid® ¢ )WE =U [(id®w)/V[7®1] U [1®(id®<p)w ,
(d®id ® ¥ ® @)od? = Adyo(1h, @ id)eAdy-o(id @ p,).

(8.11)

Proof. The first formula follows immediately from (8.9). Using the second formula of (8.1) we
compute:
(ow ®id ®1d)ed® = (oW ®id ® id)o(id @ o @ id)o(d ® J)
= (id ® § ® id)o(ow @ id)o(id @ 8).

Therefore

58 = (o} ®id @ id)e(id ® § @ id)o(ow @ id)o(id © 6)
and

(id ® id ® ¥ @ p)od? = oyt o(id ® b Jooywo(id @ p.).
Remembering that oy = coAdy« and using the relation go(id ® 1), Jeo = ¥, ®1id we get the second
formula of (8.11). O
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Proposition 8.5.

1. For any ¢ € A, and any ¢ € D(n?) we have: (id @ p.)c € D(nP) and

)
B _ . B
72 ((d ® p.)c) = [1 ® (id® @)W] n”(c) .
2. For any 1 € A, and any c € D(n%) we have: (1. ® id)c € D(nF) and
n (b, @id)e) = |(id@ Y)W @ 1] nf(0).
3. For any p € B, and any ¢ € D(n?) we have: (id @ u)d2(c) € D(n?) and
7 ((id © w)6%(0)) = [(d @ )W ?| P (o)
In the last point, id denotes the identity map acting on operators in H @ H.
Proof. Ad 1. For any o-weakly continuous functional ¢, the mapping id ® ¢ maps strongly
convergent sequences into strongly convergent sequences. Formula §(a) = W (1 ® a)W™* (cf. (3.7))
shows that the comultiplication § has the same property. Therefore ¢, maps strongly convergent
sequences into strongly convergent sequences. Therefore we may assume that ¢ = b ® a, where

b e D7) and a € D(n) (by definition D(7r,) ®a1g D(n) is a core of n? =7, ® n). In this case our
relation takes the form

1 (0) @ nle +a) =nr(b) @ [(i[d © p)W]n(a),
which immediately reduces to (1.6) (cf. (3.6)).

Ad 2. In this point we may assume that ¢ = b® a, where b € D(7)) and a € D(nr). In this case
our relation takes the form

7 (4@ ¥)3)) @ mile) = [(de V)W 7b) ©nsla),
which immediately reduces to (7.2).

Ad 3. By Remark 3.10 we may assume that u = ¢ ® p, where ¥ € A* and p € A*. (the reader
should notice that E* ®alg Ay is norm dense in B,). Letce ’D(nB). Using Statement 1, Proposition
8.2, Statement 2 and again Proposition 8.2 we obtain: (id®¢.)c € D(n?), Adw - (id®y.)c € D(nk),
(¢ ® id)Adw - (id ® ¢, )c € D(n%) and

Ady (¢, ®1id)Ady- (id ® @.)c € D(nP) .

According to (8.11) the last expression coincides with (id ® u)dZ(c). Taking into account (8.11)
and (8.5) we have:

[(id® W] nB(c) = U [(id Y)W @ 1} U [1 ® (id ® @)W | nP(c)
—U [(id QY)W ® 1} UnB((id @ @.)e)
= N/AU [(id RY)W ® 1] B (Ady- (id ® ¢, )e)
— XAURE (4, ® id)Ady- (id @ p..)0)
= 0" (Adw (¢« ®id)Adw- (id @ p.)c)
=n"((i[d ® )" (c)).
O
Let kB = RBOTiI?Q. Then k2 = (R ® k)oAdy~. Let v € A* and ¢ € A* be linear functionals
such that ok € A* and gox € A*. For any ¢ € B we set:
(.12) He) = (6 @ @) (W),
Then p € B* and one can easily verify that
MO/{/B — wok\ ® (PoK.

In particular uox® € B*.

Proposition 8.6. For any u € B* such that pex® € B* we have:
(8.13) (id @ por® YW = (id @ p)(WE").
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Proof. In the following computation we use leg numbering notation for operators acting on H®* =
HOHRH®H. Our first aim is formula (8.16). We start with the pentagonal equation Wi, Wiy =
WaaWisW3,. Multiplying the both sides from the right by W7, we get

Wi WisWiy = WadWis Wi, Wa,.
Combining this formula with the pentagonal equation W5 Wiy = Was Wi, W35 we obtain:
(8.14) WiaWasWiaWis = Waa Was Wi, Wi Wiy
For any operator V acting on H®* we set:
AdV)=(JoJoJo)V(IeJoJo ).

Clearly Ad is an conjugate linear multiplicative operation acting on £(H®4). Using (5.22) we obtain
immediately the relations: Ad(Ws4) = Way, Ad(W7y) = Wiy and Ad(W7,) = Wia. Furthermore,
taking into account definition (8.4) we see that Ad(Wa3) = U2sWs5. Applying Ad to the both
sides of (8.14) we get:

WiaUas Wi WiaWasUss = Wi UasWosWiaWasUss Wy,

Multiplying both sides by W73 from the right and using pentagonal equation W3, W13 = Wi3W1, W3y
we obtain

(8.15) Wi4Uaz WasW1aWagUss Wiz = Wiy Uas WisW1aWagUss Wis W14 Wiy,

The reader should notice that the ‘third leg’ of Wa3Uss = {(J @ J)W*(J @ J)}as ‘belongs’ to the
commutant A’ of A, whereas W13 € M(A®1® A®1). Therefore Wa3Uss commutes with W3 and
W3sW1aWasUss Wiz = Wy WiaWi13WasUss = WiaUss.

Therefore (8.15) takes the form
WiaUasWioUsg = Wi UasWiaUss W14 Wy

Now we perform the cyclic permutation of the first three H in H®* = HQHR@H®H. It results with
the following replacement of the ‘leg numbers’> 1 — 3 — 2 — 1. Then Wiy goes into W31 = Wiy
and our formula takes the form

WaaUroWisUsy = Wi, Ura Wi Uty Waa Woaa.
Rearranging this formula we obtain
(8.16) WE" = Wi, Uia WUty = WaaUra Wi Uy Wa, Wiy
Let p be the functional on B introduced by (8.12). Applying id ® u to the both sides of (8.16)
and using in the third step formulae (3.13) and (7.3) we obtain:
(id@pWB = (idoide o g) (UalhUn s )
—U [(id ®Y)(W*) @ 1] U [1 ® (id ® @)(W*)}
—U [(id ® YoR)W @ 1} U {1 ® (id ® @om)W}
= (id ® id ® ¥k ® @ok) (U12W13U1*2W24)
= (id ® por®)(WB).
In this way we showed that (8.13) holds for any u of the form (8.12). Clearly the set of functionals
of the form (8.12) is linearly weakly* dense in B*. Moreover for any ¢ € R the functional por/

is again of the form (8.12). Indeed, remembering that W commutes with Q ® @ we see that
7B =7 ® 7y commutes with Ady - and

pord () = (Yo7, @ pory) (W*eW).
Now, using Remark 3.11 we obtain (8.13) in full generality. O
Let us summarize the results obtained so far. We have constructed the sequence of objects:
B,6B,RE 78 hB nB WB. Taking into account Proposition 8.1, Proposition 8.3, formula (8.10),

Statement 3 of Proposition 8.5 and Proposition 8.6 we see that these objects satisfy all the as-
sumptions of Theorem 3.9. Making profit of this theorem we obtain

Theorem 8.7. The pair (B,0%) is a unimodular weighted Hopf C*-algebra with X = 1. The
unitary antipode, the scaling group and the Haar weight related to (B, 7)) are given by (8.7). The
corresponding Kac-Takesaki operator coincides with (8.9).
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The unimodularity of (B, d7) follows from (8.8). It shows that the left and right Haar weights
coincide. By the theory developed in Section 3, W is a manageable multiplicative unitary.
Inserting definition (8.4) into (8.9) we obtain

W8 = ((Tonw(Ten) WelWuWi ((7Te W (Te.0)) W
By pentagonal equation ng/ngWfQ = /V[723W13. Therefore
Wb = ((j® W (T ® J))12 WosWis ((j® DHW*(T @ J)) 1 Vs
This formula admits further simplification:
WE = WasWis ((J ® J)W*(J ® J))23 Way.
The verification of the last equality is left to the reader as an (un-easy) exercise.

