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Abstract. The paper is devoted to locally compact quantum groups that are related to classical

‘ax+b’ group. We discuss in detail the quantization of the deformation parameter assumed with
no justification in the previous paper. Next we construct (on the C∗-level) a new quantum

deformation of ‘ax + b’ group corresponding to the deformation parameter q2 being an even

root of unit. To this end we add a new reflection operator w commuting with a and b but
anticommuting with β.

0. Introduction

In last years a lot of effort was devoted to construct explicit examples of (non-compact) locally
compact quantum groups. The present paper inscribes into this line of research. It is devoted to a
quantum deformation of the group ‘ax+ b’ of affine transformations of real line. This deformation
was presented first in [21].

We go back to the subject for the following reasons. At first the quantizations of the deformation
parameter ~ crucial for quantum ‘ax + b’ was not discussed in detail in the previous paper. Now
we give strong arguments that the values of ~ considered in [21] are the only ones that make
the construction possible. The problem is not solved completely and may be subject of further
investigation (see the last section of the paper). Secondly one of the important formula in [21]
was not proven. We fill this gap. Finally extending a little our setting we construct new quantum
deformation of ‘ax + b’ group. Our next target is SL(2,R). We are convinced that the groups
considered in the present paper will serve as building blocks in construction of quantum SL(2,R)
group.

Let G be ‘ax+ b’ group. On the classical level G consists of all transformations of the form

(0.1) R 3 x 7−→ ax+ b ∈ R,

where a and b are real parameters labeling the elements of the group. We shall assume that a > 0.
Assigning to each element of the group the values of the parameters we define two unbounded
continuous real functions on G. To denote the functions we shall use the same letters a, b ∈ C(G).
Then the C∗-algebra C∞(G) of all continuous functions vanishing at infinity on G is generated by
a, b:

C∞(G) =
{
f(a)g(b) :

f ∈ C∞(]0,∞[)
g ∈ C∞(R)

} uniform closed
linear envelope

.

Functions a and b may be considered as elements affiliated with C∞(G). Composing two trans-
formations of the form (0.1) with parameters (a1, b1) and (a2, b2) one obtains the transformation
with parameters (a1a2, a1b2 + b1). This result leads to the following formulae describing the co-
multiplication:

(0.2)
∆(a) = a⊗ a,
∆(b) = a⊗ b+ b⊗ I.

At the moment the elements of G are considered as affine transformations of R. However one
may realize them as unitary operators acting on a Hilbert space. To this end, to any transformation
of the form (0.1) we assign unitary operator V(a,b) ∈ B(L2(R)) introduced by the formula:(

V(a,b)f
)
(x) = a−1/2f

(
a−1(x− b)

)
for any f ∈ L2(R). Then G may be identified with the set of unitary operators:

(0.3) G =
{
V(a,b) : a, b ∈ R; a > 0

}
.

This identification preserves the group structure and the topology. More precisely V(1,0) = I and

(0.4) V(a1,b1)V(a2,b2) = V(a1a2,a1b2+b1)

1
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for any a1, a2 ∈ ]0,∞[ and b1, b2 ∈ R. Moreover a sequence V(an,bn) converges to V(a∞,b∞) in strong
topology if and only if an → a∞ > 0 and bn → b∞. In particular (0.3) with the strong operator
topology is a locally compact space. One can also show that (0.3) is a closed subset of B(L2(R))
(in strong operator topology).

For any Hilbert space H we denote by K(H) the C∗-algebra of all compact operators acting
on H. According to the general theory [15] the strongly continuous family of unitaries (0.3) is
described by a single unitary V ∈ M(K(L2(R)) ⊗ C∞(G)). The C∗-algebra C∞(G)) is generated
(in the sense of [15]) by V . Formula (0.4) means that

(id⊗∆)V = V12V13.

This way we arrive to the notion of (quantum) group of unitary operators. Let H be a Hilbert
space. We shall consider pairs (A, V ), where A is a C∗-algebra and V is a unitary element of the
multiplier algebra M(K(H)⊗A). We say that (A, V ) is a quantum group of unitary operators if

0. A is generated by V ∈ M(K(H)⊗A).
1. There exists a morphism ∆ ∈ Mor(A,A⊗A) such that

(0.5) (id⊗∆)V = V13V23.

2. There exists an antimultiplicative closed (with respect to the strict topology) linear mapping
κ̃ acting on M(A) such that (ω ⊗ id)V ∈ D(κ̃) and

κ̃ ((ω ⊗ id)V ) = (ω ⊗ id)V ∗

for any normal functional ω defined on B(H). The antimultiplicativity means that D(κ̃) is a
subalgebra of M(A) and that κ̃(ab) = κ̃(b)κ̃(a) for any a, b ∈ D(κ̃). One also assumes that
A ∩ D(κ̃) is norm dense in A.

We are not going to discuss this definition in the present paper. Let us notice only that for
finite-dimensional H it essentially coincides with the definition of compact matrix pseudogroup
given in [14]. The generalization consists in replacing the set of invertible matrices by the group
of unitary operators acting on H. If A is commutative then it is of the form A = C∞(G), where G
is a locally compact (with respect to the strong operator topology) closed subgroup of the group
of unitary operators acting on H. In what follows constructing quantum groups we shall focus on
conditions 0 and 1. It is known that condition 2 follows from manageability [18] (or modularity
[9]).

Let us go back to the ‘ax + b’ group. In the quantum setting functions a and b are replaced
by selfadjoint elements a = a∗ > 0 and b = b∗ that no longer commute. Instead they satisfy the
relation

(0.6) ab = q2ba,

where the deformation parameter q2 is a number of modulus 1. Unfortunately in our case elements a
and b are represented by unbounded operators and the products ab and ba may not be well defined
because of the domain problem. For this reason we replace (0.6) by the so called Zakrzewski
relation. It says that for any τ ∈ R:

aiτ ba−iτ = e~τ b.

In this formula ~ is a real constant such that q2 = e−i~. The reader should notice that for τ = −i
the above relation reduces to (0.6).

The second problem is related to the comultiplication. We would like to keep formulae (0.2).
However in general a ⊗ b + b ⊗ I is not selfadjoint and in the best case we may expect that ∆(b)
is a selfadjoint extension of a⊗ b+ b⊗ I:

a⊗ b+ b⊗ I ⊂ ∆(b).

To choose the extension in a well defined way we have to use an additional operator β independent
of a and b: β is a selfadjoint unitary commuting with a and anticommuting with b. It means that
the algebra A is no longer generated by a and b.

It is not obvious, how to present quantum ‘ax+b’ group as a quantum group of unitary operators
(A, V ). The crucial point is the formula V = V (a, b, . . . ) expressing V in terms of a, b, β and perhaps
some other elements related to A. The equation (0.5) takes the form

V (a⊗ a, [a⊗ b+ b⊗ I], . . . ) = V (a⊗ I, b⊗ I, . . . )V (I ⊗ a, I ⊗ b, . . . ),
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where [a ⊗ b + b ⊗ I] is a suitable selfadjoint extension of a ⊗ b + b ⊗ I. To find solutions of this
equation we spent a lot of time making use of our experience in the area of quantum exponential
functions and quantum groups (cf. [17, 16, 12, 20, 19, 21, 8, 10]). As a result we got formulae (3.8)
and (4.4) that are starting points in our presentation.

We shortly discuss the content of the paper. Sections 1 and 2 are devoted to mathematical
tools used in the paper. In the first one we recall the Zakrzewski commutation relation and related
quantum exponential function (with a slightly modified notation). Most of the results presented in
that Section come from [19]; the essentially new result is contained in Proposition 1.4. The second
Section deals with the notion of a C∗-algebra generated by affiliated elements. We prove a number
of results used in the main sections of the paper.

Section 3 is devoted to the quantum ‘ax + b’ group introduced in [21]. This group exists only
for special values of deformation parameter q2 = e−i~ with ~ = π

2k+3 , where k = 0, 1, 2, . . . . This
fact was not really shown in [21]. The special values of the deformation parameter were chosen
to proceed with some computations. It was not clear that (at the expense of some complications)
one is not able to construct quantum ‘ax + b’ group for larger set of values of the deformation
parameter. Now, presenting the ‘ax + b’ group as a quantum group of unitary operators we
obtain the quantization of the deformation parameter as a precise mathematical statement (cf.
Theorem 3.3). More precisely for q2 = e−i~ we shall construct a C∗-algebra A with distinguished
selfadjoint elements a, b and iβb affiliated with it (the so called reflection operator β is a unitary
involution which is not affiliated with A). These elements satisfy (in a well defined sense) the
relations ab = q2ba, aβ = βa and bβ = −βb. The algebra A is generated by a unitary element
V ∈ M(K(L2(R)) ⊗ A). The pair (A, V ) is defined for all 0 < ~ < π/2. However, the existence
of ∆ satisfying the condition (0.5) selects much smaller subset of admissible ~’s. We shall prove
that ∆ exists if and only if ~ is of the form indicated above. At the end of the section we prove
an elegant formula describing the action of the comultiplication on the reflection operator. This
formula appeared in the previous paper with no proof (cf. formula (4.16) of [21]).

A new quantum group related to classical ‘ax + b’ group is constructed in Section 4. Using
the involutive automorphism of the quantum ‘ax + b’ group described in [21] we consider the
corresponding crossed product. This enlargement of the algebra opens new possibilities. In par-
ticular we obtain a new admissible values of the deformation parameter. Now ~ = π

2k+3 , where
k = 0, 1

2 , 1,
3
2 , 2, . . . . For integer k we obtain quantum groups closely related to the one consid-

ered in [21] (and in Section 3). Half-integer k lead to essentially new examples of locally compact
quantum groups.

The next section (Section 5) is devoted the multiplicative unitaries for the quantum group
constructed in Section 4. We prove their modularity and find the unitary antipode and scaling
group. In particular we show that the objects constructed in Section 4 satisfy all the axioms of
Kustermans and Vaes [3] and the ones of Masuda, Nakagami and Woronowicz [5].

In the last section we formulate the problem of quantization of the deformation parameter for
‘ax+ b’ group in the full generality.

Our approach extensively uses the C∗-algebra language and the theory of selfadjoint operators
on the Hilbert space. For the basic facts concerning the general C∗-algebra theory we refer to [1, 7].
The notation used in the paper follows the one explained in [15, 13]. In particular M(A) is the
multiplier algebra of a C∗-algebra A. The affiliation relation in the sense of C∗-algebra theory is
denoted by “η” and Aη is the set of all affiliated elements (“unbounded multipliers”). It is known
that M(A) ⊂ Aη. A morphism from A to a C∗-algebra B is by definition any ∗-homomorphism
π : A −→ M(B) such that π(A)B is dense in B. Let us recall that any such π has the unique
extension to a unital ∗-homomorphism π : M(A) −→ M(B) and to ∗-preserving map π : Aη −→ Bη

respectively (both denoted by the same symbol). The set of all morphisms from A to B is denoted
by Mor(A,B).

With some abuse of notation, the symbol Rep(A) will stay for the set of all non-degenerate
representations of a C∗-algebra A. For any π ∈ Rep(A), we denote by Hπ the carrier Hilbert space
of π. Then π ∈ Mor(A,K(Hπ)).

