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Abstract

An alternative version of the theory of multiplicative unitaries is presented.
Instead of the original regularity condition of Baaj and Skandalis we formulate
another condition selecting manageable multiplicative unitaries. The manage-
ability is the property of multiplicative unitaries coming from the quantum group
theory. For manageable multiplicative unitaries we reproduce all the essential
results of the original paper of Baaj and Skandalis and much more. In particular
the existence of the antipode and its polar decomposition is shown.

0 Introduction

To explain the subject of the paper we consider the multiplicative unitary related to
a locally compact group G. Let H = L2(G) be the Hilbert space of all measurable
functions on G square integrable with respect to the right - invariant Haar measure.
One can easily verify that the formula

(Wx)(g, g′) = x(gg′, g′)

defines a unitary operator on H⊗H. This operator often called Kac - Takesaki operator
is very interesting. It contains the full information about the group G. This fact follows
in the most transparent way from the famous Tatsuuma duality [6]. Let

G 3 g 7→ Rg ∈ B(H)

be the right regular representation of G: (Rgx)(g
′) = x(g′g) for any x ∈ H and g, g′ ∈ G.

Then for any non-zero T ∈ B(H) we have{
W ∗(I ⊗ T )W = T ⊗ T

}
⇐⇒

{
There exists g ∈ G
such that T = Rg

}
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We list the most important properties of the Kac - Takesaki operator. First of all,
it satisfies the following pentagonal equation:

W23W12 = W12W13W23. (0.1)

In this formula, we use the leg numbering notation: Wkl (k, l ∈ {1, 2, 3}, k < l) denotes
the copy of W acting on H ⊗H ⊗H = L2(G × G × G) affecting only the kth and lth

variable:
(W12x)(g, g

′, g′′) = x(gg′, g′, g′′),

(W13x)(g, g
′, g′′) = x(gg′′, g′, g′′),

(W23x)(g, g
′, g′′) = x(g, g′g′′, g′′).

The verification of the pentagonal equation is a matter of a simple computations. One
can easily check that

(W23W12x)(g, g
′, g′′) = x(g(g′g′′), g′g′′, g′′),

(W12W13W23)(g, g
′, g′′) = x((gg′)g′′, g′g′′, g′′)

so, the pentagonal equation is equivalent to the associativity of the group rule.

Another interesting property is the regularity. To describe it, we consider the set
B(H)∗ of all normal linear functionals defined on B(H) and the flip Σ ∈ B(H ⊗ H):
Σ(x⊗ y) = y⊗ x for all x, y ∈ H. In what follows, L2(H) will denote the space Hilbert
space of all Hilbert-Schmidt class operators acting on H. It is known that L2(H) is
canonically isomorphic to L2(G × G): an operator T ∈ L2(H) if and only if T is an
integral operator with the kernel belonging to L2(G×G).

Let x, y ∈ H and for any a ∈ B(H), ω(a) = (x|ay). Then ω ∈ B(H)∗. One can
easily check that (id⊗ω)(ΣW ) is an integral operator with the square integrable kernel
K(g, g′) = y(g)x(g′g−1) and that the set of such kernels (when x and y run over H)
is linearly dense in L2(G × G). Therefore (id ⊗ ω)(ΣW ) ∈ L2(H) and the set of such
operators is linearly dense in L2(H). Remembering that L2(H) is norm dense in the
algebra CB(H) of all compact operators acting on H we get:{

(id⊗ ω)(ΣW ) : ω ∈ B(H)∗
}norm closure

= CB(H). (0.2)

In a fundamental and beautiful paper [3], Baaj and Skandalis presented an axiomatic
approach to the theory of Kac - Takesaki operator. As basic axioms they used the
unitarity of W , the pentagonal relation (0.1) and the regularity property (0.2). They
were able to show that

A =
{
(ω ⊗ id)W : ω ∈ B(H)∗

}norm closure

and
Â =

{
(id⊗ ω)W ∗ : ω ∈ B(H)∗

}norm closure
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are C∗-algebras and that W ∈ M(Â ⊗ A). In the special case considered above, A =
C∞(G) and Â = C∗(G).

Unfortunately the Baaj and Skandalis theory does not apply to all Kac - Takesaki
operators related to quantum groups. It was discovered by Baaj [1, 2] that in general
these operators are not regular. In the present paper we propose to replace the regularity
by another property called manageability. To explain the sense of this concept we go
back to the Kac - Takesaki operator W related to a locally compact group. It has the
following remarkable property: There exists a unitary operator W̃ such that

(x⊗ u|W |z ⊗ y) = (z ⊗ u|W̃ |x⊗ y) (0.3)

for all x, y, z, u ∈ H. Indeed one can easily check that the operator W̃ = W ∗ satisfies
(0.3). One can easily show that Kac - Takesaki operators related to quantum groups
with involutive antipode have the same property.

The manageability is a natural generalization of the above property necessary to in-
clude into the theory the quantum groups with a nontrivial square of the antipode. The
paper presents the theory of multiplicative unitaries based on three axioms: unitarity,
pentagonal equation and manageability.

In the first section we introduce the notions of manageable multiplicative unitary
and that of adapted unitary. The latter notion coincides with the concept of a unitary
representation of the quantum group associated with a given manageable multiplicative
unitary. We decided to change the terminology, because we had to consider the adapted
operators before the corresponding quantum group is constructed. One should also
notice that introducing adapted operators we do not assume explicitly that their ‘second
leg’ is affiliated with the function C∗-algebra of the group. This is what we are able
to prove. Next we show that for any manageable multiplicative unitary W , its dual
Ŵ = ΣW ∗Σ is manageable.

In the second part of Section 1 we formulate the theorems containing the main results
of the paper. Theorem 1.5 deals with a manageable multiplicative unitary, Theorem 1.6
contains the corresponding results for adapted unitaries. The reader should notice that
any multiplicative unitary is adapted to itself, so many Statements of Theorem 1.5
follows directly from the corresponding Statements of Theorem 1.6

In Section 2 we show that any unitary adapted to a manageable multiplicative
unitary is manageable. Section 3 contain the proof that slicing an adapted unitary
with respect to the second leg and taking the norm closure we obtain a C∗-algebra.
The same is shown for the first leg slicing. Then in Section 4 we show that the adapted
operator belongs to the multiplier algebra of the of the tensor product of the two
algebras. The most important point in the proofs is to show that the closure of the set{

(id⊗ ω)(ΣW ) : ω ∈ B(H)∗
}

contains sufficiently many one-dimensional operators. The essential difference between
this paper and [3] lies in the different topology used for this purpose. Instead of the
norm topology used by Baaj and Skandalis we use a Hilbert space topology on the space
of modified Hilbert - Schmidt operators.
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Section 5 contains standard material on comultiplication. Section 6 is devoted to
the scaling group: the analytical generator of the scaling group enters the polar decom-
position of the antipode. The remaining factor of this decomposition (so called unitary
antipode) is introduced and investigated in Section 7.

In this paper we freely use the C∗-algebra notation described in our previous papers
(e.g: [8]). In particular for any C∗-algebras A and B, Mor(A,B) denotes the set of all
non-degenerate ∗-homomorphisms acting from A into the multiplier algebra M(B) of
the algebra B.

1 Basic definitions and results

Let H be a separable Hilbert space and H be the complex conjugate of H. For any x ∈
H, the corresponding element of H will be denoted by x. Then H 3 x→ x ∈ H is an
antiunitary map. In particular (x|y) = (y|x) for any x, y ∈ H. For any closed operator
m acting on H, m> will denote the transpose of m. By definition D(m>) = D(m∗) and

m>x = m∗x (1.1)

for any x ∈ D(m∗). For any m ∈ B(H), m> is a bounded operator acting on H
such that (x|m>y) = (y|mx) for all x, y ∈ H. Clearly B(H) 3 m → m> ∈ B(H) is

an antiisomorphism of C∗-algebras. Setting x = x we identify H with H. With this
identification m>> = m for any m ∈ B(H).