9. APPENDIX

A. Multipliers and morphisms. In this Appendix, we collect some technical statements con-
cerning the multipliers and the morphisms of the C*-algebras.

For any ¢ € A* and a,b € A we define functionals by and @a in A* by

(bp)(a) = p(ab) = (pa)(b).
Then A* is a Banach A-bimodule.

Let A be a C*-algebra and {e,} an approximate identity of A. Let ¢ € A*. Then ¢ is written
in the form ¢(a) = (z|r(a)y), where {m, H} is a representation of A and z,y € H. For any a € A
we have

[(eap — @) (a)| = |p(aeq — a)| = |(z[m(aea — a)y)| < |[z]| [[a]l [|7(ea)y — vl
and

|(bea = @)(a)| = [p(eaa — a)| = |(z[m(eaa — a)y)| < |7 (ea)r — ] [lal| |yl
Hence the sets {pes} and {e,p} converges in norm to ¢. Thus we find that
(A1) {ap:a€ Ajpe Ay ={pa:a€ A pec A*} = A",

Now we recall the Doran-Wichmann’s factorization theorem:

Theorem A.1 ([5]). Let B be a Banach algebra and E a left (resp. right) Banach B-module. If

B has a left (resp. right) approximate identity bounded by K > 1, then for any x € E and for any
€ > 0 there exist b € B and y € E such that

v=by, |b| <K, y€Bzx (resp.y€aB), |y—zl<e.
In particular, BE = BE (resp. EB = EB).
Combining this theorem with (A.1), we find that

Proposition A.2. Let A be a C*-algebra. Then A* = AA* = A*A, i.e. for any ¢ € A* there
exist v € A* and a € A such that ¢ = ayp (or p = a).

Lemma A.3. Let A and B be C*-algebras and o € B*. Then the slice mappingida®p : AQB — A
has an extension (idg ® ) from M(A® B) to M(A) such that ||(ida @ @) = ll¢|-

Proof. Let {co} be a net in A ® B converging to zero with respect to the strict topology on
M(A ® B). By Proposition A.2 ¢ is of the form by for some b € B and ¢ € B*. Then, by the
boundness of ¥, for any a € A, {(ida ® ¥)(ca)}ta = (ida ® ¥)(ca(a @ b)) converges in norm to
zero. Similarly, we obtain that the net {a{(ida ® ¢)(ca)}} converges in norm to zero. This proves
that the net {(id4 ® ¢)(ca)} converges to zero with respect to the strict topology. Hence the slice
mapping idg ® ¢ : A ® B — A has an extension to the mapping (id4 ® ¢) from M(A ® B) to
M(A).

It is known that the unit ball of a C'*-algebra is strictly dense in the unit ball of the multiplier
algebra. Therefore the norm of (id4 ® ¢)” coincides with the norm of id ® . It is clear that norms
id ® ¢ and ¢ are the same. g

Throughout this paper, the notion of the morphism between the two C*-algebras plays an
important role. Here we recall the definition of the morphism.
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Definition A.4 ([31]). Let A and B be C*-algebras. Then 7 is said to be in the set Mor(A, B) of
morphisms from A to B if m is a homomorphism from the C*-algebra A to the multiplier algebra
M (B) such that the subset m(A)B of B is norm dense in B.

Each morphism 7 of A to B can be extended uniquely to a morphism 7 of the multiplier algebra
M(A) to the multiplier algebra M (B):

7(m) Y mwla)w =Y w(ma;)z;
for m € M(A), a; € A and z; in the carrier Hilbert space of B. In this paper this extension of 7
is denoted by the same letter (we omit tilde).

The morphisms admit even further extensions to unbounded elements affiliated with C*-algebras
(see [30, 31]). If p is a strictly positive self-adjoint operator affiliated with A, then {p”}teR is a
one parameter group of unitaries in M(A) continuous with respect to the strict topology and
7(p)¥ = m(p*). In this formula m(p) denotes the element affiliated with B corresponding (via
morphism 7 € Mor(A4, B)) to p affiliated with A.

B. GNS maps. This Appendix is devoted to the notion of GNS map. Neglecting certain details
this notion is equivalent to the notion of generalized Hilbert algebra. In our opinion it is more
convenient, when we have to deal with many different scalar products defined on the same operator
algebra.

In the following definition operator algebra means either C*-algebra or von Neumann algebra
of operators acting on a Hilbert space H. In the C*-algebra case we shall assume that it acts on H
in a non-degenerate way. Consequently in the case of von Neumann algebra we understand that
it contains the identity operator 14.

Definition B.1. Let B be an operator algebra acting on a Hilbert space H and 1 be a (unbounded)
linear mapping from B into H. We say that n is a GNS map if the domain D(n) is a left ideal in
B and

(B.1) n(ab) = an(b)

for any a € B and b € D(n). The GNS map 1 is called closed if it is closed with respect to strong
operator topology on B and norm topology on H. We say that a GNS map defined on a C*-algebra
is densely defined if its domain is norm dense in the C*-algebra. Similarly a GNS map defined
on a von Neumann algebra is said to be densely defined if its domain is strongly dense in the von
Neumann algebra.

The reader should notice that using the term ’densely defined‘ we refer to different topologies
in C*-algebra and von Neumann algebra cases. On the contrary to define closedness we use in
both cases the same strong operator topology on B. The same topology is used when we speak
about continuous GNS maps, closable GNS maps, the closure of a GNS map and a core (essential
domain) of a GNS map.

Let B be an operator algebra acting on a Hilbert space H and €2 € H. For any b € B we set
n(b) = b2

Then 7 is a continuous GNS map with D(n) = B. To obtain less trivial example assume that H is
a direct orthogonal sum of a family {H,}._; of B-invariant subspaces and for each i € I pick up a
vector €2; € H;. Then the formula

(B.2) n(b) = b

iel

el

defines a closed GNS map. By definition D(n) is the set of all b € B for which the above series
is norm convergent. It turns out (cf. Theorem B.7) that any closed GNS map defined on a von
Neumann algebra acting on a separable Hilbert space is of the form (B.2) with a denumerable
index set I.