In the paper we mostly deal with concrete C∗-algebras. By definition they are norm closed
∗-subalgebras of the algebra B(H) of all bounded operators acting on some (separable) Hilbert
space H. As a rule, C∗-algebras we deal with are separable. Non separable ones will appear only
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as a multiplier algebras. In particular B(H) = M(K(H)) where K(H) is the C∗-algebra of all
compact operators acting on H. We shall denote by C∗(H) the set of all non-degenerate separable
C∗-algebras of operators acting on a Hilbert space H. We recall that an algebra A ⊂ B(H) is
non-degenerate if AH is dense in H.

We shall use functional calculus for strongly commuting selfadjoint operators. If T and β are
selfadjoint operators acting on a Hilbert space H and T and β strongly commute then

T =
∫ ⊕

Λ

r dE(r, %), β =
∫ ⊕

Λ

% dE(r, %),

where dE(r, %) is the common spectral measure supported by the joint spectrum Λ ⊂ R2 of (T, β).
Moreover for any measurable complex valued function on Λ we have

f(T, β) =
∫

Λ

f(r, %)dE(r, %).

In this context the characteristic function χ will appear quite often. By definition for any sentence
R, we have

χ(R) =

{
0 if R is false,
1 if R is true.

Typically R is a formula involving (in)equality sign. For example χ(r ≤ 0) is equal 0 for positive
r and 1 for r = 0 or negative. Consequently χ(T ≤ 0) is the spectral projection assigned to the
negative part of the spectrum of a selfadjoint operator T . The corresponding spectral subspace
will be denoted by H(T ≤ 0): H(T ≤ 0) = χ(T ≤ 0)H. Similarly χ(T = λ) is the orthogonal
projection on the eigenspace H(T = λ) of T corresponding to the eigenvalue λ ∈ R. We refer to
[19] for more detailed explanation of this notation.

Let Np(r) = rχ(r < 0). Then for any selfadjoint T ,

(0.7) Np(T ) = Tχ(T < 0)

is a selfadjoint operator acting on H. This is the negative part of the operator T .

1. A special function and selfadjoint extensions.

In this section we recall (in a slightly modified version with a certain loss of generality) the basic
definitions and statements of [19]. The only essentially new result is contained in formula (1.10).
Later on it will help us to prove the formula announced in [21, formula (4.16)]. We start with a
modified version the quantum exponential function introduced in [19]. Let ~ ∈ R and 0 < ~ < π

2 .
Instead of function F~ defined on the set R−×{−1, 1}∪R+×{0} we shall use function G~ defined
on R× {−1, 1}. It is related to the function F~ by the formula

(1.1) G~(r, %) = F~(r, %χ(r < 0))

for any r ∈ R and % = ±1. Taking into account definition [19, formula (1.19)] we obtain

(1.2) G~(r, %) =


Vθ(log r) for r > 0[

1 + i%|r|π~
]
Vθ

(
log |r| − πi

)
for r < 0,

where θ = 2π
~ and Vθ is the meromorphic function on C such that

Vθ(x) = exp
{

1
2πi

∫ ∞

0

log(1 + t−θ)
dt

t+ e−x

}
for all x ∈ C such that |=x| < π. In addition G~(0,±1) = 1. Then G~(r, %) is a continuous function
on R× {−1, 1} and

(1.3)
(
G~(r, %) = G~(r, %′)

)
⇐⇒

(
%χ(r < 0) = %′χ(r < 0)

)
.

The asymptotic behavior of G~(r, %) for large r is described by the formula

(1.4) G~(r, %) ≈ C exp
{

(log |r|)2

2i~

}
,

where C is a phase factor depending only on sign r and ρ and ‘≈’ means that the difference goes
to 0 when r → ±∞ (see Statements 9 and 10 of [19, Theorem 1.1]).
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It is known that the quantum exponential function assumes values of modulus 1. Therefore if
T and β are operators acting on a Hilbert space H, T is selfadjoint and β is unitary selfadjoint
commuting with T then G~(T, β) is unitary.

Now we recall the concept of selfadjoint extension of a symmetric operator defined by a reflection
operator. Let Q be a symmetric operator acting on a Hilbert space H and ρ be a unitary selfadjoint
operator (ρ∗ = ρ, ρ2 = I) anticommuting with Q. Then we denote by [Q]ρ the restriction of Q∗

to the domain {x ∈ D(Q∗) : (ρ− I)x ∈ D(Q)}. It is known (cf. [19, Proposition 5.1]) that [Q]ρ is
a selfadjoint extension of Q. We shall use the following simple

Proposition 1.1. Let Q, X and ρ be operators acting on a Hilbert space H such that Q is
symmetric, X is selfadjoint, ρ is unitary selfadjoint, ρQ = −Qρ and ρX = −Xρ. Assume that the
restrictions of Q and X to H(ρ = −1) coincide:

(1.5) Q|H(ρ=−1) = X|H(ρ=−1).

Then X = [Q]ρ.

Proof. Let H1 = H(ρ = −1) and H2 = H(ρ = 1). Then H = H1 ⊕ H2 and (all) bounded and
(some) unbounded operators may be represented by 2× 2 matrices. In particular

ρ =
(
−I , 0
0 , I

)
.

Remembering that Q and X anticommute with ρ we obtain:

Q =
(

0 , Q−
Q+ , 0

)
and X =

(
0 , X−
X+ , 0

)
,

where Q+ and X+ are operators acting from H1 to H2 and Q− and X− are operators acting from
H2 to H1. Clearly Q+ ⊂ Q∗− (Q is symmetric) and X− = X∗

+ (X is selfadjoint). Assumption (1.5)
means that Q+ = X+. Therefore

X =
(

0 , Q∗+
Q+ , 0

)
.

On the other hand

Q∗ =
(

0 , Q∗+
Q∗− , 0

)
.

It shows that X ⊂ Q∗ and D(X) = {x ∈ D(Q∗) : (ρ− I)x ∈ D(Q)}. �

Let ~ ∈ R. We shall use the Zakrzewski relation ~
o (cf. [19]). Let R and S be selfadjoint

operators acting on a Hilbert space H with the polar decompositions R = signR |R| and S =
signS |S|. For simplicity we shall assume that one of the operators R and S has trivial kernel. If
kerS = {0}, then signS is unitary selfadjoint and

(
R

~
oS
)
⇐⇒

 signS commutes with R
and |S|−iλR |S|iλ = e~λR

for any λ ∈ R.

 .

If kerR = {0}, then signR is unitary selfadjoint and

(
R

~
oS
)
⇐⇒

 signR commutes with S
and |R|iλS |R|−iλ = e~λS

for any λ ∈ R.

 .

If kerR = kerS = {0}, then the two above conditions are equivalent.

Let R and S be selfadjoint operators with trivial kernels and R ~
oS. It is known [19, Example

3.1] that in this case, the operators ei~/2S−1R and ei~/2SR−1 are selfadjoint and

sign
(
ei~/2S−1R

)
= sign

(
ei~/2SR−1

)
= (signR)(signS).

We shall use the following result (cf. [19, Theorem 5.2]):
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Proposition 1.2. Let R, S and τ be operators acting on a Hilbert space H. Assume that R and S
are selfadjoint with trivial kernels, R ~

oS, and that τ is unitary, selfadjoint anticommuting with
R and S. We set T = ei~/2S−1R. Then T is a selfadjoint operator with trivial kernel, T commutes
with τ , R+ S is a closed symmetric operator and the selfadjoint extension

(1.6)
[R+ S]τ = G~(T, τ)∗SG~(T, τ)

= G~(T−1, τ)RG~(T−1, τ)∗

Remark 1.3. If τ ′ is another unitary, selfadjoint operator anticommuting with R and S and
if in addition there exists a unitary selfadjoint operator ρ that commutes with τ, τ ′ and S and
anticommutes with R then

(1.7)
(

[R+ S]τ = [R+ S]τ ′
)

=⇒
(
τ = τ ′

)
.

Indeed if [R+ S]τ = [R+ S]τ ′ , then (cf. (1.6))

G~(T, τ)∗SG~(T, τ) = G~(T, τ ′)∗SG~(T, τ ′).

It shows that the unitary operator U = G~(T, τ ′)G~(T, τ)∗ commutes with S and hence with |S|.
Clearly

(1.8) G~(T, τ)∗ = G~(T, τ ′)∗U.

Moreover T ~
oS due to Zakrzewski relation R

~
oS and ρ anticommutes with T . As we know

τ and τ ′ anticommute with S, hence they commute with |S|. We shall use Proposition 2.4 (see
the next section). Setting R1 = R2 = T , ρ1 = τ , ρ2 = τ ′, U1 = I, U2 = U and replacing S by
|S| we have all the assumptions of that proposition satisfied. Therefore (1.8) implies the equality
τ Np(T ) = τ ′Np(T ). It means that τ and τ ′ coincide on H(T < 0). Then τ and τ ′ coincide on
ρH(T < 0) for any operator ρ commuting with τ and τ ′. If ρ commutes with S and anticommutes
with R then it anticommutes with T and ρH(T < 0) = H(T > 0). In this case τ and τ ′ coincide
on H(T < 0)⊕H(T > 0) = H (this is because kerT is trivial). Hence τ = τ ′.

We shall prove a result of the same flavor as (1.6):

Proposition 1.4. Let R and S be strictly positive selfadjoint operators acting on a Hilbert space
H such that R ~

oS and τ , ξ and σ be unitary selfadjoint operators commuting with R and S.
Assume that τ commutes with ξ and anticommutes with σ. We set: T = ei~/2S−1R and

(1.9) ρ = αξσχ(τ = 1) + ασξχ(τ = −1),

where α = i e
iπ2
2~ . Then T is a positive selfadjoint operator with trivial kernel, ρ is a unitary

selfadjoint operator, σS
π
~ + ρR

π
~ is a closed symmetric operator anticommuting with τ and the

selfadjoint extension

(1.10)
[
σS

π
~ + ρR

π
~
]
−τ

= G~(τT, ξ)∗σS
π
~G~(τT, ξ)

Proof. Inserting S−1 instead of R and R instead of S in [19, Example 3.1] we see that T is a
positive selfadjoint operator with trivial kernel and

(1.11) T ik = e−
i~
2 k2

S−ikRik = e
i~
2 k2

RikS−ik

for any k ∈ R.

Denote by X the right hand side of (1.10). We know that G~(τT, ξ) is unitary (in what follows
we write G~(τT, ξ)−1 instead of G~(τT, ξ)∗). Operator S

π
~ commutes with σ and τ whereas σ and

τ anticommute. Therefore σS
π
~ is a selfadjoint operator anticommuting with τ . So is X.

Remembering that τ anticommutes with ξσ one can easily verify that ρ∗ = ρ and ρ2 = I.
Furthermore ρ anticommutes with τ . Let Q = σS

π
~ + ρR

π
~ . Clearly Q is a symmetric operator

anticommuting with τ . By virtue of Proposition 1.1 it is sufficient to show that

(1.12) Q|H(τ=1) = X|H(τ=1).