Let W be a bounded operator acting on H ⊗ H: W ∈ B(H ⊗ H). We shall
use the leg numbering notation: W12 = W ⊗ I, W13 = (I ⊗ Σ)(W ⊗ I)(I ⊗ Σ) and
W23 = I⊗W . In these formulae I is the unit operator acting on H and Σ ∈ B(H⊗H)
is the flip: Σ(x⊗ y) = y⊗ x for any x, y ∈ H. Clearly W12,W13,W23 ∈ B(H ⊗H ⊗H).
Similarly for any V ∈ B(K ⊗ H) (where K is another Hilbert space) one introduces
V12, V13 ∈ B(K ⊗H ⊗H).

Definition 1.1 Let H be a Hilbert space and W be a unitary operator acting on H⊗H.
We say that W is a multiplicative unitary if it satisfies the pentagonal equation

W23W12 = W12W13W23. (1.2)

Definition 1.2 Let H be a Hilbert space and W ∈ B(H⊗H) be a multiplicative unitary.
We say that W is manageable if there exist a positive selfadjoint operator Q acting on
H and a unitary operator W̃ acting on H ⊗H such that ker(Q) = {0},

W ∗(Q⊗Q)W = Q⊗Q (1.3)

and
(x⊗ u|W |z ⊗ y) = (z ⊗Qu|W̃ |x⊗Q−1y) (1.4)

for any x, z ∈ H, y ∈ D(Q−1) and u ∈ D(Q).
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Definition 1.3 Let H and K be Hilbert spaces, W ∈ B(H ⊗ H) be a multiplicative
unitary and V be a unitary operator acting on K ⊗H. We say that V is adapted to W
if

W23V12 = V12V13W23. (1.5)

Definitions 1.1 and 1.3 are due to Baaj and Skandalis [3]. In their terminology
adapted unitaries are called representations. Definition 1.2 contains the condition that
in our approach replaces the condition of regularity of [3]. The both conditions have
more or less the same implications. However there are strong indications [4] that the
condition formulated in Definition 1.2 is satisfied for all multiplicative unitaries related
to quantum groups. This is not the case for regularity condition [1, 2].

It is well known [3] that for any multiplicative unitary W , the dual Ŵ = ΣW ∗Σ is
a multiplicative unitary. We shall prove that the dual of a manageable multiplicative
unitary is manageable. The operator Q remains the same.

Proposition 1.4 Let H be a separable Hilbert space, W ∈ B(H ⊗H) be a manageable
multiplicative unitary and Q and W̃ be the operators related to W in the way described
in Definition 1.2. Then

1. W̃ and Q> ⊗Q−1 commute:

W̃ (Q> ⊗Q−1)W̃ ∗ = Q> ⊗Q−1 (1.6)

2. For any x ∈ D(Q−1), z ∈ D(Q) and y, u ∈ H:

(x⊗ u|W |z ⊗ y) = (Qz ⊗ u|W̃ |Q−1x⊗ y). (1.7)

3. The multiplicative unitary Ŵ = ΣW ∗Σ is manageable.

Proof:
Ad 1. Due to (1.3), the left hand side of (1.4) remains unchanged when one replaces

x, y, z and u by Qitx,Qity,Qitz and Qitu respectively (t ∈ R). Taking into account (1.1)
we get

(z ⊗Qu|W̃ |x⊗Q−1y) =
([
Q>

]−it
z ⊗QitQu W̃

[
Q>

]−it
x⊗QitQ−1y

)
,

W̃ =
([
Q>

]it
⊗Q−it

)
W̃

([
Q>

]−it
⊗Qit

)
and (1.6) follows.

Ad 2. Assume for the moment, that in addition y ∈ D(Q−1) and u ∈ D(Q). Then
our formula follows immediately from Statement 1 and formula (1.4). To get (1.7) in
full generality it is sufficient to use the continuity argument.

Ad 3. One can easily verify that Ŵ commutes with Q⊗Q. Moreover introducing

the unitary
˜̂
W = (ΣW̃ ∗Σ)>⊗> we have:

(x⊗ u|Ŵ |z ⊗ y) = (z ⊗Qu|˜̂W |x⊗Q−1y) (1.8)
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for any x, z ∈ H, y ∈ D(Q−1) and u ∈ D(Q). Indeed, using in the forth step formula
(1.7) we obtain:

(z ⊗Qu|(ΣW̃ ∗Σ)>⊗>|x⊗Q−1y) = (x⊗Q−1y|ΣW̃ ∗Σ|z ⊗Qu)

= (Q−1y ⊗ x|W̃ ∗|Qu⊗ z) = (Qu⊗ z|W̃ |Q−1y ⊗ x) = (y ⊗ z|W |u⊗ x)

= (u⊗ x|W ∗|y ⊗ z) = (x⊗ u|ΣW ∗Σ|z ⊗ y)

and (1.8) follows. It shows, that Ŵ is manageable.
Q.E.D.

The main results of the paper are containing in the following theorems:

Theorem 1.5 Let H be a separable Hilbert space, W ∈ B(H ⊗ H) be a manageable
multiplicative unitary and

A =
{
(ω ⊗ id)W : ω ∈ B(H)∗

}norm closure

, (1.9)

Â =
{
(id⊗ ω)(W ∗) : ω ∈ B(H)∗

}norm closure

. (1.10)

Then

1. A and Â are separable C∗-algebras acting on H in a non-degenerate way.

2. W ∈M(Â⊗ A).

3. There exists unique ∆ ∈ Mor(A,A⊗ A) such that

(id⊗∆)W = W12W13. (1.11)

∆ is coassociative: (∆ ⊗ id)∆ = (id ⊗ ∆)∆. Moreover
{
∆(a)(I ⊗ b) : a, b ∈ A

}
and{

(a⊗ I)∆(b) : a, b ∈ A
}

are linearly dense subsets of A⊗ A.

4. There exists a unique closed linear operator κ acting on the Banach space A such
that {(ω ⊗ id)W : ω ∈ B(H)∗} is a core (essential domain) of κ and

κ
(
(ω ⊗ id)W

)
= (ω ⊗ id)(W ∗) (1.12)

for any ω ∈ B(H)∗. The domain D(κ) is a subalgebra of A and κ is antimultiplicative:
for any a, b ∈ D(κ), κ(ab) = κ(b)κ(a). The image κ(D(κ)) coincides with D(κ)∗ and
κ(κ(a)∗)∗ = a for any a ∈ D(κ).

The operator κ admits the following polar decomposition:

κ = R ◦ τi/2 (1.13)

where τi/2 is the analytic generator of a one parameter group (τt)t∈R of ∗-automorphisms
of the C∗-algebra A and R is an involutive normal 1 antiautomorphism of A commuting

1i.e. continuous with respect to the ultra-weak operator topology on A, we need not to say that R
is norm continuous
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with automorphisms τt for all t ∈ R. In particular D(κ) = D(τi/2). R and (τt)t∈R are
uniquely determined.

5. Let W̃ and Q be operators entering Definition 1.2. Then for any t ∈ R and
a ∈ A we have:

τt(a) = Q2itaQ−2it.

Moreover using the exponent notation for R (i.e. writing aR instead of R(a)) we have:

W>⊗R = W̃ ∗. (1.14)

It is understood that the group (τt)t∈R is pointwise continuous: for any a ∈ A,
‖τt(a) − a‖ → 0 when t → 0. Let us recall [9] that the analytical generator τi/2 of a
(pointwise continuous) one parameter group (τt)t∈R of ∗-automorphisms of a C∗-algebra
A is the linear operator acting on A in the following way:

For any a, b ∈ A: a ∈ D(τi/2) and b = τi/2(a) if and only if there exists a mapping
z 7→ az ∈ A continuous on the strip {z ∈ C : =z ∈ [0, 1/2]} and holomorphic in the
interior of this strip such that at = τt(a) for all t ∈ R and ai/2 = b.