Now we introduce the notion of the commutant 1’ of a GNS-map 7. Let B be an operator
algebra acting on a Hilbert space H,  be a GNS map defined on B and B’ be the commutant of
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B. Assume that the intersection of kernels of all b € D(n) is trivial. This is always the case, when
7 is densely defined. For any ¢’ € B’ and x € H we set:

d D) cn(b) = bx
(B.3) and = for all
x=1n'(c) b e D(n)

The reader should notice that there is at most one vector = satisfying the right hand side of the
above equivalence. One can easily verify that B’ is a von Neumann algebra and that n’ is a closed
GNS map defined on B’. It turns out (cf. Theorem B.2) that 7' is densely defined provided 7 is
closable.

In the following statements we use the double commutant 1" of a GNS map 7. If 1 is defined
on an operator algebra B then 7" is defined on the double commutant B”. By the famous von
Neumann density theorem, B” is the strong closure of B. We have the following

Theorem B.2. Let B be an operator algebra acting on a Hilbert space H and n be a closable GNS
/!

mapping densely defined on B. Then n' is densely defined on the von Neumann algebra B', n" is
an extension of n and D(n) is a core of 0.

Proof. The inclusion n C 1’ is obvious. Let 7 be the closure of 1’ restricted to D(n), a € B” and
x € 'H. We have to show that

ar'(p) = px a € D(7)
(B.4) for all = and
pE D) z =1(a)

The condition on the right hand side of (B.4) means that the pair (a,z) belongs to the closure of
the graph of 7 in the (strong x norm)-topology. Remembering that the neighborhoods in strong
topology are determined by finite sets of vectors it is sufficient to show that for any Q1,{s,...,Q, €
‘H and

for any € > 0 there exists b € D(n) such that

(B.5) ) n ) )
Iz =) + 25—y a2k — b [* < &

Let H be the direct sum of 1+n copies of H. The copies will be labelled by numb~ers 0,1,2,...,n.
For any £ =0,1,...,n we denote by z; € H the k-th component of a vector z € H. Consequently
for any b € L(H), the matrix elements of b will be denoted by by € L(H) (k,1=10,1,2,...,n). In

what follows we shall use the diagonal action of B on H: any b € B defines an operator b € L(H)
with matrix elements by = bdy; (k,1=0,1,2,...,n).

For any b € D(n) we denote by 7j(b) the element of H such that

~ [ n) fork=0
U(b)k—{ by, fork:]_,2,,’n/

We shall also use the vector Z € 'H such that

_ x for k=0
=\ aqy fork=1,2,...,n.

With this notation, (B.5) may be rewritten in the following equivalent form:
closure
(B.6) ie {ﬁ(b) b B}

Let p € E(ﬁ) be the orthogonal projection onto orthogonal complement of {ﬁ(b) :be B } One
can easily show that the latter space is invariant under the diagonal action of B. Therefore the
matrix elements of p belongs to the commutant of B: py; € B’ for all k,l = 0,1,2,...,n. By
definition p7(b) = 0. It means that

pron(b) + ZPklez =0
=1

and

pron(b) = =bY_ pru
=1
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for k = 0,1,2,...,n. This relation holds for all b € D(n). Definition (B.3) shows now that
pro € D(n') and 0’ (pro) = — D1 Pl

Assume now that the condition on the left hand side of (B.4) is satisfied. Then

n
prox = an(pro) = —a »_ priu
=1

and .
Proz + Y prially = 0.
1=1
This relation holds for £ = 0,1,2,...,n. It shows that pz = 0 and (B.6) follows. This way the
implication (B.4) is proved.

Setting a = 0 we see that « = 0 is the only vector killed by all p € D(n’'). Remembering that
D(n') is a left ideal in B’ and using [4, Chapitre I, §3, Corollaire 3] we see that D(n’) is dense in
B’. Comparing now (B.4) with (B.3) we see that 7 is an extension of ”: 7" C 7. The converse
inclusion is obvious: 1" is an extension of n and 7" is closed. Hence 77 C 1”".

O

Assume now that H is separable. Our nearest aim is to show that any closed GNS map is of
the form (B.2). We start with the following

Proposition B.3. Let M a von Neumann algebra acting on a separable Hilbert space H and n be
a closed GNS-mapping on M. Then there exists d € D(n) such that Md is a core for n. One may
choose d in such a way that d > 0 and Sp(d) C {1,271,272, ... 0}.

Proof. At first we shall prove that there exists elements ¢, € D(n) (n =1,2,...) such that the set

(B.7) {cn:n:1,2,...}

is a core for . We know that 7 is closed with respect to the strong topology on M and norm
topology on H. We shall use the graph topology on D(n). Let

K={aeDm):|al <1, [In(a)] <1}.
Clearly, K is a closed subset of D(n). Choosing an orthonormal basis {e,, }

linear span

nen 0 H and setting

— 1
d(a,b)* = 2 ll(@=Benl® + [In(a = B,
n=1
we define a metric d on K. One can easily show that the topology induced by this metric coincides
with the graph topology on D(n) restricted to K. Moreover, the mapping

o o 1 o o
K>ar— (Z 2naen> ®n(a) € <Z H) eH
n=1 n=1

is an isometric embedding and the target Hilbert space is separable. Therefore there exists a
denumerable subset dense in K. The linear span of this subset is the core for n of the form (B.7).

Multiplying if necessary by a decreasing sequence of positive numbers we may assume that
Yollen]] < oo and Y |In(cn)|| < oo. Using sequence {cn},_;, , we define a bounded linear
mapping c o

> @
HBx»—>cw=E Cni.
n=1

Then c*c = Y07 ctc, € M. Let d = v/c*c and ¢ = ud be the polar decomposition of c¢. Then

n=1 Cn,

d € M and the isometry u is of the form

a3 a3
'HBQ:»—Mm:Z unxéz H,

n=1 n=1

where all w,, € M and |Ju,|| < 1. Relation ¢ = ud means that
(B.8) Cn = Upd

for all n = 1,2,..., whereas relation d = u*c is equivalent to

o0
*
d= E Uy, C,.-
n=1
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The above series is norm converging. Also the series Y wn(c,) is norm converging. Remembering
that n is closed we conclude that d € D(n) and Md C D(n) (D(n) is a left ideal!). Formula (B.8)
shows now that the set (B.7) is contained in Md. Therefore Md is a core for 7.

The element d constructed above is self-adjoint and positive. We may assume that ||d|| < 1. Let
f be a simple function on [0,1) defined by f(0) = 0 and

1 1 1
f(t) = ot for te |:2n+1’ 2”) .

forn = 0,1,2,.... Then t/2 < f(t) < t for t € [0,1]. Using this estimate one can easily show
that d and f(d) generate the same left ideal in M: Md = M f(d). Moreover f(d) > 0 and
Sp f(d) c {1,271,272 ... 0}. This way the last Statement of our Proposition is shown.

O

Definition B.4. Let B be an operator algebra acting on a separable Hilbert space H and n be a
closed densely defined GNS-mapping on B. Assume that {Qn}n:m’_” is a sequence of elements of
H such that B, L BQ,, forn #m and

(B.9) n(b) =Y b,

for any b € D(n). Then we say that (B.9) is a vector presentation of the GNS mapping 7.

Proposition B.5. Let (B.9) be a vector presentation of a GNS map n of a closed densely defined
GNS map n. Then for any b € D(n"") we have

(B.10) i (b) = i b,

Proof. Let P, be the orthogonal projection onto BQ,, (n =1,2,...). Then P, (n =1,2,...) are
pairwise orthogonal projections and denoting by F, the projection onto the orthogonal complement
of ZEBBQ,L we obtain the decomposition of unity:

oo
1= Z P,
n=0
Clearly all P, belong to B’. Forn =1,2,... we have

Pan(b) = P, > by = b,
n=1
for all b € B. It shows that P, € D(n) and n/'(P,) = Q,. Moreover Pyn(b) = 0 for all b € B.
Therefore Py € D(n') and n/(Py) = 0.