Restricting G~(τT, ξ)∗σS
π
~G~(τT, ξ) to H(τ = 1) we may replace the second τ by 1 and the first

τ by −1 (this is because σ maps H(τ = 1) onto H(τ = −1)):

X|H(τ=1) = G~(−T, ξ)−1σS
π
~G~(T, ξ)|H(τ=1)
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and using (1.2) we obtain

(1.13) X|H(τ=1) =
[
1 + iξT

π
~
]−1

Vθ

(
log T − πi

)−1

σS
π
~ Vθ(log T )|H(τ=1)

Now we shall move σS
π
~ to the right end of (1.13). It is known (cf. [19, relation (1.30)])

that the function Vθ(x) has no poles and no zeroes in strip Σ = {x ∈ C : 0 ≤ =x ≤ π}. Therefore
functions Vθ(x) and Vθ(x)−1 are continuous on Σ and holomorphic inside Σ. Moreover (cf. [19,
the asymptotic formula (1.37)]), Vθ(x) −→ 1 when <x −→ −∞ whereas =x stays bounded and
using formula (1.32) of [19] one can easily show that for any λ > 0, functions e−λx2

Vθ(x) and
e−λx2

Vθ(x)−1 are bounded on Σ. Furthermore T is a strictly positive selfadjoint operator and

T
~

oS. Therefore T π
oS

π
~ and using Statement (3) of Theorem 3.1 of [19] we obtain

S
π
~ Vθ(log T ) = Vθ(log T + iπ)S

π
~ .

Inserting this formula into (1.13) and using in the second step formula (1.28) of [19] we get:

X|H(τ=1) =
[
1 + iξT

π
~
]−1

Vθ (log T − πi)−1
Vθ(log T + πi)σS

π
~ |H(τ=1)

=
[
1 + iξT

π
~

]−1 [
1 + T

2π
~

]
σS

π
~ |H(τ=1)

=
[
1− iξT π

~
]
S

π
~ σ|H(τ=1).

On the other hand ρ|H(τ=1) = αξσ|H(τ=1) and

Q|H(τ=1) =
(
S

π
~ + αξR

π
~
)
σ|H(τ=1).

To end the proof it is sufficient to show that

(1.14) S
π
~ + αξR

π
~ =

[
1− iξT π

~
]
S

π
~ .

We shall use (1.11). It shows that for any x, y ∈ H and any k ∈ R we have(
y Sik x

)
− i e i~

2 k2 (
y ξRikx

)
=
((
I + iξT−ik

)
y Sikx

)
Let x ∈ D

(
S

π
~
)
∩ D

(
R

π
~
)
. If y ∈ D(T

π
~ ) then both sides of the above formula have continuous

holomorphic continuation to the strip −π
~ ≤ =k ≤ 0. Inserting k = −iπ

~ we obtain(
y S

π
~ x
)

+ α
(
y ξR

π
~ x
)

=
((
I + iξT

π
~
)
y S

π
~ x
)
.

This formula holds for any y in the domain of I + iξT
π
~ . Therefore S

π
~ x ∈ D

(
I − iξT π

~
)

and
S

π
~ x+ αξR

π
~ x =

(
I − iξT π

~
)
S

π
~ x. This way we showed that

(1.15) S
π
~ + αξR

π
~ ⊂

(
I − iξT π

~
)
S

π
~ .

To prove the converse inclusion we use again (1.11). Let x ∈ D
(
S

π
~
)

and S
π
~ x ∈ D

(
T

π
~
)
. Then

for any y ∈ H and k ∈ R:

e−
i~
2 k2

(
R−iky S

π
~−ikx

)
=
(
y T ikS

π
~ x
)
.

If y ∈ D(R
π
~ ) then both sides of the above formula have continuous holomorphic continuation to

the strip −π
~ ≤ =k ≤ 0. Inserting k = −iπ

~ we obtain

iα
(
R

π
~ y x

)
=
(
y T

π
~ S

π
~ x
)
.

This formula holds for any y ∈ D(R
π
~ ). Therefore x ∈ D(R

π
~ ). This way we showed the inclusion

D(T
π
~ S

π
~ ) ⊂ D(R

π
~ ). Consequently D

((
I − iξT π

~
)
S

π
~
)
⊂ D

(
S

π
~ + αξR

π
~
)
. Combining this result

with (1.15) we get (1.14), (1.12) and finally (1.10).

Operator ξT
π
~ is selfadjoint. Therefore operator I − iξT

π
~ is invertible with the inverse(

I − iξT π
~
)−1 ∈ B(H). Using this fact one can easily show that the composition

(
I − iξT π

~
)
S

π
~ σ

is a closed operator. Restricting this operator to H(τ = 1) we obtain Q|H(τ=1). Hence Q|H(τ=1)

is closed. Remembering that Q anticommute with τ we conclude that Q is closed. �

We end this section with the reformulation of Theorem 6.1 of [19].
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Theorem 1.5. Let (R,S) be a pair of selfadjoint operators acting on a Hilbert space H such that

kerR = kerS = {0} and R
~

oS and ρ, σ be unitary selfadjoint operators on H. Assume that ρ
commutes with R, ρ anticommutes with S, σ commutes with S and σ anticommutes with R. We
set:

T = ei~/2S−1R,

τ = αρσχ(S < 0) + ασρχ(S > 0),

where α = i e
iπ2
2~ . Then

1. T is selfadjoint, signT = (signR) (signS), T ~
oR and T ~

oS

2. τ is unitary selfadjoint, τ commutes with T and τ anticommutes with R and S.

3. G~ satisfies the following exponential function equality:

(1.16)
G~(R, ρ)G~(S, σ) = G~(T, τ)∗G~(S, σ)G~(T, τ)

= G~ ([R+ S]τ , σ̃) ,

where [R+ S]τ is the selfadjoint extension of R+ S corresponding to the reflection operator τ and
σ̃ = G~(T, τ)∗σG~(T, τ).

Proof. By direct computation one can easily show that τ2 = I, τ∗ = τ and

τχ(T < 0) = αρχ(R < 0)σχ(S < 0) + ασχ(S < 0)ρχ(R < 0).

Now, our theorem follows immediately from [19, Theorem 6.1]. �

Remark 1.6. In Theorem 1.5, operator τ may be replaced by τ ′ = αρσχ(R > 0) +ασρχ(R < 0).
Operator σ̃ is not affected by this change.

Indeed, using the formula signT = signR signS, one can verify that τ ′χ(T < 0) = τχ(T < 0).
It shows that G~(T, τ ′) = G~(T, τ).

2. The special functions and affiliation relation.

In this section we shall use the concept of a C∗-algebra generated by a set of affiliated elements
[15, Definition 4.1, page 501]. Let C, A be C∗-algebras and V be an element affiliated with C ⊗A.
We say that A is generated by an element V η (C ⊗A) if and only if for any π ∈ Rep(A) and any
B ∈ C∗(Hπ) we have:

(2.1)
(
(id⊗π)V η (C⊗B)

)
=⇒

(
π ∈ Mor(A,B)

)
In general the above condition is not easy to verify. We shall use the following criterion (cf. [15,

Example 10, page 507]):

Proposition 2.1. Let C, A be C∗-algebras and V be a unitary element of M(C ⊗ A). Assume
that there exists a faithful representation φ of C such that:

1. For any φ-normal linear functional ω on C we have: (ω ⊗ id)V ∈ A

2. The smallest ∗-subalgebra of A containing {(ω ⊗ id)V : ω is φ-normal} is dense in A.

Then A is generated by V ∈ M(C ⊗A).

We recall that a linear functional ω on C is said to be φ-normal if there exists a trace-class
operator ρ acting on Hφ such that ω(c) = Tr(ρφ(c)) for all c ∈ C.

Let Λ be the locally compact space obtained from R×{−1, 1} by gluing points (r,−1) and (r, 1)
for all r ≥ 0. Then:

C∞(Λ) =
{
f ∈ C∞

(
R× {−1, 1}

)
:
f(r,−1) = f(r, 1)

for all r ≥ 0

}
.

If R, ρ are operators acting on a Hilbert space H, R is selfadjoint, ρ is unitary selfadjoint and ρ
commutes with R then the mapping

(2.2) C∞(Λ) 3 f 7−→ π(f) = f(R, ρ) ∈ B(H)
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is a representation of C∞(Λ) acting on H. Operators R and ρNp(R) are determined by π. Indeed
R = π(f1) and ρNp(R) = π(f2), where f1, f2 are elements of C∞(Λ)η = C(Λ) introduced by the
formulae

(2.3) f1(r, %) = r, f2(r, %) = %Np(r)

for any r ∈ R and % = ±1. Using [15, Example 2, page 497] we see that f1, f2 generate C∞(Λ).
Therefore for any π ∈ Rep (C∞(Λ)) and any B ∈ C∗(Hπ) we have:(

π(f1), π(f2) η B
)

=⇒
(
π ∈ Mor(C∞(Λ), B)

)
=⇒

(
π(f) η B for any f ∈ C(Λ)

)
In particular for π introduced by (2.2) we obtain the following result:

(2.4)

(
R, ρNp(R) η B
f ∈ C(Λ)

)
=⇒

(
f(R, ρ) η B

)
.

Our special function G~ is continuous and satisfies the relation G~(r,−1) = G~(r, 1) for all
r ≥ 0. In other words G~ ∈ C(Λ). For any r ∈ R, % = ±1 and t > 0 we set:

(2.5) F (t; r, %) = G~(r, %)G~(tr, %).

Let R+ = {t ∈ R : t > 0}. Then F is a continuous function on R+ × Λ with values of modulus 1
and we may treat F as unitary element of M (C∞(R+)⊗ C∞(Λ)). We shall prove the following

Proposition 2.2. The C∗-algebra C∞(Λ) is generated by F ∈ M(C∞(R+)⊗ C∞(Λ)).

Proof. We shall use Proposition 2.1 with C = C∞(R+), A = C∞(Λ) and V = F . Let φ be
the natural representation of C∞(R+) acting on L2(R+). For any g ∈ C∞(R+), φ(g) is the
multiplication by g. Then φ is faithful and a linear functional ω on C∞(R+) is φ-normal if and
only if it is of the form

ω(g) =
∫

R+

g(t)ϕ(t) dt,

where ϕ ∈ L1(R+). Applying ω ⊗ id to F ∈ M(C∞(R+)⊗ C∞(Λ)) we obtain an element of
M (C∞(Λ)) i.e. a bounded continuous function on Λ. Clearly for any r ∈ R and % = ±1 we have

(2.6)
(ω ⊗ id)F (r, %) =

∫
R+

F (t; r, %)ϕ(t) dt

= G~(r, %)
∫

R+

G~(tr, %)ϕ(t) dt.

Taking into account the asymptotic behavior (1.4) and using the Riemann–Lebesgue lemma
one can verify that the integral on right hand side tends to 0 when r → ±∞. In other words,
(ω ⊗ id)F ∈ C∞(Λ).

Using Statement 7 of Theorem 1.1 of [19] one can easily show that

(2.7) lim
t→0+

1
t

[
G~(tr, %)− 1

]
=

r

2i sin (~/2)
for all r ∈ R and % = ±1.

Let r, r′ ∈ R and %, %′ = ±1. Assume for the moment that (ω ⊗ id)F (r, %) = (ω ⊗ id)F (r′, %′)
for all φ-normal functionals ω. Then G~(r, %)G~(tr, %) = G~(r′, %′)G~(tr′, %′) for all t > 0. Going
to the limit when t→ +0 we get G~(r, %) = G~(r′, %′). Comparing this formula with the previous
one we see that G~(tr, %) = G~(tr′, %′) for all t > 0. Formula (2.7) shows now that r = r′ and
by (1.3) %χ(r < 0) = %′χ(r < 0). This way we have shown that the functions (2.6) separate points
of Λ. Now, using the Stone - Weierstrass theorem (applied to the one point compactification of Λ)
we conclude that the smallest ∗-algebra containing all functions (2.6) is dense in C∞(Λ). �

The following Proposition will be very useful in proving many technical details important in the
future considerations.