It is known that τi/2 is a closed linear mapping, D(τi/2) is a dense subalgebra and τi/2

is multiplicative. Moreover τi/2(a)
∗ ∈ D(τi/2) and τi/2(τi/2(a)

∗)
∗

= a for any a ∈ D(τi/2).

Due to the polar decomposition (1.13) κ admits a natural extension to an operator
κ̃ acting on M(A). κ̃ is the closure of κ with respect to the strict topology of M(A).
This extension is used at the point 4 of the following theorem.

Theorem 1.6 Let H and K be separable Hilbert spaces, W ∈ B(H ⊗H) be a manage-
able multiplicative unitary, V ∈ B(K ⊗H) be a unitary adapted to W and

B =
{
(id⊗ ω)(V ∗) : ω ∈ B(H)∗

}norm closure

. (1.15)

Then, using the notation introduced in the previous theorem we have:

0. V is ‘manageable’: There exists a unitary Ṽ ∈ B(K ⊗H) such that

(r ⊗ u|V |s⊗ y) = (s⊗Qu|Ṽ |r ⊗Q−1y) (1.16)

for any r, s ∈ K, y ∈ D(Q−1) and u ∈ D(Q).

1. B is a separable C∗-algebra acting on K in a non-degenerate way.

2. V ∈M(B ⊗ A).

3. (id⊗∆)V = V12V13.

4. For any ϕ ∈ B(K)∗ we have: (ϕ⊗ id)V ∈ D(κ̃) and

κ̃
(
(ϕ⊗ id)V

)
= (ϕ⊗ id)(V ∗).

5. V >⊗R = Ṽ ∗.
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6. The C∗-algebra B is generated by V ∈M(B⊗A) in the sense described in [8]: for
any Hilbert space L, any π ∈ Rep (B,L) and any non-degenerate separable C∗-algebra
D ⊂ B(L) we have:(

(π⊗id)V ∈M(D⊗A)
)

=⇒
(
π ∈ Mor(B,D)

)
It turns out that the condition 3 of the above theorem characterizes the adapted

operators completely. We have:

Theorem 1.7 Let H and K be separable Hilbert spaces, W ∈ B(H ⊗ H) be a man-
ageable multiplicative unitary and V be a unitary element of M(CB(K)⊗A). Assume
that (id⊗∆)V = V12V13. Then V is a unitary adapted to W .

2 The manageability of adapted unitaries

Throughout this Section H and K are separable Hilbert spaces, W ∈ B(H ⊗ H) is a
manageable multiplicative unitary and V ∈ M(CB(K) ⊗ A) is a unitary adapted to
W . Moreover Q and W̃ will be the operators related to W in the way described in
Definition 1.2.

We shall prove Statement 0 of Theorem 1.6.

Let
˜̃
V = (V >⊗> ⊗ I)(I ⊗ W̃ )(V ∗>⊗> ⊗ I)(I ⊗ W̃ ∗). Clearly

˜̃
V is a unitary operator

acting on K ⊗ H ⊗ H. We shall prove that
˜̃
V is of the form

˜̃
V = Ṽ13, where Ṽ is a

unitary operator acting on K ⊗H. Next we shall show that the later operator satisfies
(1.16).

In the following computations r, s ∈ K, x, y ∈ D(Q−1) and z, u ∈ D(Q). Let ν and
µ be normal linear functionals on B(H) such that

µ(a) = (u|a|y), ν(a) = (Qu|a|Q−1y)

for any a ∈ B(H). According to (1.4), (x|(id ⊗ µ)W |z) = (z|(id ⊗ ν)W̃ |x). It shows
that

[(id⊗ µ)W ]> = (id⊗ ν)W̃ .

By the definition of
˜̃
V :

˜̃
V (I ⊗ W̃ ) = (V >⊗> ⊗ I)(I ⊗ W̃ )(V ∗>⊗> ⊗ I).

Therefore

(id⊗ id⊗ ν)
[ ˜̃
V (I ⊗ W̃ )

]
= V >⊗>

[
I ⊗ (id⊗ ν)W̃

]
V ∗>⊗>

= V >⊗> [I ⊗ (id⊗ µ)W ]>⊗> V ∗>⊗> = {V ∗ [I ⊗ (id⊗ µ)W ]V }>⊗>

= {(id⊗ id⊗ µ)V ∗12W23V12}>⊗> = {(id⊗ id⊗ µ)V13W23}>⊗> ,
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where in the last step we used (1.2). Now we have:(
s⊗ z ⊗Qu

˜̃
V (I ⊗ W̃ ) r ⊗ x⊗Q−1y

)
=

(
s⊗ z (id⊗ id⊗ ν)

[ ˜̃
V (I ⊗ W̃ )

]
r ⊗ x

)
=

(
s⊗ z {(id⊗ id⊗ µ)V13W23}>⊗> r ⊗ x

)
= (r ⊗ x|(id⊗ id⊗ µ)(V13W23)|s⊗ z)

= (r ⊗ x⊗ u|V13W23|s⊗ z ⊗ y)

Let ϕ and ϕ> be normal linear functionals on B(K) and B(K) such that

ϕ(m) = (r|m|s), ϕ>(n) = (s|n|r) (2.1)

for any m ∈ B(K) and n ∈ B(K). With this notation, the result of the above compu-
tations can be written in the following way:(

z ⊗Qu
[
(ϕ> ⊗ id⊗ id)

˜̃
V

]
W̃ x⊗Q−1y

)
= (x⊗ u| [I ⊗ (ϕ⊗ id)V ]W |z ⊗ y)

= (x⊗ [(ϕ⊗ id)V ]∗u|W |z ⊗ y) =
(
Qz ⊗ [(ϕ⊗ id)V ]∗u W̃ Q−1x⊗ y

)
,

where in the last step we used (1.7). Finally we have:(
W̃ ∗

[
(ϕ> ⊗ id⊗ id)

˜̃
V

]∗
(z ⊗Qu) x⊗Q−1y

)

=
(
W̃ ∗

(
Qz ⊗ [(ϕ⊗ id)V ]∗u

) (
Q> ⊗Q−1

)−1
x⊗Q−1y

)
.

We know that
(
Q> ⊗Q−1

)−1
is selfadjoint. The above relation shows that:

W̃ ∗
(
Qz ⊗ [(ϕ⊗ id)V ]∗u

)
∈ D

((
Q> ⊗Q−1

)−1
)

and (
Q> ⊗Q−1

)−1
W̃ ∗

(
Qz ⊗ [(ϕ⊗ id)V ]∗u

)
= W̃ ∗

[
(ϕ> ⊗ id⊗ id)

˜̃
V

]∗
(z ⊗Qu) .

Taking into account the commutativity (1.6) we see that

[(ϕ⊗ id)V ]∗u ∈ D(Q)

and

z ⊗Q[(ϕ⊗ id)V ]∗u =
[
(ϕ> ⊗ id⊗ id)

˜̃
V

]∗
(z ⊗Qu) .

The appearance of the factor z on the left hand side shows that
˜̃
V is of the form

˜̃
V = Ṽ13

Introducing this information into the last equation we get

Q[(ϕ⊗ id)V ]∗u =
[
(ϕ> ⊗ id)Ṽ

]∗
Qu.