Assume that b € D(n”). Then for any ¢ € D(n’) we have en”(b) = bn/(c). Setting ¢ = P, we
obtain P,n"(b) = bn/(P,) = b2, for n = 1,2,... and Pyn”(b) = bn(Fy) = 0 for n = 0. Summing
over n we get (B.10).

0

Definition B.6. A vector presentation (B.9) is said to be exact if D(n') coincides with the set of
all elements b € B” such that the sum (B.10) is convergent.

We know that any bounded GNS-map 7 is of the form n(a) = af2, where Q € H. We shall use
the Proposition B.3 to prove the following nice generalization of this fact.

Theorem B.7. Let B be an operator algebra acting on a separable Hilbert space H and n be a
closed densely defined GNS-mapping on B. Then n admits an exact vector presentation.

Proof. Let ' be the commutant of 1. By Proposition B.3, there exists d € D(n’) such that B'd is
a core for n’. Assume that a vector x € kerd. Then cdx = 0 for any ¢ € B’. Therefore x is killed
by all elements of D(n’). Remembering that D(n’) is strongly dense in B’ we see that « = 0. This
way we have shown that kerd = {0}.

By the last sentence of Proposition B.3, we may assume that d is a self-adjoint positive operator
with spectrum contained in {1,271,272,...,0}. Then

d= i 27"P,,
n=1
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where P, € B’ are orthogonal projections such that P, P, = 0 for n # m. Remembering that the
kernel of d is trivial we obtain

o0

D Pu=1

n=1

For any n =1,2,..., we set:
Q, =2"P,n'(d).
Then dQ2, = P,n’(d) and

(B.11) > d, =Y Pun/(d) =1/(d).

The reader should notice that the above series is norm converging. Since P, € B’, the subspace
P,H is B-invariant and B}, C P,H. Remembering that P,P,, = 0 we see that BQ, 1 BQ,, for
n # m. Formula P, = 2" P, d shows that P, € D() and v'(P,) = 2" P,n'(d) = £, for all natural
n

Let b € D(n). Then, for any natural n, P,n(b) = by’ (P,) = b2,. Therefore

n(b) =Y Pan(b) = _ b,
n=1 n=1

Clearly the above formula is a vector presentation of 7. If the series

oo
T = Z b,
n=1
is converging for some b € B”, then, using (B.11) we obtain:

do = i dvQ, = i bdQ, = bi A2, = bry'(d).

Therefore for any ¢ € B’, edx = cbn/(d) = ben/(d) = by’ (cd). Remembering that B’d is a core for i’
we see that cx = bn(c) for all ¢ € D(n'). Hence b € D(n”). Tt shows that the vector presentation
constructed above is exact.

O
Let us also note the following interesting

Proposition B.8. Let B an operator algebra acting on a separable Hilbert space H, n be a closed
densely defined GNS mapping on B with a vector presentation

(B.12) n(b) =Y b,

and P, € D(n) be the orthogonal projection onto BQy,, n =1,2,... (see the proof of Proposition
B.5). Then the following statements are equivalent:

(1) The vector presentation (B.12) is exact.
(2) The left ideal of B' generated by {Py, Ps,...} is a core forn'.

Proof. Ad 2 = 1.
Let b be an element of B”. If the series ), b€, is convergent, then for any a € B’ and any
n=1,2,... we have:

by (aPy) = aby (P,) = abQy = aP, » b .
k

If the left ideal in B’ generated by {Pi, Ps,...} is a core for ' then br/(a) = a ), b8y, for all
a € D(n). Hence b € D(n”) and 1" (b) = >~ , bQ. It shows that the vector presentation (B.12) is
exact.

Ad1l=2

Assume now that the left ideal T of B’ generated by {P;, P,,...} is not a core for 1. Let 6 be
the closure of 1’ restricted to I. Then 6 : B’ — H is a GNS mapping, § C ' and 6 # n’. Therefore
n” C ¢ and 1" # 6'. Hence there exists b € D(#') such that b ¢ D(n"). Clearly P, € D(f) and
0(P,) =1n'(Pn) = Q. Now we have

b, = bO(P,) = P,0'(b)
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and the series ) 0, = > P,0'(b) is convergent. Remember that b ¢ D(n"”) we see that the
vector presentation (B.12) is not exact. U

C. Weights on C*-algebras. In this Appendix, we collect some basic properties of weights on a
separable C'*-algebras and their relations with GNS mappings. Let h be a weight on a C*-algebra
A. We shall use the standard notation:

Ny ={a € A:h(a*a) < 0},
mh — {Cl c A+ . h(a) < oo}linear sSpan
— {a*b :a, b c mh}linear span

Then Ny, is a left ideal and 97, is a hereditary subalgebra in A. It is known that h extends uniquely
to a linear functional on M. We say that h is locally finite if 91, is dense in A.

By the GNS construction one can find a Hilbert space H, a representation 7 of A acting on H
and a GNS-map 7 defined on the C*-algebra B = w(A) such that

D(n) = {m(b) : b € My},

the range of 7 is dense in ‘H and
In(m(a))|* = h(a*a)

for all a € My,. We say that (H,m,n) is a GNS triple associated with the weight h. It is unique
up to a unitary equivalence. If h is finite then the GNS-map 7 is bounded, defined on whole 7(A)
and there exists a vector {2 € H such that n(b) = Q) for all b € B. In the general case we would
like to have the map n closed. This is the case if the weight h is lower semicontinuous, i.e. if for
any t € Ry theset {a € A4 : h(a) <t} is closed in A in the sense of the norm topology. By a very
important result of Haagerup [9], any lower semicontinuous weight h on a C*-algebra A is of the
form

(C.1) h=> hi

icl
where {h;},.; is a family of positive functionals on A. For separable C*-algebras the above sum is
countable:

Lemma C.1. Let h be a locally finite lower semicontinuous weight on a separable C*-algebra A.

Then there exists a countable family {h;},.y of elements of A% such that

(C.2) h=> hi.

1€EN

Proof. We start with formula (C.1). Replacing if necessary h; by the sum of N-copies of h;/N,
(where N is a natural number larger than ||h;||) and removing zero-terms, we may assume that
[hill <1 and h; # 0 for all i € I. Let A be the set {¢) € A% : [[¢)]] < 1}. Since A is separable, the
weak™ topology on the unit ball of A* is metrizable. Denote a metric by d. Put

I = {z € 1:d(hi,0) € [1,00)}

I, = {ie];d(hi,())e{l L )},nZQ.

n’n—1

It suffices to show that each I,, is finite. Suppose that I,, is infinite for some n € N. Since A is
weak™ compact, there exists a sequence i, € I, (m = 1,2,...) and an element 1) € A such that
hi, — 1 when m — oo. Clearly d(3,0) > n~! and v # 0. For any a € M;, we have

o0

Z hi,, (a*a) < Zhi(a*a) = h(a*a) < oco.
m=1 iel

It shows that ¥ (a*a) = lim,,—c b4, (a*a) = 0. Remembering that 91, is norm-dense in A we

conclude that ¥ = 0. This contradiction shows that I,, is finite for all n € N.
O

Theorem C.2. Let h be a locally finite lower semicontinuous weight on a separable C*-algebra A
and (H,m,n) be the GNS-triple associated with the weight h. Then H is separable and n is closed.
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Proof. We may assume that h is given by (C.2). Let (H;, m;,7;) be the GNS triple associated with
h;. In this case n; are continuous. Remembering that A is separable and that the range of 7, are
dense in ‘H; we conclude that H; are separable. By Lemma C.1, the index set I is denumerable.
Therefore the direct sum o

A=Y,

il
is a separable Hilbert space. Using (C.2) one can easily show that

2
52}

> nilmi(a))

el

In(x(@)|* = hi(a*a) =

icl

for any a € 9. Remembering that the range of 7 is dense in H we see that there exists a unique
isometry U : H — H such that
®

Un(n(a)) =Y mi(mi(a)) -
icl
Therefore H is isomorphic to a subspace of a separable Hilbert space. It shows that H is separable.