Proposition 2.3. Let R, ρ, U , S be operators acting on a Hilbert space H and C ∈ C∗(H).
Assume that:

1. R is selfadjoint and ρ is unitary selfadjoint commuting with R,

2. U is unitary,
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3. S is positive selfadjoint, kerS = {0}, S commutes with ρ and U and R ~
oS,

4. Operators R, ρNp(R), U and logS are affiliated with C.

Then G~(R, ρ) ∈ M(C) and

1. For any φ ∈ Rep(C) and any B ∈ C∗(Hφ) we have:(
φ(logS), φ

(
G~(R, ρ)∗U

)
are affiliated with B

)
=⇒

(
φ(R), φ(ρNp(R)), φ(U)

are affiliated with B

)

2. For any φ1, φ2 ∈ Rep(C) such that Hφ1 = Hφ2 we have:(
φ1(S) = φ2(S),

φ1

(
G~(R, ρ)∗U

)
= φ2

(
G~(R, ρ)∗U

) ) =⇒

 φ1(R) = φ2(R),
φ1(ρNp(R)) = φ2(ρNp(R)),

φ1(U) = φ2(U)


Proof. Relation G~(R, ρ) ∈ M(C) follows immediately from (2.4).

Ad 1. Let λ ∈ R. Using the commutation relations satisfied by operators R, ρ, U, S we have:

S−iλG~(R, ρ)∗USiλ = G~(tR, ρ)∗U,

where t = e~λ > 0. Applying a representation φ of C to both sides of the above relation we get

φ(S)−iλφ
(
G~(R, ρ)∗U

)
φ(S)iλ = φ

(
G~(tR, ρ)∗U

)
.

If φ(logS), φ
(
G~(R, ρ)∗U

)
η B, then all factors on the left hand side of the above equation

belong to M(B) and depend continuously on λ (we use strict topology on M(B)). Therefore
φ
(
G~(tR, ρ)∗U

)
∈ M(B) for any t ∈ R+ and the mapping

R+ 3 t 7−→ φ
(
G~(tR, ρ)∗U

)
∈ M(B)

is strictly continuous. Applying the hermitian conjugation and multiplying from the left by
φ
(
G~(R, ρ)∗U

)
∈ M(B) we see that φ

(
G~(R, ρ)∗G~(tR, ρ)

)
= φ

(
F (t;R, ρ)

)
∈ M(B) and the

mapping

(2.8) R+ 3 t 7−→ φ
(
F (t;R, ρ)

)
∈ M(B)

is strictly continuous. In the above relations F is the function introduced by (2.5). According to
the general theory [15], strictly continuous bounded mappings from R+ into M(B) correspond to
elements of M(C∞(R+) ⊗ B). A moment of reflection shows that the mapping (2.8) corresponds
to the element (id⊗ φoπ)F , where π is the representation of C∞(Λ) introduced by (2.2).

This way we have shown that (id ⊗ φoπ)F ∈ M(C∞(R+) ⊗ B). Using now Proposition 2.2
we conclude that φoπ ∈ Mor(C∞(Λ), B). Therefore φoπ maps continuous functions on Λ into
elements affiliated with B. Applying this rule to functions f1, f2 (cf. (2.3)) and G~ we obtain:
φ(R), φ(ρNp(R)) η B and φ(G~(R, ρ)) ∈ M(B). Comparing the last relation with the assumed one
φ
(
G~(R, ρ)∗U

)
∈ M(B) we see that φ(U) ∈ M(B). Statement 1 is shown.

Ad 2. Let φ = φ1⊕φ2. Then Hφ = Hφ1⊕Hφ2 and φ(c) = φ1(c)⊕φ2(c). In our case Hφ1 = Hφ2 .
We set: B = {m⊕m : m ∈ K(Hφ1)}. Then B ∈ C∗(Hφ). One can easily verify that for any c η C
we have: (

φ(c) η B
)
⇐⇒

(
φ1(c) = φ2(c)

)
.

Now Statement 2 follows immediately from Statement 1. �

We shall use slightly different version of Statement 2 of the above proposition.

Proposition 2.4. Let R1, ρ1, U1, R2, ρ2, U2, S be operators acting on a Hilbert space H. Assume
that for each k = 1, 2 the operators Rk, ρk, Uk, S satisfy the assumptions 1-3 of the previous
Proposition. Then

(2.9)
(
G~(R1, ρ1)∗U1 = G~(R2, ρ2)∗U2

)
=⇒

 R1 = R2,

ρ1 Np(R1) = ρ2 Np(R2),
U1 = U2.


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Proof. Let C = K(H) ⊕ K(H) and for any m1,m2 ∈ K(H) we set φk(m1 ⊕m2) = mk (k = 1, 2).
We use Proposition 2.3 with R, ρ, U and S replaced by R1⊕R2, ρ1⊕ ρ2, U1⊕U2 and S⊕S, Now
(2.9) follows immediately from Statement 2 of Proposition 2.3. �

Proposition 2.5. Let X and Y be selfadjoint operators acting on Hilbert spaces K and H respec-
tively. Assume that the spectral measure of X is absolutely continuous with respect to the Lebesgue
measure. Then for any A ∈ C∗(H) we have:(

eiX⊗Y is affiliated

with K(K)⊗A

)
=⇒

(
Y is affiliated with A

)
Proof. For any normal linear functional ω on B(K) and t ∈ R we set

fω(t) = ω
(
eitX

)
.

Then fω is a continuous function on R. Remembering that the spectral measure of X is absolutely
continuous with respect to the Lebesgue measure and using the Riemann-Lebesgue lemma one can
easily show that fω(t)→ 0 when t→ ±∞. Therefore fω ∈ C∞(R).

Let t, t′ ∈ R, t 6= t′. Assume for the moment that fω(t) = fω(t′) for all ω. Then eitX = eit′X

and ei(t−t′)X = I. It shows that the spectral measure of X is supported by the set 2π
t−t′Z, what is in

contradiction with the assumption saying that the spectral measure of X is absolutely continuous
with respect to the Lebesgue measure. This way we showed that functions fω separate points of
R. By the Stone – Weierstrass theorem, the smallest ∗-subalgebra of C∞(R) containing all fω is
dense in C∞(R).

By the general theory strongly continuous mappings from R into the set of unitary operators
acting on K correspond to unitary multipliers of K(K)⊗ C∞(R). Let X ∈ M(K(K)⊗ C∞(R)) be
the unitary corresponding to the mapping

R 3 t 7−→ eitX ∈ B(K).

Then for any normal linear functional ω on B(K) we have

(ω ⊗ id)X = fω.

Using Proposition 2.1 we see that C∞(R) is generated by X ∈ M(K(K) ⊗ C∞(R)). For any
f ∈ C∞(R) we set:

π(f) = f(Y ).
Then π is a representation of C∞(R) acting on the Hilbert space Hπ = H. A moment of reflection
shows that (id ⊗ π)X = eiX⊗Y . If eiX⊗Y is affiliated with K(K) ⊗ A then π ∈ Mor(C∞(R), A)
and π maps continuous functions on R into elements affiliated with A. Applying this rule to the
coordinate function f(t) = t we obtain Y = π(f) η A. �

3. Constructions related to old quantum ‘ax+ b’ group.

In this section we recall the main results of [21]. The quantum ‘ax+b’ group will be presented as
a quantum group of unitary operators. We shall construct a pair (A, V ), where A is a C∗-algebra
and V is a unitary element of M(K(K) ⊗ A), where K is a Hilbert space endowed with a certain
structure and K(K) denotes the algebra of all compact operators acting on K. (A, V ) may be
treated as a quantum family of unitary operators acting on K ‘labeled by elements’ of quantum
space related to the C∗-algebra A. Our construction will depend on a real parameter ~. We shall
assume that 0 < ~ < π/2. Negative value of ~ leads to the C∗-algebra anti-isomorphic to that with
positive ~. On the other hand the restriction ~ < π/2 is related to the technical assumption used
in the theory of the quantum exponential function [19].

The main result of this section is contained in Theorem 3.2. It states that (A, V ) is a quantum
group if and only if ~ = π

2k+3 with k = 0, 1, 2, . . . .

To define A we consider three operators a, b and β acting on the Hilbert space L2(R). Operator
a is strictly positive selfadjoint and such that for any τ ∈ R and any x ∈ L2(R) we have(

aiτx
)
(t) = e~τ/2x(e~τ t)

In other words a is the analytic generator of one-parameter group of unitaries corresponding to
the homotheties of R. Operator b is the multiplication operator:

(bx)(t) = tx(t).
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By definition domain D(b) consists of all x ∈ L2(R) such that the right hand side of the above
equation is square integrable. Finally, β is the reflection: for any x ∈ L2(R) we have:

(βx)(t) = x(−t)

Clearly β is unitary selfadjoint. One can easily verify that aβ = βa and bβ = −βb. By the last
relation ibβ is selfadjoint. Moreover

(3.1) aiτ ba−iτ = e~τ b

for any τ ∈ R. This relation means that a ~
o b.

Theorem 3.1. Let

(3.2) A =
{(

f1(b) + βf2(b)
)
g(log a) :

f1, f2, g ∈ C∞(R)
f2(0) = 0

} norm closed
linear envelope

.

Then: 1. A is a nondegenerate C∗-algebra of operators acting on L2(R),

2. log a, b and ibβ are affiliated with A: log a, b, ibβ η A,

3. log a, b and ibβ generate A.

Proof.
Ad 1. Using the relation bβ = −βb one can easily show that

(3.3) B =
{
f1(b) + βf2(b) :

f1, f2 ∈ C∞(R)
f2(0) = 0

} norm closed
linear envelope

is a non-degenerate C∗-algebra of operators acting on L2(R). Let C0(R, B) denote the set of all
continuous mappings from R into B with compact support. Then

(3.4) A =
{∫

R
f(t)aitdt : f ∈ C0(R, B)

}norm closure

.

To prove this formula it is sufficient to notice that for f(t) =
(
f1(b) + βf2(b)

)
ϕ(t), where t ∈ R

and ϕ ∈ C0(R) we have ∫
R
f(t)aitdt =

(
f1(b) + βf2(b)

)
g(log a),

where g(λ) =
∫

R ϕ(t)eiλtdt (λ ∈ R) and by the Riemann-Lebesque Lemma, g ∈ C∞(R). On
the other hand (3.1) shows that the unitaries ait (t ∈ R) implement a one parameter group of
automorphisms of B. Using now the standard technique of the theory of crossed products (cf. [7,
Section 7.6]) one can easily show that (3.4) is a non-degenerate C∗-algebra of operators acting on
L2(R). Statement 1 is proven.

Ad 2. We recall (cf. [6, 15]) that a closed operator T is affiliated with a C∗-algebra A if the
z-transform zT = T (I +T ∗T )−

1
2 ∈ M(A) and if (I +T ∗T )−

1
2A is dense in A. Inspecting definition

(3.2) one can easily show that zlog a = (log a)
[
I + (log a)2

]− 1
2 is a right multiplier of A and that

A
[
I + (log a)2

]− 1
2 is dense in A. Passing to adjoint operators we see that z∗log a = zlog a is a left

multiplier (hence zlog a ∈ M(A)) and that
[
I + (log a)2

]− 1
2 A is dense in A. It shows that log a is

affiliated with A.