Now we have:(
Q[(ϕ⊗ id)V ]∗u Q−1y

)
=

([
(ϕ> ⊗ id)Ṽ

]∗
Qu Q−1y

)
,

(u|(ϕ⊗ id)V |y) =
(
Qu (ϕ> ⊗ id)Ṽ Q−1y

)
and using (2.1) we obtain (1.16). This way Statement 0 of Theorem 1.6 is proved.
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3 The algebras generated by adapted unitaries

The title of this Section refers to the norm closed subspace B of B(K) introduced by
(1.15). The aim is to prove that B is a C∗-algebra.

We keep the notation used in the previous Section: H and K are separable Hilbert
spaces, W ∈ B(H ⊗ H) is a manageable multiplicative unitary, V ∈ M(CB(K) ⊗ A)
is a unitary adapted to W and Q and W̃ are the operators related to W in the way
described in Definition 1.2.

For any bounded operator ρ ∈ B(H) we set:

‖ρ‖
HS

=
[
Tr ρ∗Q−2ρ

] 1
2

If ‖ρ‖
HS
< ∞, then ρH ⊂ D(Q−1) and Q−1ρ is an operator of Hilbert-Schmidt class.

Moreover choosing an orthonormal basis (en)n=1,2,... in H we have:

‖ρ‖
HS

2 =
∞∑

n=1

‖Q−1ρen‖
2
.

For any x ∈ H we consider the operator

θx : C 3 λ 7−→ λx ∈ H

Clearly θx ∈ B(C, H). The hermitian adjoint of θx acts in the following way:

θx
∗ : H 3 z 7−→ (x|z) ∈ C.

The reader should notice that the Dirac dyad |x)(y| = θxθy
∗. We shall also use the

operators θ in the tensor product context. For example: (I ⊗ θ∗x)(z ⊗ y) = z(x|y),
(θx ⊗ I)y = x⊗ y and so on.

The following proposition plays an important role in this paper:

Proposition 3.1 Let u ∈ D(Q) and ρ ∈ B(H) Then

‖(I ⊗ θ∗u)V (I ⊗ ρ)‖ ≤ ‖Qu‖ · ‖ρ‖
HS
. (3.1)

Proof: Let (en)n=1,2,... be an orthonormal basis in H. Then any vector ψ ∈ K ⊗H is
of the form

ψ =
∞∑

n=1

ψn ⊗ en,

where ψn are elements of K such that

∞∑
n=1

‖ψn‖2 = ‖ψ‖2 <∞.

We may assume that ‖ρ‖
HS
<∞. Then ρH ⊂ D(Q−1) and for any y ∈ K we have:

(y|(I ⊗ θ∗u)V (I ⊗ ρ)|ψ) = (y ⊗ u|V (I ⊗ ρ)|ψ)
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=
∞∑

n=1

(y ⊗ u|V |ψn ⊗ ρen) =
∞∑

n=1

(ψn ⊗Qu|Ṽ |y ⊗Q−1ρen).

Therefore

|(y|(I ⊗ θ∗u)V (I ⊗ ρ)|ψ)| ≤
∞∑

n=1

‖ψn‖ · ‖Qu‖ · ‖y‖ · ‖Q−1ρen‖

≤ ‖y‖ · ‖Qu‖ ·
[ ∞∑

n=1

‖ψn‖2

] 1
2

[ ∞∑
n=1

‖Q−1ρen‖2

] 1
2

= ‖y‖ · ‖Qu‖ · ‖ψ‖ · ‖ρ‖
HS

and (3.1) follows.
Q.E.D.

It will be useful to have a criterion selecting ρ ∈ B(H) with finite HS-norm.

Proposition 3.2 Let ρ ∈ B(H). Then ‖ρ‖
HS
< ∞ if and only if there exists a vector

Ψ(ρ) ∈ H ⊗H such that
(u|ρz) = (z ⊗Qu|Ψ(ρ))

for any u ∈ D(Q) and z ∈ H. Ψ(ρ) is uniquely determined by ρ. The correspondence
ρ 7→ Ψ(ρ) is linear and isometric:

‖Ψ(ρ)‖ = ‖ρ‖
HS

for any ρ ∈ B(H) with finite HS-norm.

Proof: The statement follows immediately from the well known 1 – 1 correspondence
between H ⊗H and the Hilbert space of all Hilbert-Schmidt class operators acting on
H.

Q.E.D.

Example 1: Let x ∈ H and y ∈ D(Q−1). Then ρ = |y)(x| = θyθ
∗
x is of finite

HS-norm. Indeed for any u ∈ D(Q) and z ∈ H we have:

(u|ρz) = (u|y)(x|z) = (z ⊗Qu|x⊗Q−1y)

and Ψ(ρ) = x⊗Q−1y ∈ H ⊗H.

Example 2: Let x ∈ H and y ∈ D(Q−1). Then ρ = (θ∗x ⊗ I)W (I ⊗ θy) is of finite
HS-norm. Indeed for any u ∈ D(Q) and z ∈ H we have:

(u|ρz) = (x⊗ u|W |z ⊗ y) = (z ⊗Qu|W̃ |x⊗Q−1y)

and Ψ(ρ) = W̃ (x⊗Q−1y) ∈ H ⊗H.

In the next example we shall use the antiunitary operator J acting on H ⊗ H
according to the formula:

J(x⊗ y) = y ⊗ x (3.2)

for any x, y ∈ H.
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Example 3: Let x ∈ H and y ∈ D(Q−1). Then ρ = (I ⊗ θ∗x)W
∗(θy ⊗ I) is of finite

HS-norm. Indeed for any u ∈ D(Q) and z ∈ H we have (cf (1.7)):

(u|ρz) = (u⊗ x|W ∗|y ⊗ z) = (y ⊗ z|W |u⊗ x)

= (Qu⊗ z|W̃ |Q−1y ⊗ x) = (W̃ (Q−1y ⊗ x)|Qu⊗ z)

= (W̃J(x⊗Q−1y)|J(z ⊗Qu)) = (z ⊗Qu|JW̃J |x⊗Q−1y)

and Ψ(ρ) = JW̃J(x⊗Q−1y) ∈ H ⊗H.

In what follows, E1 (E2 and E3 respectively) will denote the set of all ρ ∈ B(H) of
the form considered in Example 1 (Example 2 and Example 3 respectively). It is very
important that each of the three sets is linearly HS-dense in {ρ ∈ B(H) : ‖ρ‖

HS
<∞}:

For any ρ ∈ B(H) with finite HS-norm, there exists a sequence ρn of linear combinations
of elements of Ek such that ‖ρ− ρn‖HS

→ 0. Indeed{
Ψ(ρ) :

ρ is a linear combina-
tion of elements of E1

}
= H ⊗alg D(Q)

{
Ψ(ρ) :

ρ is a linear combina-
tion of elements of E2

}
= W̃ (H ⊗alg D(Q))

{
Ψ(ρ) :

ρ is a linear combina-
tion of elements of E3

}
= JW̃J(H ⊗alg D(Q))

and all three sets on the right hand side are dense in H ⊗H.

Proposition 3.3 Let ρ ∈ B(H) be an operator with finite HS-norm, u ∈ D(Q) and
z ∈ H. Then

(I ⊗ θ∗u)V (I ⊗ ρ)V ∗(I ⊗ θz) = (id⊗ ωρ)V
∗, (3.3)

where ωρ is a normal functional defined on B(H) such that

ωρ(a) =
(
z ⊗Qu W̃ (a> ⊗ I)W̃ ∗ Ψ(ρ)

)
for any a ∈ B(H).

Proof: Let LHS(ρ) (RHS(ρ) respectively) denote the left (right respectively) hand
side of (3.3). By virtue of (3.1)

‖LHS(ρ)‖ ≤ ‖Qu‖ ‖z‖ ‖ρ‖
HS
.

On the other hand it is obvious that the norm of the functional ωρ is majorized by
‖Qu‖ ‖z‖ ‖Ψ(ρ)‖, so we have:

‖RHS(ρ)‖ ≤ ‖Qu‖ ‖z‖ ‖ρ‖
HS
.