Let i € I. Then h;(a*a) < h(a*a) for any a € 9. Combining this relation with the Schwartz
inequality one can easily verify that |h;(a)] < /|[h:[|[n(7(a))||. Therefore there exists a vector
Q; € H such that

(C.3) hi(a) = (Qi[n(m(a)))

for any a € M. One can also easily show that (n(m(c)),n(w(b))) — hi(c*b) is a continuous
sesquilinear form on the range of 7. Therefore there exists a bounded positive operator T; acting
on ‘H such that

(C4) hi(c*b) = (n(n ()| Ti|n(r (b))
for any ¢, b € My,
We shall prove that for any € H and b € B = w(A) we have the following equivalence:

beD(n)
Tix = le
(C-5) and - f = ( for all i € 1 )
x = 1(b)

Replacing in (C.3) a by ¢*b and comparing with (C.4) we obtain T;n(n(c)) = m(c)Q; for any
c € Ny,. It shows that
(C.6) Tin(b) = b8
for any b € D(n). This way we showed the ‘="- part of (C.5).

We shall prove the converse. Setting in (C.4), ¢ = b and summing over i € I we see that

(C.7) Y Ti=1

i€l
Assume now that x € H, a € A and Tiz = 7(a)Q; for all i € I and take a sequence {an},_; o
of elements of Ny, converging to a in norm. Using formula (C.4) one can easily show that the

1
sequence {TZ2 n(ﬂ(an))} is convergent:
n=1.2

1
lim T;2n(m(an)) = i,
where y; € H and ||y;||* = h;(a*a). Moreover, by formula (C.6),
Ti%yi = lim Tin(w(a,)) = lim 7(a,) = 7(a)Q; = Tz

1 1 1
It shows that y; — T;>x € ker T . On the other hand y; and T;>z clearly belong to the closure of
1 1 1
the range of T;?. Therefore y; — T;?x = 0 and y; = T;* 2. Now we have:
hi(a*a) = |yl* = (2|T;]z).
Summing over i € I and using (C.7) we obtain

h(a*a) = Zhi(a*a) = (z]z) < 0.

iel
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It shows that 7(a) € D(n). Now we may use formula (C.6). It shows that T;(n(w(a)) —x) = 0 and
taking into account (C.7) we conclude: & = n(n(a)). The ‘<=’ of (C.5) is shown.

The closedness of 7 is an easy consequence of (C.5). Let {bx},c, be a net of elements of D(n)
converging strongly to an element bo, € B, such that z) = 7 (b)) converges to a vector zo, € H.
Then T;zy = b\Q;. Passing to the limit we get T;Zoo = boo$2i. It means that by, € D(n) and
N(bss) = Too-

O

Theorem C.3. Let B a C*-algebra acting on a separable Hilbert space H and n : B — H be a
closed densely defined GNS map. Then the formula:

h(b*D) = { (" ()|’ (b)) ifbe D)

+00 otherwise

(C.8)

where b runs over B”, defines a normal semifinite, weight h on B . Its restriction to B is a locally
finite lower semicontinuous weight on B.

Proof. Let M = B”. We shall use Theorem B.7. Let (B.9) be an exact vector presentation of 7.
Combining (B.10) with (C.8) we obtain:

h(b*D) = (2[b"b )

n

for all b € D(n""). Due to the exactness, this formula holds for all b € M. Therefore for any b € M

we have:
h(b) =) (u]bS2n).
It shows that h is a normal weight on M (cf. [9]). Clearly h(b*b) < oo for b € D(n). The latter set
is weakly dense in M. Hence h is semifinite. The last assertion is obvious.
O

Definition C.4. A weight h on a C*-algebra A is said to be
(1) faithful if for any a € A, the relation h(a*a) = 0 implies a = 0.
(2) strictly faithful if for any sequence {an}, o in A such that the sequence {h(a},an)}, cy is
bounded and lim,, o h(anal) =0, b =0 is the only element of A satisfying the relation

(C.9) h((b—an)*(b—ayn)) < h(ayan)
for all n € N.

Assume that & is strictly faithful. Inserting a,, = 0 in (C.9) we see that b = 0 is the only element
of A such that h(b*b) = 0. It shows that any strictly faithful weight is faithful.

Lemma C.5. Let h be a locally finite lower semicontinuous weight on a C*-algebra A and (H, 7, n)
be the GNS triple related to h.Then the following conditions are equivalent:

(1) The weight h is strictly faithful.

(2) The weight h is faithful and the mapping Sy : n(a) — n(a*) (where a runs over D(n)ND(n)*)
is a closable conjugate linear operator in H.

(3) The double commutant n" is injective.

Proof. Assume that the mapping 7n(a) — n(a*) is not closable. It is the same as to assume
that the mapping n(a*) +— n(a) is not closable. Therefore there exists a sequence {an},y in
D(n) N D(n)* such that {n(a},)},y in the Hilbert space H converges to zero in norm topology
(i.e. the sequence {h(ana;,)},cy of non-negative numbers converges to zero) and {n(an,)}, oy in
H converges to some non-zero element x € H (in particular the sequence {h(a;,an)},y of non-
negative numbers is bounded). Remembering that the image of the GNS map 7 is dense in H we
find b € D(n) such that |n(b) — z|| < ||z||. Clearly b # 0. By definition 2 = limn(a,,). Therefore
[I7(b) —n(an)ll < ||n(an)| for almost all n. This equation is equivalent to (C.9) and shows that the
weight h is not strictly faithful. In this way we showed that Assertion 1 implies Assertion 2.

We shall prove the converse. We now assume that the mapping n(a) — n(a*) is closable. Take
a sequence {a,}, .y in D(n) N D(n)* such that the sequence {n(a;,)},y is norm convergent to
zero and the sequence {7(an)}, oy is bounded. Passing to a suitable subsequence, we may assume
that the sequence {n(a;,)}, cy is norm convergent to zero and the sequence {n(ay)}, oy is weakly
convergent to some element x € H. Then the pair (0,2) belongs to the (norm x weak)-closure of
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Graph Sy = {(n(a*),n(a)) : a € D(n) ND(n)*}. In Hilbert spaces the weak and the norm closures
of any convex set coincide. Therefore denoting by S the closure of Sy we obtain z = S0 = 0. Now
we compute as follows. Let b be an element in the C*-algebra A such that the inequality (C.9)
holds. Then h(b*b) < 2Re(n(b)|n(a,)) and taking the limit n — oo, we obtain h(b*b) < 0. Now
the faithfulness of h shows that b = 0. This proves that Assertion 2 implies Assertion 1.