For T = b and T = iβb we have zT = b(I + b2)−
1
2 and zT = iβb(I + b2)−

1
2 respectively. In

both cases (I + T ∗T )−
1
2 = (I + b2)−

1
2 . Taking into account definition (3.2) one can easily show

that (I + T ∗T )−
1
2A is dense in A and that zT is a left multiplier of A. However in both cases zT

is selfadjoint. Therefore zT is also a right multiplier and zT ∈ M(A). It shows that b and iβb are
affiliated with A.

Ad 3. We shall use Theorem 3.3 of [15]. By definition (3.2), (I+ b2)−1
(
I + (log a)2

)−1 ∈ A. To
end the proof it is sufficient to show that a, b, iβb separate representations of A. If c ∈ A is of the
form

(3.5) c =
(
f1(b) + βf2(b)

)
g(log a),
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where f1, f2, g ∈ C∞(R), f2(0) = 0 and f2 is differentiable at point 0 ∈ R, then f2(t) = ith(t),
where t ∈ R and h ∈ C∞(R) and

(3.6) π(c) =
(
f1(π(b)) + π(iβb)h(π(b))

)
g(π(log a))

for any representation π of A. One can easily see that elements of the form (3.5) form a dense subset
of A. Formula (3.6) shows now that π is determined uniquely by π(log a), π(b) and π(iβb). �

Now we pass to the description of the Hilbert space K (cf. the first paragraph of this Section).
The structure of K is determined by a triple of selfadjoint operators (â, b̂, β̂) acting on K and
having the following properties:

1. â > 0, ker â = ker b̂ = {0} and â ~
o b̂,

2. β̂ is a unitary involution, β̂ commutes with â and anticommutes with b̂.

One of the possible choices is: K = L2(R) and (â, b̂, β̂) = (a, b, β). However there is another
possibility that is even more interesting:

(3.7) (â, b̂, β̂) = (|b|−1
, ei~/2b−1a, αβ),

where α = ±1. The reader easily verifies that these operators possess required properties.

Zakrzewski relation â ~
o b̂ implies that the spectral measures of â and b̂ are absolutely continuous

with respect to the Lebesgue measure. Moreover Sp(â) = R+ and Sp(̂b) = R. The latter follows
from the relation β̂b̂ = −b̂β̂.

Let

(3.8) V = G~(̂b⊗ b, β̂ ⊗ β)∗ e
i
~ log ba⊗log a.

This is the basic object considered in this section. We shall prove

Theorem 3.2.
1. V is a unitary operator and V ∈ M(K(K)⊗A),

2. A is generated by V ∈ M(K(K)⊗A).

Proof. Let R = b̂⊗ b, ρ = β̂ ⊗ β, U = e
i
~ log ba⊗log a, S = â−1 ⊗ I and C = K(K)⊗A. Then all the

assumptions of Proposition 2.3 are satisfied. Clearly V = G~(R, ρ)∗U ∈ M(C) and Statement 1 is
proved.

Let π ∈ Rep(A) and B ∈ C∗(Hπ). Then id ⊗ π is a representation of C acting on K ⊗ Hπ.
The reader should notice that (id ⊗ π)S = â−1 ⊗ I is affiliated with K(K) ⊗ B. Assume that
(id ⊗ π)V ∈ M(K(K) ⊗ B). By Statement 1 of Proposition 2.3, operators: (id ⊗ π)R = b̂ ⊗ π(b),
(id ⊗ π)(ρNp(R)) and (id ⊗ π)U = e

i
~ log ba⊗π(log a) are affiliated with K(K) ⊗ B. Using now

Proposition A.1 of [21] we see that π(b) is affiliated with B. One can easily verify that β̂ ⊗ I
commutes with ρ and anticommutes with R. Therefore

ρNp(R)− (β̂ ⊗ I)ρNp(R)(β̂ ⊗ I) = ρ(Np(R)−Np(−R)) = ρR

and applying id⊗ π to both sides we get

(id⊗ π)(ρNp(R))− (β̂ ⊗ I)(id⊗ π)(ρNp(R))(β̂ ⊗ I) = (id⊗ π)(ρR)

= −iβ̂b̂⊗ π(iβb)

The operators β̂ ⊗ I and (id ⊗ π)(ρNp(R)) appearing on the left hand side are affiliated with
K(K) ⊗ B. Therefore iβ̂b̂ ⊗ π(iβb) η K(K) ⊗ B and using again Proposition A.1 of [21] we see
that π(iβb) is affiliated with B. Moreover, remembering that e

i
~ log ba⊗π(log a) η K(K)⊗B and using

Proposition 2.5 we see that π(log a) is affiliated with B. According to Statement 3 of Theorem 3.1,
b, iβb and log a generate A. Therefore π ∈ Mor(A,B). We showed that (id⊗π)V ∈ M(K(K)⊗B)
implies π ∈ Mor(A,B). It means that A is generated by V ∈ M(K(K)⊗A). �

Now we are able to formulate the main result of this Section:

Theorem 3.3. There exists ∆ ∈ Mor(A,A⊗A)
such that

(id⊗∆)V = V12V13

⇐⇒ (
~ =

π

2k + 3
, k = 0, 1, 2, . . .

)
.
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Proof. Let

(3.9)

α = ie
iπ2
2~ ,

T = I ⊗ ei~/2b−1a⊗ b,

τ = (I ⊗ β ⊗ β)
[
αχ(̂b⊗ b⊗ I < 0) + αχ(̂b⊗ b⊗ I > 0)

]
.

and

(3.10) W ′ = G~(T, τ)∗ e−
i
~ [I⊗log|b|⊗log a].

Clearly W ′ is a unitary operator acting on K ⊗ L2(R)⊗ L2(R). We shall prove that

(3.11) V12V13 = W ′V12W
′∗.

To make our formulae shorter we set

U = e
i
~ log ba⊗log a, Z = e−

i
~ log|b|⊗log a.

Using the relations â ~
o b̂, âβ̂ = β̂â and a ~

o b one can easily verify that

(3.12) U (̂b⊗ I)U∗ = b̂⊗ a, U(β̂ ⊗ I)U∗ = β̂ ⊗ a,

(3.13) Z(a⊗ I)Z∗ = a⊗ a.

With the above notation V = G~(̂b⊗ b, β̂ ⊗ β)∗U and

V12V13 = G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ U13.

Using (3.12) we get

U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ = G~(̂b⊗ a⊗ b, β̂ ⊗ I ⊗ β)∗ U12

and

(3.14) V12V13 =
[
G~(̂b⊗ a⊗ b, β̂ ⊗ I ⊗ β)G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)

]∗
U12U13.

Let us consider the first factor in (3.14). We apply Theorem 1.5 with

(3.15)
R = b̂⊗ a⊗ b, ρ = β̂ ⊗ I ⊗ β,

S = b̂⊗ b⊗ I, σ = β̂ ⊗ β ⊗ I,
Then T and τ are given by (3.9) and

G~(̂b⊗a⊗b, β̂⊗I⊗β)G~(̂b⊗b⊗I, β̂⊗β⊗I) = G~(T, τ)∗G~(̂b⊗b⊗I, β̂⊗β⊗I)G~(T, τ).

Now (3.14) takes the form

(3.16) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗G~(T, τ)U12U13.

We shall move G~(T, τ) to the end of the right hand side of this formula. Performing simple
computations and using (3.13) we obtain:

U12U13 = e
i
~ log ba⊗log(a⊗a)

= Z23U12Z
∗
23.

It turns out that

(3.17) log â⊗ log(a⊗ a) commutes with T,

(3.18) log â⊗ log(a⊗ a) commutes with τ.

Indeed Zakrzewski relation a
~

o b implies b−1 ~
o a. Using the both relations we see that a ⊗ a

commutes with ei~/2b−1a⊗b. Therefore log(a⊗a) commutes with ei~/2b−1a⊗b and log â⊗log(a⊗a)
commutes with T = I ⊗ ei~/2b−1a⊗ b. Relation (3.17) is shown.

To prove (3.18) we use Zakrzewski relations a ~
o b and â ~

o b̂. They show that a commutes with
sign b and â commutes with sign b̂. Therefore log â ⊗ log(a ⊗ a) commutes with sign(̂b ⊗ b ⊗ I) =
sign b̂⊗ sign b⊗ I and (3.18) follows.

Taking into account (3.17) and (3.18) we see that G~(T, τ) commutes with U12U13. Now relation
(3.16) takes the form:

(3.19) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ Z23U12Z
∗
23G~(T, τ).
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Finally b⊗ I and β ⊗ I commute with log |b| ⊗ log a. Therefore G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I) commutes
with Z23. Clearly G~(̂b⊗ b⊗ I, β̂⊗β⊗ I)∗ U12 = V12 and W ′ = G~(T, τ)∗Z23. Now (3.11) follows
immediately from (3.19).

By the Zakrzewski relation âiλb̂â−iλ = e~λb̂ for all λ ∈ R. Multiplication by a strictly positive
number does not change the sign of an operator. Using this fact one can easily show that τ
commutes with âiλ⊗ I ⊗ I. Consequently τ commutes with â⊗ I ⊗ I. Since T = I ⊗ ei~/2b−1a⊗ b
and I ⊗ log |b| ⊗ log a obviously commute with â ⊗ I ⊗ I, we conclude that W ′ commutes with
â⊗ I ⊗ I.

Now we are ready to prove the main statement.

=⇒ . Let ∆ ∈ Mor(A,A ⊗ A) and (id ⊗∆)V = V12V13. We go back to the notation used in the
proof of Theorem 3.2. In particular C = K(K)⊗A. For any c ∈ C we set:

φ1(c) = (id⊗∆)(c),

φ2(c) = W ′(c⊗ I)W ′∗.

Then φ1 and φ2 are representations of C acting on the same Hilbert space K⊗L2(R)⊗L2(R). One
can easily verify that φ1(â⊗I) = â⊗I⊗I = φ2(â⊗I). Formula (3.11) shows that φ1(V ) = φ2(V ).
In our notation (cf. the beginning of the proof of Theorem 3.2), â⊗ I = S and V = G~(R, ρ)∗U ,
where in particular R = b̂ ⊗ b. Statement 2 of Theorem 2.3 shows now that φ1(R) = φ2(R). It
means that

b̂⊗∆(b) = W ′ (̂b⊗ b⊗ I)W ′∗.

Taking into account (3.10) and using Proposition 1.2 we get:

(3.20)
b̂⊗∆(b) = G~(T, τ)(̂b⊗ b⊗ I)G~(T, τ)∗

=
[
b̂⊗ a⊗ b+ b̂⊗ b⊗ I

]
τ
.

We recall that
τ = (I ⊗ β ⊗ β)

[
αχ(̂b⊗ b⊗ I < 0) + αχ(̂b⊗ b⊗ I > 0)

]
.

Inspecting last two formulae we observe that b̂ is the only operator appearing in the first leg
position. We know that b̂ is selfadjoint. Therefore replacing in both sides of (3.20) operator b̂ by a
real number λ we obtain a formula that should hold for almost all λ ∈ Sp b̂. For positive λ we get

(3.21) ∆(b) =
[
a⊗ b+ b⊗ I

]
τ+

where

(3.22) τ+ = (β ⊗ β)
[
αχ(b⊗ I < 0) + αχ(b⊗ I > 0)

]
.