Due to these estimates the set of ρ satisfying (3.3) is HS-closed. We know that E2 is
linearly HS-dense in the set of all operators with finite HS-norm. Therefore it is sufficient

12



to prove (3.3) for ρ of the form considered in Example 2. Let ρ = (θ∗x ⊗ I)W (I ⊗ θy),

where x ∈ H and y ∈ D(Q−1). Then Ψ(ρ) = W̃ (x⊗Q−1y) and

ωρ(a) =
(
z ⊗Qu W̃ (a> ⊗ I) x⊗Q−1y

)
=

(
z ⊗Qu W̃ a∗x⊗Q−1y

)
= (a∗x⊗ u|W |z ⊗ y) = (x⊗ u|(a⊗ I)W |z ⊗ y).

Therefore for any r, s ∈ K we have:

(r|(id⊗ ωρ)V
∗|s) = (r ⊗ x⊗ u|V ∗12W23|s⊗ z ⊗ y).

According to (1.5), V ∗12W23 = V13W23V
∗
12. Inserting this information into the right hand

side we get

(r|(id⊗ ωρ)V
∗|s) = (r ⊗ x⊗ u|V13W23V

∗
12|s⊗ z ⊗ y)

= (r ⊗ u|V (I ⊗ θ∗x ⊗ I)W23(I ⊗ I ⊗ θy)V
∗|s⊗ z)

= (r ⊗ u|V (I ⊗ ρ)V ∗|s⊗ z)

and (3.3) follows.
Q.E.D.

Inserting in (3.3) ρ of the form considered in Example 1 we obtain

Proposition 3.4 Let x, z ∈ H, y ∈ D(Q−1) and u ∈ D(Q). Consider normal func-
tionals µ, ν, ω ∈ B(H)∗ introduced by the formulae

µ(a) = (u|ay), (3.4)

ν(a) = (x|az), (3.5)

ω(a) =
(
z ⊗Qu W̃ (a> ⊗ I)W̃ ∗ x⊗Q−1y

)
, (3.6)

where a runs over B(H). Then we have:

(id⊗ µ)V (id⊗ ν)(V ∗) = (id⊗ ω)(V ∗). (3.7)

Now we are able to prove Statement 1 of Theorem 1.6. Let B be the norm closed
subspace of B(K) introduced by (1.15). It is well known that the functionals µ defined
by (3.4), where u and y run over a dense subsets of H form a linearly dense subset of
B(H)∗. The same holds for functionals ν introduced by (3.5). A moment of reflection
shows that also the set of functionals ω of the form (3.6) is linearly dense in B(H)∗.
Therefore in the formula (3.7), the first factor on the left hand side runs over a linearly
dense subset of B∗, whereas the second factor and the right hand side run over a linearly
dense subset of B. Formula (3.7) shows that B∗B is a linearly dense subset of B. Since
B∗B is ∗-invariant, so is B: B∗ = B. Now we have: BB = B∗B ⊂ B. It means that B
is a ∗-subalgebra of B(K).

Let r ∈ K and r 6= 0. Then for any non-zero z ∈ H, r ⊗ z 6= 0, V ∗(r ⊗ z) 6= 0 and
there exist s ∈ K and x ∈ H such that (s ⊗ x|V ∗|r ⊗ z) 6= 0. Let ν be the normal
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functional on B(H) defined by ν(a) = (x|az) for all a ∈ B(H) and b = (id ⊗ ν)(V ∗)
Then b ∈ B, (s|br) = (s⊗ x|V ∗|r ⊗ z) 6= 0 and br 6= 0. It shows that B acts on K in a
non-degenerate way. Since B(H)∗ is separable, so is B. Statement 1 of Theorem 1.6 is
proved.

Let K = H and V = W . Comparing (1.2) and (1.5) we see that V = W is a
unitary adapted to W . In this particular case B coincides with Â introduced by (1.10)
and consequently Â is a separable C∗-algebra acting on H in a non-degenerate way.
Replacing W by its dual Ŵ = ΣW ∗Σ we get the same result for A introduced by (1.9).
Statement 1 of Theorem 1.5 is proved.

4 Adapted unitaries as multipliers

In this Section we shall prove the Statements 2 of Theorems 1.5 and 1.6. We shall use
the notation introduced in Section 2. We already know that B introduced by (1.15) is
a C∗-algebra. Applying the hermitian conjugation to the both sides of (1.15) we obtain
an alternative definition of B:

B =
{
(id⊗ ω)V : ω ∈ B(H)∗

}norm closure

. (4.1)

We recall, that the algebra of all compact operators acting on the Hilbert space H
is denoted by CB(H). This is the smallest norm closed subspace of B(H) containing
all one dimensional operators θzθ

∗
x (z, x ∈ H). We start with the following interesting

Proposition 4.1 Let z ∈ H, u ∈ D(Q) and ρ ∈ B(H), ‖ρ‖
HS
<∞. Then

(I ⊗ θzθ
∗
u)V (I ⊗ ρ) ∈ B ⊗ CB(H). (4.2)

Moreover the set of all elements of the form (4.2) is linearly dense in B ⊗ CB(H).

Proof: By virtue of (3.1) we have

‖(I ⊗ θzθ
∗
u)V (I ⊗ ρ)‖ ≤ ‖z‖ · ‖Qu‖ · ‖ρ‖

HS
. (4.3)

Due to this estimates the set of ρ satisfying (4.2) is HS-closed. We know that E1

is linearly HS-dense in the set of all operators with finite HS-norm. Therefore it is
sufficient to prove (4.2) for ρ of the form considered in Example 1.

Let ρ = θyθ
∗
x, where x ∈ H and y ∈ D(Q−1). Then

(I ⊗ θzθ
∗
u)V (I ⊗ ρ) = (id⊗ ω)V ⊗ θzθ

∗
x

where ω is the normal functional on B(H) such that ω(a) = (u|ay) for all a ∈ B(H). By
virtue of (4.1), the right hand side of the above equation belongs to B⊗alg CB(H) and
(4.2) follows. To end the proof one should notice that elements of the form (id⊗ ω)V
(θzθ

∗
x respectively) are linearly dense in B (CB(H) respectively).

Q.E.D.
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Proposition 4.2 Let u, x, y, z ∈ H. Then

(I ⊗ θzθ
∗
u ⊗ θ∗x)V12W

∗
23(I ⊗ θy ⊗ I) ∈ B ⊗ CB(H) (4.4)

Moreover the set of all elements of the form (4.4) is linearly dense in B ⊗ CB(H).

Proof: We may additionally assume that u ∈ D(Q) and y ∈ D(Q−1) (D(Q) and
D(Q−1) are dense in H. Let ρ = (I ⊗ θ∗x)W ∗(θy ⊗ I). Then ‖ρ‖

HS
<∞ (cf Example 3).

Inserting this particular value of ρ into (4.2) we obtain

(I ⊗ θzθ
∗
u)V (I ⊗ ρ) = (I ⊗ θzθ

∗
u ⊗ θ∗x)V12W

∗
23(I ⊗ θy ⊗ I)

and (4.4) follows. Taking into account the estimate (4.3) and the linear HS-density of
E3 in the space of all operators with finite HS-norm we see that the closed linear span
of all elements of the form (4.4) coincides with that of all elements of the form (4.2)
i.e. with B ⊗CB(H). It shows that the set of all elements of the form (4.4) is linearly
dense in B ⊗ CB(H).

Q.E.D.

According to (1.5) V12W
∗
23 = W ∗

23V12V13. Therefore

(I ⊗ θzθ
∗
u ⊗ θ∗x)V12W

∗
23(I ⊗ θy ⊗ I) = (I ⊗ θzθ

∗
u ⊗ θ∗x)W

∗
23V12V13(I ⊗ θy ⊗ I)

= (I ⊗ θzθ
∗
u ⊗ θ∗x)W

∗
23V12(I ⊗ θy ⊗ I)V.