The equivalence of Assertions 2 and 3 is the well known part of the Tomita-Takesaki theory.
O

D. Tomita-Takesaki theory.

In this section we collect the main results on Tomita-Takesaki theory used in this paper. The
less known results will be proven. Throughout the Section, M will be a von Neumann algebra
of operators acting on a Hilbert space H. We shall assume that the embedding M C L(H) is
standard. Then any normal semifinite faithful weight h on M can be represented by a closed GNS
map 7 densely defined on M with range dense in H, related to h by the formula

ha*a) = { (n(a)[n(a)) if a € D)

400 otherwise

for any a € M. Similarly any normal semifinite faithful weight k¥ on M’ can be represented by a
closed GNS map 0’ densely defined on M’ with range dense in H. In what follows, 6§ will denote
the commutant of /. With this notation we have:

Theorem D.1.
1. There exists unique closed conjugate linear operator Sye1 such that {8(a) : a € D(#) N D(n)*}
is a core for Srel and Syaf(a) = n(a*) for any a € D(0) N D(n)*.

2. The adjoint operator Frq = S, has a core {¢'(b) : b € D(0') N D(n')*} and Fra0'(b) = 1/ (b*)

rel
for any b€ D(O')ND(n')*.

3. The operator Avel = Fre1Srel depends only on the weights h and k (it is independent of the
choice of the GNS maps n and 0" representing h and k).

4. The operator J.e appearing in the polar decomposition Spe = JrelAie/f s antiunitary and
JraM T = M'.

To see that the domain of S, is dense in H we notice that a*b € D(#) and (a*b)* = b*a € D(n)
for any a € D(n) and b € D(#). Therefore a*0(b) = 6(a*b) belongs to the domain of S, and
Sre1a*0(b) = n(b*a) = b*n(a). It turns out that {a*0(b) : a € D(n), b € D(A)} is a core for Syer. In
fact one can prove a little more:

Proposition D.2. Let Dy C D(n) be a core for n and Dy C D(0) be a core for 6. Then
{a*0(b) : a € D1, b € Do}
is a core for Syel.
The similar statement holds for Flq.

According to [3], the relative modular operator A, is called the Radon-Nikodym derivative of
h with respect to k and denoted by %. Clearly Ao = % is a positive self-adjoint operator acting
on H.

Theorem D.3. Let h be a weight on M and k be a normal semifinite faithful weight on M'. Then
for any a € Mand t € R the element
A\ fan\
(@) (%)
belongs to M and is independent of the choice of the weight k.

Clearly {ath} +cp 18 @ strongly continuous one parameter group of automorphisms of M. It is called
the modular automorphism group related to the weight h.

We set
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Theorem D.4. Let h and hy be normal semifinite faithful weights on M and k be a normal
semifinite faithful weight on M'. Then for any t € R the element

@ it % —it
dk dk

belongs to M and is independent of the choice of the weight k.

We set y .
dh\" (dhy\ "
(Dh: Dha). = (dk) (dk)

Clearly ((Dh : Dh1)t)ier is a strongly continuous one parameter family of unitaries in M. It is
called the Radon-Nikodym cocycle. One can easily verify that

(Dh: Dh)e47 = 0} ((Dh : Dhy)y)(Dh : Dhy),
= (Dh: Dhl)tUt ((Dh : Dhy),),

of(a) = (Dh : Dhy);o1* (a)(Dh : Dhy);
forany t, T € Rand a € M.

Theorem D.5. Letn and 0 be closed GNS mappings densely defined on M with the ranges dense in
H, Sl be the corresponding closed conjugate linear operator introduced in Statement 1 of Theorem
D.1 and a € M. Assume that a € D(0) and 0(a) € D(Sra1). Then a* € D(n) and (obviously)

Sretfl(a) = n(a”).
Proof. By the Theorem B.2 n” = 5. Therefore it is sufficient to show that
(D.1) a*n'(b) = bS,e10(a)
for any b € D(n). For any ¢ € D(0’) we have
(0" (c)[bSrerb(a)) = (670" ()| Sref(a))
= (0"(b7¢)|Sra1b(a))-

The reader should notice that b*c € D(¢’) and (b*c)* = ¢*b € D(1’) (because D(0') and D(n’) are
left ideals in M"). Therefore (cf. Statement 2 of Theorem D1) #'(b*c) € D(Fye1) and Frf' (b*c) =
7' (¢*b) = ¢*r/(b). So we have

(0" (c)[bSraib(a)) = (6"(b"¢)|Srerb(a))

(
= (0(a)|Fra0'(b"c))
= (0(a)|c™n’'(b)) = (cO(a)|n’ (b))
= (ab’(c)[n' (b)) = (¢'(c)a™n' (b))
and (D.1) follows. O
In the next theorem we set # = 7. In this case we write S, F, A and J instead of Srel, Frel, Arel
and Jye. One can easily verify that S and F are involutive: S~™! = § and F~! = F. It implies

that J2 =1, J* = J and JAJ = A~!. With this notation we have

Theorem D.6. Let h be a weight associated with the closed densely defined GNS mapping with
dense range. Then

1. D(n) is o"-invariant and '
n(of (a)) = A™n(a)

for any a € D(n) and t € R.

2. D(n') = JD(n)J and

n'(JaJ) = Jn(a)

for any a € D(n).

We shall also use
Theorem D.7. Let n be a closed GNS mapping densely defined on M with range dense in H, h
be the weight on M related to n and J{‘/2 be the analytic generator of the corresponding modular
automorphism group. Assume that a € D(n) and b € D(o Z/2) Then ab € D(n) and

(D.2) n(ab) = Jojs(b)* In(a).
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Proof. We know that o'(b) = A"bA™. Let ¢ = 0?/2(b). Then bA'Y/2 € A'/2¢ and by passing to
the adjoint operators

(D.3) cAY? c AV

Let {u;},c; be a net of positive elements of D(n) converging strongly to 1. Then u;a and (u;a)* =
a*u; belong to D(n). Therefore n(a*u;) = Sn(u;a) = JAY?n(ua) = A~Y2JIn(u;a) € D(AY?).
By (D.3) b* maps D(A'/2) into D(AY/?). Hence n(b*a*u;) = b*n(a*u;) € D(AY?) = D(S). Using
Theorem D.5 we see that u;ab = (b*a*u;)* € D(n). Remember that Jc*J € M’ commute with
u; € M we obtain

u;Je* In(a) = Je*Jun(a)

= Jc* In(ua) = Je*JSn(a*u;)

= Je* AV 2p(a*u;) = JAY2b*n(a*u;)

= Sn(b*a*u;) = n(u;ab).
We take the limit with respect to 7. Since 7 is closed, we conclude that ab € D(n) and
(D.4) n(adb) = Jc* Jn(a).

Clearly this formula coincides with (D.2). O

The modular group and Connes’ Radon-Nikodym cocycle are canonical constructions. If 7 is
a normal automorphism of a von Neumann algebra M then for any faithful semifinite normal
weight h on M, hot is a faithful semifinite normal weight on M and ¢}°™ = 7= togltor for all t € R.
Similarly for any faithful semifinite normal weights h and hy on M we have: (D(hot) : D(hjot))s =
771 ((Dh : Dhy);) for all t € R. For antiautomorphisms the formulae are slightly modified:

Proposition D.8. Let M be a von Neumann algebra and R be a normal antiautomorphism of M.
Then

(1) For any faithful semifinite normal weight h on M and any t € R we have
ol’F = R=1og" oR.
(2) For any faithful semifinite normal weights h and hy on M and any t € R we have:
(D(heR) : D(h1°R)), = R™" ((Dhy : Dh)_).