On the other hand for negative λ we have

(3.23) ∆(b) =
[
a⊗ b+ b⊗ I

]
τ−

where

(3.24) τ− = (β ⊗ β)
[
αχ(b⊗ I > 0) + αχ(b⊗ I < 0)

]
.

Clearly the two expressions for ∆(b) must coincide. Let us notice that the operator I⊗β commutes
with τ+, τ− and b⊗I and anticommutes with a⊗b. Therefore τ+ = τ− by Remark 1.3. Comparing
(3.22) and (3.24) we get α = α. Remembering that α = i e

iπ2
2~ and 0 < ~ < π

2 we conclude that
~ = π

2k+3 (k = 0, 1, 2, . . . ).

⇐=. Assume that ~ = π
2k+3 for some k = 0, 1, 2, . . . . Then formula (3.10) essentially simplifies. In

this case α = (−1)k, τ = (−1)k(I ⊗ β ⊗ β) and W ′ = W23 = I ⊗W , where

(3.25) W = G~

(
ei~/2b−1a⊗ b, (−1)kβ ⊗ β

)∗
e−

i
~ log|b|⊗log a.

Formula (3.11) takes the form

(3.26) V12V13 = W23V12W
∗
23.

For any c ∈ A we set

(3.27) ∆(c) = W (c⊗ I)W ∗.
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Then ∆ is a representation of A acting on L2(R) ⊗ L2(R). We know that V ∈ M(K(K) ⊗ A).
Formula (3.26) shows that

(id⊗∆)V = V12V13.

Clearly V12, V13 ∈ M(K(K) ⊗ A ⊗ A). Therefore (id ⊗ ∆)V = V12 V13 ∈ M(K(K) ⊗ A ⊗ A).
Remembering that A is generated by V we conclude that ∆ ∈ Mor(A,A⊗A). �

Let ~ = π
2k+3 (k = 0, 1, 2, . . . ). Then formula (3.27) makes it possible to calculate ∆(c) for any

c ∈ A. The same holds for any c affiliated with A. We shall show that

(3.28)

∆(a) = a⊗ a,

∆(b) =
[
a⊗ b+ b⊗ I

]
(−1)kβ⊗β

,

∆(ib2k+3β) =
[
a2k+3 ⊗ ib2k+3β + ib2k+3β ⊗ I

]
− sign(b⊗b)

.

Formula for ∆(a) follows immediately from (3.13); the reader should notice that operators
ei~/2b−1a ⊗ b and β ⊗ β commute with a ⊗ a. The formula for ∆(b) was in fact shown in the
proof of Theorem 3.3; in the present case τ+ = τ− = (−1)kβ ⊗ β and the second formula of (3.28)
coincides with (3.21) (and with (3.23) as well).

It remains to prove the third formula. We know that |b| commutes with ib2k+3β. Taking into
account (3.25) we obtain

(3.29)
∆(ib2k+3β) = W (ib2k+3β ⊗ I)W ∗

= G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)∗ (
ib2k+3β⊗I

)
G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)
.

To compute the right hand side we use Proposition 1.4 with

R = a⊗ |b| , S = |b| ⊗ I, τ = sign(b⊗ b),

ξ = (−1)kβ ⊗ β and σ = i(sign b)β ⊗ I.

Remembering that β2 = I and β anticommutes with b and hence commutes with |b| one can
easily check that these operators fulfil all assumption of Proposition 1.4. In this case we have
T = (ei~/2 |b|−1

a)⊗ |b|, τT = ei~/2b−1a⊗ b and

ξσ = −(−1)ki(sign b)⊗ β = −σξ.
Therefore

ρ = −
[
i(sign b)⊗ β

] [
χ(τ = 1)− χ(τ = −1)

]
= −

[
i(sign b)⊗ β

]
τ = I ⊗ i(sign b)β.

According to our assumption π
~ = 2k + 3 is an odd positive integer. Therefore

σS
π
~ =

[
i(sign b)β ⊗ I

] [
|b|2k+3 ⊗ I

]
= ib2k+3β ⊗ I,

ρR
π
~ =

[
I ⊗ i(sign b)β

] [
a2k+3 ⊗ |b|2k+3

]
= a2k+3 ⊗ ib2k+3β

and formula (1.10) takes the form

(3.30)

[
ib2k+3β ⊗ I + a2k+3 ⊗ ib2k+3β

]
− sign(b⊗b)

= G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)∗ (
ib2k+3β⊗I

)
G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)
.

Comparing (3.29) with (3.30) we get the last formula of (3.28). This formula appeared without
proof in [21].

Remark 3.4. Replacing in the above computations σ = i(sign b)β⊗ I by σ = β⊗ I one can prove
that

(3.31) ∆(|b|2k+3
β) =

[
a2k+3 ⊗ |b|2k+3

β + |b|2k+3
β ⊗ I

]
− sign(b⊗b)

.

Assume now that K = L2(R) and that the operators â, b̂, β̂ are given by (3.7). Then operator
(3.8) coincides with (3.25): V = W . Relation (3.26) takes the form:

W23W12 = W12W13W23.

This is the famous pentagon equation of Baaj and Skandalis [2]. It means that W is a multiplicative
unitary. It is known that W is modular [9]. This property enables us to introduce unitary antipode,
scaling group and Haar weight (see [9, 18, 21, 11, 22] for details).
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4. New quantum deformations of ‘ax+ b’ group.

In this Section we shall show how to enlarge the set of admissible values of the deformation
parameter ~ beyond the one described in Theorem 3.3. To this end one has to add a new element
to the set of generators of the C∗-algebra A. This new element denoted by w is a unitary involution
commuting with a and b and anticommuting with β.

To define the new C∗-algebra A we consider four operators a, b, β and w acting on the Hilbert
space L2(R,C2) introduced in the following way: for any τ ∈ R and any x ∈ L2(R,C2) we set:(

aiτx
)
(t) = e~τ/2x(e~τ t), (bx)(t) = tx(t),

(βx)(t) =
(

1 , 0
0 , −1

)
x(−t), (wx)(t) =

(
0 , 1
1 , 0

)
x(t).

As in the previous section a is the analytic generator of the group of unitaries defined by the first
formula. b is the selfadjoint operator with domain consisting of all x such that ‖tx(t)‖2 is integrable
over R. Clearly β and w are unitary selfadjoint. One can easily verify that aβ = βa, bβ = −βb,
aw = wa, bw = wb, βw = −wβ and a ~

o b.

Using essentially the same method as in the proof of Theorem 3.1 one can easily show

Theorem 4.1. Let

(4.1) A =
{(

f1(b) + βf2(b)
+wf3(b) + wβf4(b)

)
g(log a) :

f1, f2, f3, f4, g ∈ C∞(R)
f2(0) = f4(0) = 0

} norm closed
linear envelope

.

Then: 1. A is a nondegenerate C∗-algebra of operators acting on L2(R,C2),

2. log a, b, ibβ and w are affiliated with A: log a, b, ibβ, w η A,

3. log a, b, ibβ and w generate A,

The reader should notice that the C∗-algebra A introduced by (4.1) coincides with the crossed
product of the C∗-algebra A considered in the previous Section (cf. (3.2)) by the involutive auto-
morphism that leaves a and b invariant and maps β into −β.

Now we pass to the description of the Hilbert space K. The structure of K is determined by a
quadruple of selfadjoint operators (â, b̂, β̂, ŵ) acting on K and having the following properties:

1. â > 0, ker â = ker b̂ = {0} and â ~
o b̂,

2. β̂ is a unitary involution, β̂ commutes with â and anticommutes with b̂.
3. ŵ is a unitary involution, ŵ commutes with â and b̂.
4. ŵβ̂ = εβ̂ŵ.

In the last formula ε is a fixed element of the set {−1, 1}. Our constructions depend very much
on the value of ε. What we get for ε = 1 is essentially the crossed product of the quantum group
described in the previous Section by the involutive automorphism mentioned above. In particular
the set of admissible values of ~ is the same as before. For ε = −1 we obtain a family of new
deformations with ~ = π

2k+4 (k = 0, 1, 2, . . . ).

For any z, z′ = ±1 we set

(4.2) Ch(z, z′) =
{
z′ for z = −1
1 for z = 1.

Then Ch is the bicharacter on the multiplicative group Z2 = {1,−1}. One can easily verify that

(4.3) Ch(z, z′) =
1
2

1∑
r,s=0

(−1)rszrz′s.

Let

(4.4) V = G~(̂b⊗ b, β̂ ⊗ β)∗ e
i
~ log ba⊗log a Ch(ŵ ⊗ I, I ⊗ w).

This is the basic object considered in this Section. We shall prove
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Theorem 4.2.
1. V is a unitary operator and V ∈ M(K(K)⊗A),

2. A is generated by V ∈ M(K(K)⊗A).

Proof. Let R = b̂⊗b, ρ = β̂⊗β, U = e
i
~ log ba⊗log a Ch(ŵ⊗I, I⊗w), S = â−1⊗I and C = K(K)⊗A.

Then all the assumptions of Proposition 2.3 are satisfied. Clearly V = G~(R, ρ)∗U ∈ M(C) and
Statement 1 is proved.

Let π be a representation of A and B ∈ C∗(Hπ). Then id ⊗ π is a representation of C acting
on K ⊗Hπ. Assume that (id ⊗ π)V ∈ M(K(K) ⊗ B). Repeating the reasoning used in the proof
of Theorem 3.2 we see that π(b) and π(iβb) are affiliated with B. Furthermore (id ⊗ π)U =
e

i
~ log ba⊗π(log a) Ch(ŵ ⊗ I, I ⊗ π(w)) is affiliated with K(K)⊗B.

We know that â commutes with ŵ. Therefore â respects the decomposition of K into direct
sum of eigenspaces of ŵ. Let K± = K(ŵ = ±1). Then

K =K+⊕ K−,

â = â+⊕ â−,

ŵ = I ⊕ (−I).
With this notation

(id⊗ π)U = e
i
~ log ba+⊗π(log a) ⊕ e i

~ log ba−⊗π(log a)(I ⊗ π(w)).

Remembering that (id⊗ π)U is affiliated with K(K)⊗ B we see that e
i
~ log ba+⊗π(log a) is affiliated

with K(K+) ⊗ B and e
i
~ log ba−⊗π(log a)(I ⊗ π(w)) is affiliated with K(K−) ⊗ B. Proposition 2.5

shows now that π(log a) is affiliated with B. Using this fact one can easily show that π(w) is
also affiliated with B. According to Statement 3 of Theorem 4.1, b, iβb, log a and w generate A.
Therefore π ∈ Mor(A,B). We showed that (id⊗ π)V ∈ M(K(K)⊗ B) implies π ∈ Mor(A,B). It
means that A is generated by V ∈ M(K(K)⊗A). �

Now we are able to formulate the main result of this Section:

Theorem 4.3. There exists ∆ ∈ Mor(A,A⊗A)
such that

(id⊗∆)V = V12V13

⇐⇒ (
~ =

π

`+ 3
, where

` ∈ Z, ` ≥ 0
and (−1)` = ε

)
.