(4.5)

Proposition 4.3 Let u, x, y, z ∈ H. Then

(I ⊗ θzθ
∗
u ⊗ θ∗x)W

∗
23V12(I ⊗ θy ⊗ I) ∈ B ⊗ CB(H) (4.6)

Moreover the set of all elements of the form (4.6) is linearly dense in B ⊗ CB(H).

Proof: At first we notice that the element (4.6) may be written in the form

(I ⊗ θzθ
∗
u ⊗ θ∗x)W

∗
23V12(I ⊗ θy ⊗ I) = (I ⊗ θz)(I ⊗ (θ∗u ⊗ θ∗x)W

∗)(V ⊗ I)(I ⊗ θy ⊗ I)

= (I ⊗ θz)(I ⊗ θ∗W (u⊗x))(V ⊗ I)(I ⊗ θy ⊗ I).

The set W (H⊗algH) is dense in H⊗H. So is the set H⊗algH. Therefore replacing
W (u ⊗ x) by u ⊗ x we do not change the closed linear span: the closed linear span of
all elements of the form (4.6) coincides with that of all elements of the form

(I ⊗ θz)(I ⊗ θ∗u⊗x)(V ⊗ I)(I ⊗ θy ⊗ I) = (id⊗ ω)V ⊗ θzθ
∗
x

where ω is the normal functional on B(H) such that ω(a) = (u|ay) for all a ∈ B(H).
We already know (cf the last part of the proof of Proposition 4.1) that these elements
belong to B ⊗ CB(H) and that their closed linear span coincides with B ⊗ CB(H).

Q.E.D.

Combining Propositions 4.2 and 4.3 with the formula (4.5) we see that

B ⊗ CB(H) = (B ⊗ CB(H))V.
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It means that V is a right multiplier of B⊗CB(H). Multiplying both sides of the above
formula by V ∗ from the left we get (B ⊗ CB(H))V ∗ = B ⊗ CB(H). It shows that V ∗

is a right multiplier of B ⊗CB(H). Consequently V is a left multiplier of B ⊗CB(H)
and

V ∈M(B ⊗ CB(H)). (4.7)

Using this result in the special case K = H, V = W (cf the end of Section 2) we get

W ∈M(Â⊗ CB(H)).

Replacing W by its dual Ŵ = ΣW ∗Σ we obtain ΣW ∗Σ ∈M(A⊗ CB(H)) and

W ∈M(CB(H)⊗ A). (4.8)

Now we may use the beautiful argument of Baaj and Skandalis (cf [3, page 441]):
According to (1.5)

V13 = V ∗12W23V12W
∗
23

By virtue of (4.7) and (4.8), V12 and W23 belong to M(B ⊗ CB(H) ⊗ A). Therefore
V13 ∈M(B⊗CB(H)⊗A) and V ∈M(B⊗A). Statement 2 of Theorem 1.6 is proved.
In the special case K = H, V = W we obtain Statement 2 of Theorem 1.5.

Now we can prove Statement 6 of Theorem 1.6. Let L be a separable Hilbert
space, D ⊂ B(L) be a separable C∗-algebra acting on L in a non-degenerate way and
π ∈ Rep (B,L). Assume that

(π ⊗ id)V ∈M(D ⊗ A). (4.9)

We have to show that π ∈ Mor(B,D), i.e. that π(B)D is a linearly dense subset of
D (cf [8, formula (1.5)]). According to (4.9) (π ⊗ id)V ∗ ∈ M(D ⊗ A), and for any
functional ω ∈ B(H)∗,

π
(
(id⊗ ω)V ∗

)
= (id⊗ ω)(π ⊗ id)V ∗ ∈M(D).

It shows that π(B) ⊂ M(D) and consequently π(B)D ⊂ D. To prove the density we
shall use the unitarity of (4.9). Let d ∈ D, a ∈ A and ω ∈ B(H)∗. Then

(id⊗ ω)
( (

(π ⊗ id)V ∗
)

(d⊗ a)
)

= π
(
(id⊗ ω)

[
V ∗(I ⊗ a)

])
d ∈ π(B)D. (4.10)

Due to the unitarity of (4.9) the set{ (
(π ⊗ id)V ∗

)
(d⊗ a) : d ∈ D, a ∈ A

}
is linearly dense in D ⊗ A. Therefore the set of elements of the form (4.10) is linearly
dense in D and the Statement follows.
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5 Comultiplication

In this Section we shall prove Statements 3 of Theorems 1.5 and 1.6. Moreover the
last line will contain the proof of Theorem 1.7. Let W be a manageable multiplicative
unitary and A be the C∗-algebra introduced by (1.9). For any a ∈ A we set:

∆(a) = W (a⊗ I)W ∗. (5.1)

With this notation we have:

Proposition 5.1
{
∆(a)(I ⊗ b) : a, b ∈ A

}
and

{
(a⊗ I)∆(b) : a, b ∈ A

}
are linearly

dense subsets of the algebra A⊗ A.

Proof: Let ω ∈ B(H)∗ and a = (ω ⊗ id)W . Then a ∈ A and using in the last step
(1.2) we obtain

∆(a) = ∆
(
(ω ⊗ id)W

)
= W [(ω ⊗ id)W ⊗ I]W ∗

= (ω ⊗ id⊗ id)(W23W12W
∗
23) = (ω ⊗ id⊗ id)(W12W13)

We shall use products ωm and mω, where ω ∈ B(H)∗ and m ∈ CB(H). By defini-
tion ωm and mω are elements of B(H)∗ such that (ωm)(n) = ω(mn) and (mω)(n) =
ω(nm) for any n ∈ B(H). It is well known (see [7, Thm 16.1] that{

ωm : ω ∈ B(H)∗, m ∈ CB(H)
}

= B(H)∗,{
mω : ω ∈ B(H)∗, m ∈ CB(H)

}
= B(H)∗.

Let

Γ =
{
∆(a)(I ⊗ b) : a, b ∈ A

}closed linear
envelope

.

We compute:

Γ =
{
∆

(
(mω ⊗ id)W

)
(I ⊗ b) : ω ∈ B(H)∗, m ∈ CB(H), b ∈ A

}closed linear
envelope

=
{
(ω ⊗ id⊗ id)(W12W13(m⊗ I ⊗ b)) : ω ∈ B(H)∗, m ∈ CB(H), b ∈ A

}closed linear
envelope

=
{
(ω ⊗ id⊗ id)(W12W13T13) : ω ∈ B(H)∗, T ∈ CB(H)⊗ A

}closed linear
envelope

We know (cf (4.8)) that W is a unitary element of M(CB(H) ⊗ A). Therefore
W (CB(H)⊗ A) = CB(H)⊗ A and

Γ =
{
(ω ⊗ id⊗ id)(W12T13) : ω ∈ B(H)∗, T ∈ CB(H)⊗ A

}closed linear
envelope

=
{
(ω ⊗ id⊗ id)(W12(m⊗ I ⊗ b)) : ω ∈ B(H)∗, m ∈ CB(H), b ∈ A

}closed linear
envelope

=
{
(mω ⊗ id)W ⊗ b : ω ∈ B(H)∗, m ∈ CB(H), b ∈ A

}closed linear
envelope

= A⊗ A
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In the similar way one can show that

{
(a⊗ I)∆(b) : a, b ∈ A

}closed linear
envelope

= A⊗ A.

Q.E.D.