E. Tensor Product.

In this section we discuss the tensor product of GNS-mappings. Let A be a non-degenerated C*-
algebra of operators acting on a Hilbert space H and 1 : A — H be a densely defined closed GNS
mapping. Similarly let B be a non-degenerated C*-algebra of operators acting on a Hilbert space
K and 6 : B — K be a densely defined closed GNS mapping. Then A ® B is a non-degenerated
C*-algebra of operators acting on H ® K. We shall consider the algebraic tensor product 1 ®ai, 0.
By definition D(n ®a1g 0) = D(1) Qalg D(). Clearly

(E.1) (a ®b)(n ®aig 0)(c) = c(n'(a) @ 0'(D))

for any ¢ € D(n) ®aig D(0), a € D(1') and b € D(¢). Using this formula one can easily show that
the mapping 1 ®ag 6 is closable. Indeed if (cq) is a net of elements of D(n) ®ag D(0) converging
strongly to 0 such that (7 ®aig 0)(ca) — € H ® K then using (E.1) and passing to the limit we
obtain (a ® b)z = 0 for all @ € D(n’) and b € D(#’). Hence = 0 and 1 ®ag 0 is closable.

By definition 7 ® 0 is the closure of 17 ®a1g 8. We shall prove that n® 6 is a GNS mapping acting
from A® B into H® K.

Let a € A, b€ B and ¢ € D(n ® ). Then there exists a net (c,) of elements of D(1) ®a1z D(6)
such that ¢, — ¢ strongly and (17 ®aig 0)(ca) — (7 ® 0)(c) in norm. Passing to the limit in the
obvious equality

(1 @aig 0)((a @ b)ca) = (a @ b) (N Darg 0)(ca)
we conclude that (a ® b)c € D(n ® 6) and
(n©0)((a®b)c) = (a®b)(n®0)(c) .

Using the same method one may replace in the above statement a ® b by any element of A® B. It
shows that n ® 6 is a GNS-mapping.

Remark E.1. By our definition D(n) Qs D(6) is a core for n ® 6.
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In the same way one introduces the tensor product of GNS mappings defined on von Neumann
algebras.

Theorem E.2. Letn: A— H and 6 : B — K be closed densely defined GNS mappings. Then
(E.2) me®o) =neo0.

Proof. For simplicity assume that " and 6" are faithful and have dense ranges. Then (n ® )"
is also faithful and has dense range. We may use Tomita-Takesaki theory. Using Proposition
D.2 with 8 = 7 replaced by  ® 6 and D1 = D, replaced by D(n) ®ag D(#) one can easily show
that the operator S related to (n ® 6)” is the tensor product of operators S related to n and
0. Consequently we have the same statements for operators A and J. Now (E.2) follows from
Statement 2 of Theorem D.6. O

Corollary E.3. Let
n(a) = Zan and 0(b) = Zb\Ilk
‘ k
be exact vector presentation of GNS mappings n and 6. Then

(E.3) (n®0)(c) = Z (S ® ¥y)

k.0

is an exact vector presentation of n ® 0.

Proof. Let P, € L(H) be the orthogonal projection onto AQ, and Qi € L£(K) be the orthogonal
projection onto BUj,. Then P,®Q)y is the orthogonal projection onto (A @ B)(Q; ® ¥y,). According
to Proposition B.8 the left ideal in A’ (in B’ resp.) generated by {Pi, Ps,...} (by {@1,Q2,...}
resp.) is a core for ' (for 6’ resp.). Therefore the left ideal generated by {Pr @ Qg : £,k =1,2,...}
is a core of ' ® ¢ = (n® 0)’. Using again Proposition B.8 we see that (E.3) is an exact vector
presentation. O

F. Analytic generators. In this Section we give necessary information on analytic generators of
one parameter groups of isometries of Banach spaces. Let B be a Banach space and {a;},.p be
a one parameter group of isometries of B: |laz(a)| = ||a||, at(as(a)) = arys(a) and ap(a) = a for
any a € B and t,s € R. We shall always assume that the group is pointwise continuous: for any
a € B, |lat(a) — al]| — 0 when t — 0.

Let us recall [40] that the analytical generator a; of the group {au},.p is the linear operator
acting on B in the following way:

For any a,b € B: a € D(a;) and b = a;(a) if and only if there exists a mapping z — a, € B
continuous on the strip {z € C: Sz € [0, 1]} and holomorphic in the interior of this strip such that
a; = ay(a) for all t € R and a; = b.

It is known that «; is a closed densely defined linear mapping.

Proposition F.1. Let B, be Banach spaces, {af}teR

groups of isometries of By and af be the corresponding analytical generators (k =0,1,..., K —1).
Moreover let

be pointwise continuous one parameter

\IJZB()X81X"'XBK_1—>(C

be a continuous K-linear form such that

(F.1) \I/(a?(ao), ozil(al), .. ,aiK_l(aK_l)) = U(ag,a1,...,aK5-1)
for any ar, € D(a¥) (k=0,1,...,K —1). Then
(F.2) U(af(ag), of (1), ..., of "ax—1)) = U(ag, a1, ..., ax_1)

foranyt € R and a € By, (k=0,1,..., K —1).

To prove this proposition we shall use the following result known as Carlson’s Lemma (cf. [28,
page 228]):

Proposition F.2. Let f(-) be a holomorphic function on the half-plane Cy = {z € C: Sz > 0}.
Assume that for some constant M € R, f(z)e"MS% is bounded on Cy and that f(in) = 0 for
n € N. Then f vanishes identically.
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Proof of Proposition F.1: Let C, = C, UR be the closure of C. For any k =0,1,..., K — 1
we set

there exists continuous map: Cy 32— a(z) € By
Dy =<¢a€ Bg: holomorphic on C; such ihat for some constant M € R,
a(z)e"M3% is bounded on C, and a(t) = a¥(a) for all t € R

Let a, € Dy, (k=0,1,..., K — 1), ax(z) be the holomorphic extension of af(ay,) (cf. the above
definition of D) and
9(z) = U(ap(2),a1(2),...,ax—-1(2)).
Then, for any n € N, a;, € D((af)") and (aff)n ar, = ax(ni). Taking into account Assumption
(F.1) we see that g(in) = ¢g(0). Now one can easily show that the function f(z) = g(z) — g(0)
satisfies the assumptions of the Carlson’s lemma. Therefore g(z) = g(0) for all z € C. For real 2
this formula coincides with (F.2).