Proof. We essentially repeat the proof of Theorem 3.3. Since in the great part calculations are
very similar, we sketch the main steps only and point out necessary modifications. Together with
ε we shall use another parameter s = 1−ε

2 . Then Ch(ε, w) = ws.

Let γ be an operator acting on L2(R,C2) defined by the formula

(4.5) (γx)(t) =
(

1 , 0
0 , −1

)
x(t)

Then γ is a unitary selfadjoint operator, γ commutes with a, b, β and anticommutes with w.

Let

(4.6)

α = ie
iπ2
2~ ,

T = I ⊗ ei~/2b−1a⊗ b,

τ = (I ⊗ wsβ ⊗ β)
[
αχ(̂b⊗ b⊗ I < 0) + εαχ(̂b⊗ b⊗ I > 0)

]
.

and

(4.7) W ′ = G~(T, τ)∗ e−
i
~ I⊗log|b|⊗log a Ch(I ⊗ γ ⊗ I, I ⊗ I ⊗ w).

Clearly W ′ is a unitary operator acting on K ⊗ L2(R,C2)⊗ L2(R,C2). We shall prove that

(4.8) V12V13 = W ′V12W
′∗.

In order to make our formulae shorter we set

U = e
i
~ log ba⊗log a Ch(ŵ ⊗ I, I ⊗ w),

Z = e−
i
~ log|b|⊗log a Ch(γ ⊗ I, I ⊗ w).
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Using the commutation relations, one can easily verify that

(4.9) U (̂b⊗ I)U∗ = b̂⊗ a, U(β̂ ⊗ I)U∗ = β̂ ⊗ ws,

(4.10) Z(a⊗ I)Z∗ = a⊗ a, Z(w ⊗ I)Z∗ = w ⊗ w.

With the above notation V = G~(̂b⊗ b, β̂ ⊗ β)∗U and

(4.11) V12V13 = G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ U13.

Taking into account (4.9) we get

(4.12) U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ = G~(̂b⊗ a⊗ b, β̂ ⊗ ws ⊗ β)∗ U12

and

(4.13) V12V13 =
[
G~(̂b⊗ a⊗ b, β̂ ⊗ ws ⊗ β)G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)

]∗
U12U13.

Let us consider the first factor in (3.14). We apply Theorem 1.5 with

(4.14)
R = b̂⊗ a⊗ b, ρ = β̂ ⊗ ws ⊗ β,

S = b̂⊗ b⊗ I, σ = β̂ ⊗ β ⊗ I,
Then T and τ are given by (4.6) and

G~(̂b⊗a⊗b, β̂⊗ws⊗β)G~(̂b⊗b⊗I, β̂⊗β⊗I) = G~(T, τ)∗G~(̂b⊗b⊗I, β̂⊗β⊗I)G~(T, τ).

Now (4.13) takes the form

(4.15) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗G~(T, τ)U12U13.

Performing simple computations and using (4.10) we obtain

U12U13 = e
i
~ log ba⊗log(a⊗a) Ch(ŵ ⊗ I ⊗ I, I ⊗ w ⊗ w)

= Z23U12Z
∗
23.

Repeating the arguments used in the proof of Theorem 3.3 we see that G~(T, τ) commutes with
e

i
~ log ba⊗log(a⊗a). Furthermore T and τ commute with ŵ⊗ I⊗ I and I⊗w⊗w. Therefore G~(T, τ)

commutes with Ch(ŵ ⊗ I ⊗ I, I ⊗ w ⊗ w) and in (4.15) we may move G~(T, τ) to the most right
position:

(4.16) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ Z23U12Z
∗
23G~(T, τ)

Finally one easily verifies that b ⊗ I and β ⊗ I commute with log |b| ⊗ log a, γ ⊗ I and I ⊗ w.
Therefore G~(̂b⊗ b⊗ I, β̂⊗β⊗ I) commutes with Z23. Clearly G~(̂b⊗ b⊗ I, β̂⊗β⊗ I)∗ U12 = V12

and W ′ = G~(T, τ)∗Z23. Now (4.8) follows immediately from (4.16).

Also in the present case W ′ commutes with â⊗ I ⊗ I. The same proof applies.

Now we are ready to prove the main statement.

=⇒ . Let ∆ ∈ Mor(A,A⊗A) and (id⊗∆)V = V12V13. Repeating the reasoning used in the proof
of Theorem 3.3 we easily arrive to the formula

(4.17) ∆(b) =
[
a⊗ b+ b⊗ I

]
τ+

=
[
a⊗ b+ b⊗ I

]
τ−

where

(4.18)
τ+ = (wsβ ⊗ β)

[
αχ(b⊗ I < 0) + εαχ(b⊗ I > 0)

]
,

τ− = (wsβ ⊗ β)
[
αχ(b⊗ I > 0) + εαχ(b⊗ I < 0)

]
.

Clearly the two expressions for ∆(b) must coincide. Let us notice that the operator I⊗β commutes
with τ+, τ− and b ⊗ I and anticommutes with a ⊗ b. Therefore τ+ = τ− by Remark 1.3. Using
(4.18) we get α = εα. Remembering that α = i e

iπ2
2~ and 0 < ~ < π

2 we conclude that ~ = π
`+3 ,

where ` is a non-negative integer such that (−1)` = ε.

⇐=. Assume that ~ = π
`+3 for some ` = 0, 1, 2, . . . such that (−1)` = ε. Then formula (4.7) essen-

tially simplifies. In this case α = i`, ws = w` (this is because s ≡ ` mod 2), τ = αI ⊗wsβ ⊗ β =
I ⊗ (iw)`β ⊗ β and W ′ = W23 = I ⊗W , where

(4.19) W = G~

(
ei~/2b−1a⊗ b, (iw)`β ⊗ β

)∗
e−

i
~ log|b|⊗log a Ch(γ ⊗ I, I ⊗ w).



20 W. PUSZ AND S. L. WORONOWICZ

Formula (4.8) takes the form

(4.20) V12V13 = W23V12W
∗
23.

For any c ∈ A we set

(4.21) ∆(c) = W (c⊗ I)W ∗.

Then ∆ is a representation of A acting on L2(R,C2)⊗L2(R,C2). We know that V ∈ M(K(K)⊗A).
Formula (4.20) shows that

(id⊗∆)V = V12V13.

Clearly V12, V13 ∈ M(K(K) ⊗ A ⊗ A). Therefore (id ⊗ ∆)V = V12 V13 ∈ M(K(K) ⊗ A ⊗ A).
Remembering that A is generated by V we conclude that ∆ ∈ Mor(A,A⊗A). �

Let ε = (−1)` and ~ = π
`+3 (` = 0, 1, 2, . . . ) as in section 3. Formula (4.21) enables us to

calculate ∆(c) for any c ∈ A. The same holds for any c affiliated with A. We shall show that

(4.22)

∆(a) = a⊗ a,

∆(b) =
[
a⊗ b+ b⊗ I

]
(iw)`β⊗β

,

∆
(
(ib)`+3β

)
=
[
w`a`+3 ⊗ (ib)`+3β + (ib)`+3β ⊗ I

]
− sign(b⊗b)

,

∆(w) = w ⊗ w.
Formulae for ∆(a) and ∆(w) follow immediately from (4.10); the reader should notice that

operators ei~/2b−1a ⊗ b and (iw)`β ⊗ β commute with a ⊗ a and w ⊗ w. The formula for ∆(b)
coincides with (4.17).

It remains to prove the third formula. The reader should notice that (ib)`+3β is a selfadjoint
operator. We know that |b| and γ commutes with (ib)`+3β. Taking into account (4.19) we obtain

(4.23)
∆((ib)`+3β) = W

(
(ib)`+3β ⊗ I

)
W ∗

= G~
(
ei~/2b−1a⊗b, (iw)`β⊗β

)∗(
(ib)`+3β⊗I

)
G~
(
ei~/2b−1a⊗b, (iw)`β⊗β

)
.

To compute the right hand side we use Proposition 1.4 with

R = a⊗ |b| , S = |b| ⊗ I, τ = sign(b⊗ b),

ξ = (iw)`β ⊗ β and σ = (i sign b)`+3β ⊗ I.
One can easily check that these operators fulfil all assumption of Proposition 1.4. In this case we
have T = (ei~/2 |b|−1

a) ⊗ |b| and τT = ei~/2b−1a ⊗ b. Operators ξ and σ anticommute. Indeed
β(i sign b)`+3 = (−i sign b)`+3β and (iw)`β = β(−iw)`. Therefore ξσ = (−1)2`+3σξ = −σξ. Inser-
ting in (1.9) α = i` we obtain

ρ = (−i)`ξσ
[
χ(τ = 1)− (−1)`χ(τ = −1)

]
= (−i)`ξστ `+1 = µ⊗ ν,

where µ = (−i)`(iw)`β(i sign b)`+3β(sign b)`+1 = (−i)`+3w` and ν = β(sign b)`+1 = (− sign b)`+1β.
Finally ρ = (−i)`+3w` ⊗ (− sign b)`+1β = w` ⊗ (i sign b)`+3β.

According to our assumption π
~ = `+ 3. Therefore

σS
π
~ =

[
(i sign b)`+3β ⊗ I

] [
|b|`+3 ⊗ I

]
= (ib)`+3β ⊗ I,

ρR
π
~ =

[
w` ⊗ (i sign b)`+3β

] [
a`+3 ⊗ |b|`+3

]
= w`a`+3 ⊗ (ib)`+3β

and formula (1.10) takes the form

(4.24)

[
(ib)`+3β ⊗ I + w`a`+3 ⊗ (ib)`+3β

]
− sign(b⊗b)

= G~
(
ei~/2b−1a⊗b, (iw)`β⊗β

)∗(
(ib)`+3β⊗I

)
G~
(
ei~/2b−1a⊗b, (iw)`β⊗β

)
.

Comparing (4.23) with (4.24) we get the third formula of (4.22).

Remark 4.4. Replacing in the above computations σ = (i sign b)`+3β ⊗ I by σ = β ⊗ I one can
prove that

∆(|b|`+3
β) =

[
w`a`+3 ⊗ |b|`+3

β + |b|`+3
β ⊗ I

]
− sign(b⊗b)

.

For odd ` this formula is equivalent to the third formula of (4.22). For even ` = 2k the formula
coincides with (3.31).
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5. Modularity and all that

Now we shall investigate the unitaryW introduced by (4.19). We shall prove thatW is a modular
multiplicative unitary. Throughout this Section ε = (−1)` and ~ = π

`+3 where ` = 0, 1, 2, . . . .

Let K be the Hilbert space complex conjugate to K. The structure of K is established by an
antiunitary mappingK 3 x←→ x ∈ K. For any closed operator c acting onK, we denote by c> the
transpose of c. By definition c> is an operator acting on K with domain D(c>) = {x : x ∈ D(c∗)}
such that

c>x = c∗x

for any x ∈ D(c∗). In what follows Q = a
1
2 .

Proposition 5.1. Let V be the unitary operator introduced by (4.4) and

(5.1) Ṽ = G~

(
−b̂>⊗ei~/2ba−1,−β̂>⊗(iw)`β

)
e

i
~ log ba>⊗log a Ch(ŵ>⊗I, I⊗w).

Then Ṽ is unitary and for any x, z ∈ K, y ∈ D(Q−1), u ∈ D(Q) we have:

(5.2) (x⊗ u V z ⊗ y) =
(
z ⊗Qu Ṽ x⊗Q−1y

)
.