Now the proof of Statement 3 of Theorems 1.5 is very simple: Let a ∈ A. Then for
any b, c ∈ A we have: ∆(a)(c⊗ b) = ∆(a)(I ⊗ b)(c⊗ I) ∈ A⊗A. It shows that ∆(a) is
a left multiplier of A⊗A. Replacing a by a∗ we see that ∆(a) is a right multiplier and
∆(a) ∈M(A⊗ A). Clearly the mapping

A 3 a −→ ∆(a) ∈M(A⊗ A)

is a ∗-algebra homomorphism. By virtue of Proposition 5.1 this homomorphism is non-
degenerate: ∆(A)(A⊗A) is linearly dense in A⊗A. It means, that ∆ ∈ Mor(A,A⊗A).

Let a ∈ A. It follows immediately from the definition (5.1), that

(∆⊗ id)∆(a) = W12W13(a⊗ I ⊗ I)W ∗
13W

∗
12,

(id⊗∆)∆(a) = W23W12(a⊗ I ⊗ I)W ∗
12W

∗
23.

Obviously W23 commutes with a⊗ I ⊗ I, so the pentagonal equation (1.2) shows that
the right hand sides of the above relations coincide and the coassociativity of ∆ follows.

Formula (1.11) follows immediately from definition (5.1) and pentagonal relation
(1.2):

(id⊗∆)W = W23W12W
∗
23 = W12W13.

In the same way, using (1.5) we prove Statement 3 of Theorem 1.6:

(id⊗∆)V = W23V12W
∗
23 = V12V13.

To prove Theorem 1.7 it is sufficient to write the above equalities in another order:

W23V12W
∗
23 = (id⊗∆)V = V12V13.

6 Scaling group

In this Section we introduce the scaling group (τt)t∈R appearing in Statement 4 of
Theorem 1.5.

Proposition 6.1 With the notation introduced in Section 1, we have:
1. There exists one parameter group (τt)t∈R of automorphisms of A such that

τt(a) = Q2itaQ−2it (6.1)

for any a ∈ A and t ∈ R. The group is pointwise continuous: ‖τt(a) − a‖ → 0 when
t→ 0.
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2. Let τi/2 be the analytic generator of (τt)t∈R. Then for any ω ∈ B(H)∗:

(ω ⊗ id)W ∈ D(τi/2)

and

τi/2

(
(ω ⊗ id)W

)
= (ω> ⊗ id)W̃ , (6.2)

where ω> ∈ B(H)∗ is related to ω by the formula: ω>(m>) = ω(m) for any m ∈ B(H).

3. A = {(ω ⊗ id)W : ω ∈ B(H)∗} is a core of τi/2.

Remark: In particular Statement 2 shows that (ω> ⊗ id)W̃ ∈ A for any ω> ∈ B(H)∗.

Proof:
Ad. 1. Let ω ∈ B(H)∗ and t ∈ R. By virtue of (1.3)

Q2it
(
(ω ⊗ id)W

)
Q−2it = (ωt ⊗ id)W, (6.3)

where ωt is a normal functional on B(H) introduced by the formula

ωt(m) = ω
(
Q−2itmQ2it

)
(6.4)

for any m ∈ B(H). The reader should notice that ‖ωt − ω‖B(H)∗ → 0, when t→ 0.

Formula (6.3) shows that for any a ∈ A, τt(a) introduced by (6.1) belongs to A and
that τt(a) is a continuous (in the sense of the norm topology) function of t. Clearly
(τt)t∈R is a one-parameter automorphism group of A.

Ad. 2. Analytic generators are closed operators. Therefore it is sufficient to prove
the statement for ω running over a linearly dense subset of B(H)∗. In particular we
may assume that ω(m) = (x|mz), where x ∈ D(Q) and z ∈ D(Q−1) are fixed vectors
(m ∈ B(H)).

For any t ∈ C such that =t ∈ [0, 1/2] and any m ∈ B(H) we set

ωt(m) =
(
Q2itx mQ2itz

)
(6.5)

Then the mapping t 7→ ωt ∈ B(H)∗ is continuous on the strip {z ∈ C : =z ∈ [0, 1/2]}
and holomorphic in the interior of this strip. For real t (6.5) coincides with (6.4).
Moreover

ωi/2(m) = (Qx|mQ−1z).

It shows that (ω ⊗ id)W ∈ D(τi/2) and

τi/2

(
(ω ⊗ id)W

)
= (ωi/2 ⊗ id)W.

Let u, y ∈ H. Then(
u|τi/2 ((ω ⊗ id)W ) |y

)
= (u|(ωi/2 ⊗ id)W |y) = (Qx⊗ u|W |Q−1z ⊗ y).
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Inserting in (1.7) Qx and Q−1z instead of x and z respectively we get:

(Qx⊗ u|W |Q−1z ⊗ y) = (z ⊗ u|W̃ |x⊗ y) =
(
u

(
ω> ⊗ id

)
W̃ y

)
.

Combining the last two relations we obtain (6.2).

Ad. 3. We shall use a regularization operator. Let n be a natural number. For
any a ∈ A we set

Rn(a) =
n√
π

∫
R
e−n2t2τt/2(a)dt.

We know that τt(a) depends continuously on t. Therefore ‖Rn(a) − a‖ → 0, when
n → ∞. Taking into account (6.3) one can easily show, that RnA ⊂ A. One should
notice that ‖Rn(a)‖ ≤ ‖a‖. Moreover Rn(a) ∈ D(τi/2) and ‖τi/2(Rn(a))‖ ≤ en2‖a‖.
Indeed τi/2Rn = n√

π

∫
exp[−n2(t − i)2]τt/2dt, ‖τi/2Rn‖ ≤ n√

π

∫
| exp[−n2(t − i)2]|dt and

the estimate follows.

Let a ∈ D(τi/2), b = τi/2(a) and ε > 0. Then for sufficiently large n we have

‖Rn(a)− a‖ ≤ ε

2
, ‖Rn(b)− b‖ ≤ ε

2
.

Clearly τi/2Rn(a) = Rn(b). We know that A is dense in A. Let aε be an element of A
such that

‖aε − a‖ ≤ ε

2
e−n2

.

Then Rn(aε) ∈ A and using the above estimates we have

‖Rn(aε)− a‖ ≤ ‖Rn(aε − a)‖+ ‖Rn(a)− a‖ ≤ ε

2
(e−n2

+ 1) ≤ ε,

‖τi/2(Rn(aε))− b‖ ≤ ‖τi/2Rn(aε − a)‖+ ‖Rn(b)− b‖ ≤ ε.

It shows that the closure of τi/2|A coincides with τi/2 and the statement follows.
Q.E.D.

7 Unitary coinverse

Let K be a separable Hilbert space and V ∈ B(K ⊗ H) be a unitary adapted to W .
For any ϕ ∈ B(K)∗ we denote by ϕ ∈ B(K)∗ (ϕ> ∈ B(K)∗ respectively) the hermitian
conjugate (the transposed respectively) functional:

ϕ(m) = ϕ(m∗)

ϕ>(m>) = ϕ(m)

for any m ∈ B(K). Let x, y ∈ D(Q−1), u, z ∈ D(Q) and ϕ ∈ B(K)∗. We shall use the
notation introduced in Proposition 3.4. According to (3.7) and (3.6) we have:

ϕ
(
(id⊗ µ)V (id⊗ ν)(V ∗)

)
= ϕ

(
(id⊗ ω)(V ∗)

)
= ω

(
(ϕ⊗ id)(V ∗)

)
=

(
z ⊗Qu W̃ ([(ϕ⊗ id)(V ∗)]> ⊗ I)W̃ ∗ x⊗Q−1y

)
.
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Exchanging on the left hand side x with y and u with z (this operation changes µ into
ν and ν into µ) and replacing ϕ by ϕ we obtain a number complex conjugate to the
original one. Therefore(

z ⊗Qu W̃ ([(ϕ⊗ id)(V ∗)]> ⊗ I)W̃ ∗ x⊗Q−1y
)

=
(
u⊗Qz W̃ ([(ϕ⊗ id)V ]∗> ⊗ I)W̃ ∗ y ⊗Q−1x

)
=

(
y ⊗Q−1x W̃ ([(ϕ⊗ id)V ]> ⊗ I)W̃ ∗ u⊗Qz

)
.