To end the proof we have to show that for each k, Dy, is dense in By. Let a € By. For any ¢ > 0

we set i
1 1T
as = — 672 oF (a)dr.
2m Jr (1 +i7)

It turns out that a. € Dg. Indeed one can easily verify that the map

—iz it .
ag (a)dr € By,
2m /]R(l—iz-i-iT)2 =r(%)

(&

Cyo2z—a(2)=

is the holomorphic continuation of af (a.) satisfying all the requirements of definition of Dy. Using
the Lebesgue’s dominated convergence theorem, one can easily show that

1 €1+1'7'
lim a. = —/ﬁdT a=a.
e—0 21 Jr (1 4i7)

It shows that any element of By is a norm-limit of elements of Dy. 0
Theorem F.3. Let By be Banach spaces, {af}teR be pointwise continuous one parameter groups
of isometries of By and af be the corresponding analytical generators (k=1,2,..., K).
Moreover let
(F3) \I/531XBQ><-'~XBK_1—>BK
be a continuous (K — 1)-linear mapping such that
(F.4) U(ay,a,...,ax—1) ED(O&IK)
and
(F.5) o (W(ay,a,...,ax_1)) = ¥(a)(ar),a?(ag),...,al Hax 1))

for any a € D(aF) (k=1,2,...,K —1). Then
(F.6) B (U(ar,ag,...,ax_1)) = ¥(a}(a1),0?(as),. .., o Y agx_1))

foranyt € R and ap € By, (k=1,2,..., K —1).

Proof. Let By be the set of all a € B} such that the mapping t € R — a o aff € B} is norm
continuous. Then By is a closed subspace of Bj;. For each a € B}, we set

1
Re(a) = ﬁ/ﬂkaoaf e /et

Re(a)oaf —R.(a) = \/% / ao ag((e—(t—s)z/g B e_tQ/E)dt
™ JrR

and hence R¢(a) € By. Since

Then

Re(a) —a aoak — a)e_tz/sdt,

_ 1 / (
N VET Jr
By is weakly* dense in Bj,. The canonical bilinear form on By X Bk, will be denoted by (-, ).
Since Re(a) o off = R (aoal) for all t € R, the formula

(F.7) (af(a0), o (ax)) = (a0, ax),
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where ag € By, ax € Bk, t € R, defines a one parameter group {a? of isometries of By. Let

Vi
a? be the corresponding analytical generator. By the holomorphic continuation we have:

(F.8) (af(a0), af* (ax)) = (a0, ax)
for any ag € D(a?) and ax € D(ak).
For any ax € D(a¥) (k=0,1,...,K — 1) we set:
V' (ag,a1,...,ax_1) = (ap, ¥(ay,...,ax_1)).

Clearly ¥’ is a continuous K-linear form defined on By X By X -+ x Bg_1. Using (F.8) and (F.5)
one can easily check that

U (ad(ag), ) (ar),...,aXHak 1)) = ¥ (ag,a1,...,ax_1)
for any aj, € D(a¥) (k=0,1,...,K —1). Now, Proposition F.1 shows that
(2(ap), ¥(ai(ar),...,af ax_1))) = (a0, ¥(ay,...,ax_1))
for any ar € B, (k=0,1,..., K — 1) and t € R. Comparing this result with (F.7) we get (F.6).

O
In particular, inserting in Theorem F.3, K =2, By = B, = B and ¥ = idp we get

Corollary F.4. Let B be a Banach space and {oz% be one parameter groups of

Then o} = o? and o} = o?

Vi
2

i

}teR and {af

isometries acting on B. Assume that the analytic generators o} C «
for allt € R.

Let us go back to Theorem F.3. Assume for the moment that the image of (F.3) is linearly
dense in Bg. Then the linear span of elements of the form (F.4) is a core for . This fact follows
from the following

Theorem F.5. Let a = {a;},.p be a one parameter group of isometries acting on a Banach space
B and D be an a-invariant linear subset of D(«a;). Assume that D is dense in B. Then D is a
core for «;.

To prove this Theorem we shall use the regularizing operator R, acting on B. By definition

1 e 2
F. V= — -, dr.
(F.9) R ﬁ[me o, dr

One can easily verify that R, is a norm one operator acting on B, the range R,(B) C D(«;) and

1 > .
a;oRy = \ﬁ [m e_(T_l)zozT dr.

is a bounded operator acting on B with norm less or equal e. Endowing D(«;) with the graph norm
(IIbllgraph = 10| + llai(D)|| for any b € D(«;)) we see that R, maps B into D(«;) in a continuous
way. If D is a dense subset of B, then R,(D) is a dense subset of R, (B) in the sense of the
graph topology of D(«;). It means that the restrictions of o; to Ro (D) and R (B) have the same
closures:

(F.10) Oéi\Ra(D) = ai|Ra(B)'

Proposition F.6. Let o = {ou},cp be a one parameter group of isometries acting on a Banach
space B, b € B and D C B be an a-invariant linear subset. Then

1. Ra(b) belongs to the smallest closed a-invariant linear subspace of B containing b.
2. b belongs to the smallest closed a-invariant linear subspace of B containing R (D).
3. Ra(D) and D have the same closures:

Ru(D) = D.

Proof. Ad 1 and 2. It is sufficient to show that for any continuous linear functional ¢ on B we
have:

(F.11) ( p(a(b)) =0 ) — ( p(ar(Ra (b)) =0 )

forallte R forallte R
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For any ¢ € B we set: f,(t) = ¢(a:(b)) and g, (t) = ¢(c(Ra(b))). Then f, and g, are bounded
continuous functions on R and may be considered as tempered distributions on R. In what follows,
fo and g, will denote the Fourier transform of f,, and g,. Therefore (F.11) is equivalent to

(F.12) (Jo =0) <= (5. =0).

Taking into account (F.9) we obtain:

Replacing b by a;(b) we obtain
1 > —72 1 > 7(t77)2
g%’(t) = ﬁ e fg&(t + T) dT = ﬁ e f%,(T) dT.

On the right hand side we have the convolution product of the Gaussian function %6_7—2 with fo.
Passing to the Fourier transform we see that g, equals to f, multiplied by the Fourier transform
of the Gaussian function. The latter has no zero points in R and (F.12) follows.

Ad 3. Tt follows immediately from Statements 1 and 2. a

Now we are able to prove Theorem F.5.

Proof. We shall use Statement 3 of Proposition F.6 in the following context. Instead of B we take
D(«a;) endowed with the graph norm. Clearly « is a group of isometries of D(«;). Therefore for
any a-invariant subset D C D(«y;), the closures (in the sense of the graph topology) of R, (D) and
D coincide. In other words

(F.13) %l (p) = %lp-

Inserting in this formula D = D(«;) and using the inclusion D(«;) C B we obtain
(F.14) OZZ|RG(B) = Q4.
Combining now (F.10), (F.13) and (F.14) we get: o;|p = ;. It means that D is a core for ;. O

Theorem F.7. Let o = {O‘t}teR be a one parameter group of isometries acting on a Banach space
B and a,b € B. Assume that a;°R,(a) = Ra(b). Then a € D(«;) and a;(a) = b.

Proof. We shall use Statement 2 of Proposition F.6 in the following context. Instead of B we
take B = B ® B. Clearly {&'t}teR, where a; = ay @ oy for all t € R, is a group of isometries of
B. Graph(ay) = {(a,(a)) : a € D(a;)} is a closed, d-invariant subspace of B. We assumed that
Ra(a,b) = (Ra(a), Ra(b)) € Graph(a;). Using Statement 2 of Proposition F.6 and remembering
that Graph(w;) is @ invariant we see that (a,b) € Graph(c;). It means that a € D(a;) and
b= a;(a). O

Remark F.8. One can easily generalize Proposition F.1 and Theorem F.3 for mappings ¥ that
are conjugate linear with respect to some variable (and linear with respect to remaining ones).
If U(ay,as,...,ax) is conjugate linear with respect to ay, then in all entries the af should be
replaced by o ; (the analytic generator of {a*,} teR)-
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