Proof. We shall follow the proof of Proposition 2.3 of [21]. The reader should notice that in large
part that proof is independent of the particular value of ~. To make our formulae shorter we set:

(5.3)

U ′ = e
i
~ log ba⊗log a, Ũ ′ = e

i
~ log ba>⊗log a,

U = U ′ Ch(ŵ ⊗ I, I ⊗ w), Ũ = Ũ ′ Ch(ŵ>⊗ I, I ⊗ w),

B =
∣∣∣̂b⊗ b∣∣∣ , B̃ =

∣∣∣̂b>⊗ ei~/2ba−1
∣∣∣ .

We know that sign b and Q commute. Therefore we may assume that u and y are eigenvectors
of sign b. Similarly we may assume that x and z are common eigenvectors of sign b̂. Proceeding in
the same way as in [21] we reduce (5.2) to the following three equations (cf. [21, formula (2.23)
and next two in sequence]):

(5.4) (x⊗ u Vθ(logB)∗U z ⊗ y) =
(
z ⊗Qu Vθ(log B̃ − πi)Ũ x⊗Q−1y

)
,

(5.5) (x⊗ u Vθ(logB − πi)∗U z ⊗ y) =
(
z ⊗Qu Vθ(log B̃)Ũ x⊗Q−1y

)
,

(5.6)

(
x⊗ u

[
i
(
β̂ ⊗ β

)
B

π
~ Vθ(logB − πi)

]∗
U z ⊗ y

)
=
(
z ⊗Qu − i

(
β̂>⊗ (iw)`β

)
B̃

π
~ Vθ(log B̃ − πi)Ũ x⊗Q−1y

)
.

In these formulae θ = 2π
~ = 2(`+ 3), The left hand side of the last formula

LHS of (5.6) = −i
(
β̂x⊗ βu B π

~ Vθ(logB − πi)∗U z ⊗ y
)

To compute the right hand side we use anticommutativity of w and β: (iw)`β = (−i)`βw` = αβw`.
We also know that β commutes with Q. Therefore

RHS of (5.6) = −iα
(
z ⊗Qβu

(
β̂>⊗ w`

)
B̃

π
~ Vθ(log B̃ − πi)Ũ x⊗Q−1y

)
.

We shall move β̂>⊗ w` to the most right position. Clearly this operator commutes with B̃ and
Ũ ′ = e

i
~ log ba>⊗log a. Furthermore(

β̂>⊗ w`
)

Ch(ŵ>⊗ I, I ⊗ w) = Ch
(
ŵ>⊗ I, I ⊗ w

) (
β̂>⊗ I

)
Indeed for w = 1 this formula is obvious, for w = −1 it reduces to (−1)`β̂>ŵ> = ŵ>β̂>. The
latter is equivalent to assumed relation β̂ŵ = εŵβ̂ = (−1)`ŵβ̂. Now the right hand side of (5.6)
takes the form:

RHS of (5.6) = −iα
(
z ⊗Qβu B̃ π

~ Vθ(log B̃ − πi)Ũ β̂x⊗Q−1y
)
.
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Replacing β̂x and βu by x and u respectively we see that (5.6) is equivalent to the equation

(5.7)
(
x⊗ u αB π

~ Vθ(logB − πi)∗U z ⊗ y
)

=
(
z ⊗Qu B̃ π

~ Vθ(log B̃ − πi)Ũ x⊗Q−1y
)

Let us notice that our crucial formulae (5.4), (5.5) and (5.7) fit the same pattern:

(5.8) (x⊗ u fi(B)U z ⊗ y) =
(
z ⊗Qu gi(B̃)Ũ x⊗Q−1y

)
,

where fi and gi (i = 1, 2, 3) are functions on positive reals:

f1(t) = Vθ(log t), g1(t) = Vθ(log t− πi),

f2(t) = Vθ(log t− πi), g2(t) = Vθ(log t),

f3(t) = αt
π
~ Vθ(log t− πi), g3(t) = t

π
~ Vθ(log t− πi).

for all t > 0.

Replacing operators U and Ũ by U ′ and Ũ ′ (cf. (5.3)) we obtain a simplified version of (5.8):

(5.9) (x⊗ u fk(B)U ′ z ⊗ y) =
(
z ⊗Qu gk(B̃)Ũ ′ x⊗Q−1y

)
.

It is known that the last equality holds in all three cases k = 1, 2, 3 (cf. [21, proof of Proposi-
tion 2.3]). We shall show that (5.8) follows from (5.9). Inserting in (5.9), wrz and wsy instead of
z and y we obtain:

(x⊗ u fk(B)U ′ (wr ⊗ ws) z ⊗ y) =
(
z ⊗Qu gk(B̃)Ũ ′

(
ŵ>r ⊗ ws

)
x⊗Q−1y

)
.

Multiplying both sides by (−1)rs, summing over r, s = 0, 1 and using (4.3) we obtain (5.8). The
proof is complete. �

We recall the basic definitions [2, 18, 9]. Let H be a Hilbert space and W be a unitary operator
acting on H ⊗H. We say that W is multiplicative unitary if it satisfies the pentagonal equation

W23W12 = W12W13W23.

A multiplicative unitary W is said to be modular if there exist strictly positive selfadjoint operators
Q̂ and Q acting on H and a unitary operator W̃ acting on H ⊗H such that Q̂⊗Q commutes with
W and

(5.10) (x⊗ u W z ⊗ y) =
(
z ⊗Qu W̃ x⊗Q−1y

)
for any x, z ∈ H, u ∈ D(Q) and y ∈ D(Q−1). In this definition H is the complex conjugate Hilbert
space related to H by an antiunitary mapping H 3 x←→ x ∈ H. The main result of this Section
is contained in the following

Theorem 5.2. The operator W introduced by (4.19) is a modular multiplicative unitary acting on
L2(R,C2)⊗ L2(R,C2).

Proof. Assume that K = L2(R,C2). One can easily verify that operators

(5.11)
â = |b|−1

, β̂ = (iw)`β,

b̂ = ei~/2b−1a, ŵ = γ

satisfy the requirements listed in the first part of Section 4. In particular β̂ŵ = εŵβ̂ with ε = (−1)`.
With this choice, right hand side of (4.4) coincides with that of (4.19): V = W and relation (4.20)
takes the form:

W23W12 = W12W13W23.

Hence W is a multiplicative unitary operator.

Let Q = a1/2 and Q̂ = |b|1/2. Inserting in (5.1) operators (5.11) we obtain a unitary operator
W̃ satisfying formula (5.10). To end the proof we have to show that W commutes with Q̂⊗Q.

We know that a commutes with β and w. One can easily check that |b| commutes with (iw)`β

and γ. Therefore Q̂ ⊗ Q = |b|1/2 ⊗ a1/2 commutes with (iw)`β ⊗ β, γ ⊗ I and I ⊗ w. Clearly it

commutes with log |b| ⊗ log a. Moreover due to the Zakrzewski relation a
~

o b, Q̂ ⊗ Q commutes
with ei~/2b−1 ⊗ b. Inspecting formula (4.19) we see that Q̂⊗Q commutes with W . �
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Now we can use the full power of the theory of multiplicative unitaries [2, 18, 9]. Denoting by
B(L2(R,C2))∗ the set of all normal functionals on B(L2(R,C2)) we have:

A =
{
(ω ⊗ id)W : ω ∈ B(L2(R,C2))∗

}norm closure
.

Indeed according to Theorem 1.5 of [18], the set on the right hand side is a C∗-algebra generated
by W and above equality follows immediately from Theorem 4.2 (in the present setting V = W ).

Formula (4.20) shows that (4.4) is an adapted operator in the sense of [18, Definition 1.3].
Comparing (5.1) with Statement 5 of Theorem 1.6 of [18] one can easily find the unitary antipode
R of our quantum group. It acts on a, b, β, w as follows:

aR = a−1, βR = −(iw)`β,

bR = −ei~/2ba−1, wR = w.

The action of the scaling group is described by the formulae:

τt(a) = a, τt(β) = β,

τt(b) = e~tb, τt(w) = w.

In the following, Tr denotes the trace of operators acting on L2(R,C2) and tr denotes the trace
of 2× 2 matrices. For any positive c ∈ A we set

h(c) = Tr
(
Q̂cQ̂

)
= Tr

(
|b|1/2

c |b|1/2
)
.

Let c = g(log a)
[
f1(b) + βf2(b) + wf3(b) + wβf4(b)

]
, where f1, f2, f3, f4, g ∈ C∞(R) and

f2(0) = f4(0) = 0. For any % > 0 we set:

g̃(%) =
1

2π~

∫
R
g(τ)%iτ/~dτ.

One can verify that the operator c Q̂ = c |b|
1
2 is an integral operator:

(c |b|
1
2 x)(t′) =

∫
R
Kc(t′, t)x(t)dt

with the kernel

Kc(t′, t) = |t′|−1/2
g̃(t′/t)

(
f1(t) , f3(t)

f3(t) , f1(t)

)
for t′t > 0 and

Kc(t′, t) = |t′|−1/2
g̃(−t′/t)

(
f2(t) , −f4(t)

f4(t) , −f2(t)

)
for t′t < 0. Therefore

h(c∗c) =
∫

R×R
tr
[
Kc(t′, t)∗Kc(t′, t)

]
dt′dt

=
∫ ∞

0

|g̃(%)|2 d%
%

∫
R

2
(
|f1(t)|2 + |f3(t)|2 + |f2(t)|2 + |f4(t)|2

)
dt

=
1
π~

∫
R
|g(τ)|2 dτ

∫
R

(
|f1(t)|2 + |f3(t)|2 + |f2(t)|2 + |f4(t)|2

)
dt.

This formula shows that {c ∈ A : h(c∗c) <∞} is dense in A. According to the theory elaborated
by Van Daele [11], h is a right Haar weight on our quantum group. See also [22], where the right
invariance of h is verified by a straightforward computation.

One can easily construct the regular dual of our quantum group. By definition this is a quantum
group related to the multiplicative unitary Ŵ = ΣW ∗Σ (see [2, 18]). For odd `, the dual is
antiisomorphic to the original group. More precisely there is a C∗-algebra isomorphism ψ : A −→ Â

such that ∆̂(ψ(c)) = Σ(ψ ⊗ ψ)∆(c)Σ for any c ∈ A. For even ` the situation is even simpler. The
details are left to the reader.
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6. An open problem

Let ~ be a real number. We say that ~ is admissible if there exists a locally compact quantum
group (A,∆) in the sense of Kustermans and Vaes [3] (see also [5]), with selfadjoint elements a

and b 6= 0 affiliated to A such that a ~
o b and ∆(b) ⊃ a⊗ b+ b⊗ I.

Replacing A by the opposite algebra we see that −~ is admissible for any admissible ~. Results
of [21] and of the present paper show that values ~ = π

`+3 (` = 0, 1, 2, 3, . . . ) are admissible. Taking
into account the third formulae of (3.28) and (4.22) we see that ~ = (` + 3)π are also admissible
for the same values of `. It would be interesting to determine the set of all admissible ~. As far as
we know this is an open problem. We believe that this set is closed, nowhere dense in R and that
~/π is rational for any admissible ~. The latter would mean that ‘ax + b’ exists only at roots of
unity.
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