(7.1)

Let RHS denotes the right hand side of (7.1). Taking into account (1.6) we have:

RHS =
(
y ⊗Q−1x W̃ ([(ϕ⊗ id)V ]> ⊗ I)W̃ ∗

({
Q>

}−1
⊗Q

)
Qu⊗ z

)
=

(
y ⊗Q−1x W̃ ([(ϕ⊗ id)V ]> ⊗ I)

({
Q>

}−1
⊗Q

)
W̃ ∗ Qu⊗ z

)
Using (1.16) one can easily show, that[

(ϕ> ⊗ id)Ṽ
]
Q−1 ⊂ Q−1

[
(ϕ⊗ id)V

]
. (7.2)

Therefore (passing to transposed operators inverts the inclusion){
Q>

}−1[
(ϕ> ⊗ id)Ṽ

]>
⊃

[
(ϕ⊗ id)V

]>{
Q>

}−1
,({

Q>
}−1

⊗Q
) ([

(ϕ> ⊗ id)Ṽ
]>
⊗ I

)
⊃

([
(ϕ⊗ id)V

]>
⊗ I

) ({
Q>

}−1
⊗Q

)
and

RHS =
(
y ⊗Q−1x W̃

({
Q>

}−1
⊗Q

) ([
(ϕ> ⊗ id)Ṽ

]>
⊗ I

)
W̃ ∗ Qu⊗ z

)
.

Using once more (1.6) we get

RHS =
(
y ⊗Q−1x

({
Q>

}−1
⊗Q

)
W̃

([
(ϕ> ⊗ id)Ṽ

]>
⊗ I

)
W̃ ∗ Qu⊗ z

)
=

(
Q−1y ⊗ x W̃

([
(ϕ> ⊗ id)Ṽ

]>
⊗ I

)
W̃ ∗ Qu⊗ z

)
.

Formula (7.1) takes now the following form:(
z ⊗Qu W̃

([
(ϕ⊗ id)(V ∗)

]>
⊗ I

)
W̃ ∗ x⊗Q−1y

)
=

(
Q−1y ⊗ x W̃

([
(ϕ> ⊗ id)Ṽ

]>
⊗ I

)
W̃ ∗ Qu⊗ z

)
and using the antiunitary operator (3.2) we get(

JΦ W̃
([

(ϕ⊗ id)(V ∗)
]>
⊗ I

)
W̃ ∗ JΨ

)
=

(
Ψ W̃

([
(ϕ> ⊗ id)Ṽ

]>
⊗ I

)
W̃ ∗ Φ

)
,
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where Φ = Qu ⊗ z and Ψ = Q−1y ⊗ x run over a linearly dense subsets of H ⊗ H.
Therefore the above formula holds for all Φ,Ψ ∈ H ⊗ H. Remembering that J is an
antiunitary involution we get

JW̃
([

(ϕ⊗ id)(V ∗)
]>
⊗ I

)∗
W̃ ∗J = W̃

([
(ϕ> ⊗ id)Ṽ

]>
⊗ I

)
W̃ ∗.

One can easily verify that J(a> ⊗ I)J = I ⊗ a∗ for any a ∈ B(H). Therefore

JW̃J
(
I ⊗

[
(ϕ⊗ id)(V ∗)

])
JW̃ ∗J = W̃J

(
I ⊗

[
(ϕ> ⊗ id)Ṽ

]∗)
JW̃ ∗

and finally

J̃
(
I ⊗

[
(ϕ⊗ id)(V ∗)

])
J̃ = I ⊗

[
(ϕ> ⊗ id)Ṽ

]∗
, (7.3)

where J̃ is an antiunitary involution acting on H ⊗H introduced by

J̃ = JW̃ ∗JW̃J. (7.4)

Assume for the moment that K = H and V = W . In this special case (7.3) takes
the form

J̃
(
I ⊗

[
(ω ⊗ id)(W ∗)

])
J̃ = I ⊗

[
(ω> ⊗ id)W̃

]∗
, (7.5)

where ω ∈ B(H)∗ and ω> ∈ B(H)∗ is related to ω by the formula: ω>(a>) = ω(a) for all
a ∈ B(H). We already know (cf Remark following Proposition 6.1) that (ω>⊗ id)W̃ ∈
A. Remembering (cf (1.9)) that (ω ⊗ id)(W ∗) runs over a dense subset of A we obtain
Statement 1 of the following Proposition:

Proposition 7.1
1. For any a ∈ A there exists aR ∈ A such that

J̃(I ⊗ a)J̃ = I ⊗
[
aR

]∗
. (7.6)

2. The mapping
A 3 a 7−→ aR ∈ A (7.7)

is an involutive antiautomorphism acting on the C∗-algebra A.

3. R commutes with the action of the scaling group (τt)t∈R.

Proof: Statement 1 is already proven.

Ad 2. It follows immediately from (7.6), that the correspondence a 7→
[
aR

]∗
is

antilinear, multiplicative isometric and ultraweakly continuous. Consequently (7.7) is
linear, antimultiplicative isometric and normal. Applying the hermitian conjugation
to the both sides of (7.6) and comparing the result with the original formula we get
a∗R∗ = aR. It shows that (7.7) commutes with the hermitian conjugation. On the other
hand the antiunitary (7.4) is involutive. Therefore aR∗R∗ = a and aRR = a for all a ∈ A.
So (7.7) is involutive and consequently its range coincides with A.
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Ad 3. Using (1.6) one can easily show that antiunitary (7.4) anticommutes with

Q> ⊗ Q−1: J̃
(
Q> ⊗Q−1

)
J̃ =

(
Q> ⊗Q−1

)−1
. Therefore for any real t we have

J̃
(
Q> ⊗Q−1

)it
J̃ =

(
Q> ⊗Q−1

)it
and the Statement follows.

Q.E.D.

Let ω ∈ B(H)∗. Formula (7.5) shows that [(ω ⊗ id)W ∗]R =
(
ω> ⊗ id

)
W̃ . Therefore

(ω ⊗ id)W ∗ =
[(
ω> ⊗ id

)
W̃

]R
. (7.8)

One can easily see that this formula is equivalent to (1.14).

To complete the proof of Theorem 1.5 we have to demonstrate Statement 4. To this
end we use the polar decomposition (1.13) as definition of κ: for any a ∈ D(τi/2) we set

κ(a) = τi/2(a)
R

Then (cf Proposition 6.1.3) {(ω ⊗ id)W : ω ∈ B(H)∗} is a core of κ and (1.12) holds.
Indeed, using (6.2) and (7.8), we get:

κ
(
(ω ⊗ id)W

)
=

[(
ω> ⊗ id

)
W̃

]R
= (ω ⊗ id)W ∗.

The algebraic properties of κ described in Statement 4 follows immediately from the
polar decomposition (1.13). Theorem 1.5 is proved.

In the similar way we can complete the proof of Theorem 1.6. By the general theory,
the action of R and τi/2 admits canonical extension to M(A). Let ϕ ∈ B(K)∗. Formula
(7.3) shows that

[(ϕ⊗ id)V ∗]R =
(
ϕ> ⊗ id

)
Ṽ .

and Statement 5 follows. Moreover the above equality proves that
(
ϕ> ⊗ id

)
Ṽ ∈M(A).

The relation (7.2) shows now, that (ϕ⊗ id)V ∈ D(τi/2) and

τi/2

(
(ϕ⊗ id)V

)
= (ϕ> ⊗ id)Ṽ .

Combining the last two formulae we obtain Statement 4. Theorem 1.6 is proved.
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