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Idea

• heavy ion collisions @ RHIC - strongly coupled quark-gluon
plasma ( QGP )

• fully dynamical process - need for a new tool

• idea: exchange

QCD in favor of N = 4 SYM

and use the gravity dual

• there are differences

- SUSY
- conformal symmetry at the quantum level
- no confinement...

• ... but not very important at high temperature



Motivation

• RHIC suggests that QGP behaves as an almost perfect fluid

• there has been an enormous progress in understanding

QGP hydrodynamics with the AdS/CFT

• can the AdS/CFT be used to shed light on

far from equilibrium part of the QGP dynamics?

• maybe, but only at λ� 1!

• let’s focus on

the boost-invariant flow

and use the AdS/CFT to learn about

some near and far from equilibrium physics !



Boost-invariant dynamics

• one-dimensional expansion along the collision axis x1

• natural coordinates

- proper time τ and rapidity y

- x0 = τ cosh y , x1 = τ sinh y

• boost invariance (no rapidity dependence)



AdS/CFT correspondence

Gauge-gravity duality is an equivalence between

N = 4 Supersymmetric
Yang-Mills in R1,3

Superstrings in curved
AdS5×S5 10D spacetime

- strong coupling - (super)gravity regime

- non-perturbative results - classical behavior

- gauge theory operators - supergravity fields

AdS/CFT dictionary relates
energy-momentum tensor of N = 4 SYM to 5D AdS metric



Gravity dual to the boost-invariant flow

• the energy-momentum tensor is specified by ε (τ)

Tµν = diag
{
ε (τ) ,− 1

τ2
ε (τ)− 1

τ
ε′ (τ) , ε (τ) +

1

2
τε′ (τ)⊥

}
• this suggests the metric Ansatz for the gravity dual

ds2 =
−ea(τ,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2

⊥ + dz2

z2

• Einstein equations

GAB = RAB −
1

2
R · gAB − 6 gAB = 0

cannot be solved exactly (→ numerics)

• however there are two regimes

τ � 1 or τ ≈ 0

where analytic calculations can be done



τ � 1 regime – hydrodynamics



Holographic reconstruction of space-time from ε (τ) ∼ 1
τ s

• Einstein eqns GAB can be solved order by order in z2 , e.g.

a (τ, z) = 0 + 0 · z2 + a4 (τ) · z4 + a6 (τ) · z6 + . . .

where a4 (τ) = −ε (τ), a6 (τ) = − 1
4τ ε
′(τ)− 1

12ε
′′(τ), . . .

• assuming ε (τ) ∼ 1
τ s and choosing in each a2k (τ) the leading

contribution one ends up with a (τ, z) = ascaling

(
z · τ−s/4

)
, etc

• this reduces GAB to solvable set of ODEs and then requiring

regularity of RABCDRABCD evaluated on a, b, cscaling

fixes s to be 4
3 leading to ε (τ) ∼ 1

τ4/3

• ε (τ) ∼ 1
τ4/3 turns out to be the solution of hydrodynamics



Hydrodynamics from ground up

Basics

• long-wavelength effective theory

• vast reduction of # degrees of freedom

- velocity uµ (x) constrained by uµ uµ = −1

- temperature T (x)

• slow changes → gradient expansion

• expansion parameter 1
L·T

(T is temperature, L is characteristic length-scale)

Gradient expansion

• definition of the energy-momentum tensor

Tµν = ε·uµuν+p·∆µν−η·
(

∆µλ∇λuν + ∆νλ∇λuµ −
2

3
∆µν∇λuλ

)
+. . .

• EOMs ∇µTµν = 0 + equation of state (e.g. ε = 3p)



Hydrodynamics and ε (τ)

Perfect hydrodynamics
• in conformal boost invariant hydrodynamics

ε (τ) ∼ T (τ)4 , uµ = 1 · [∂τ ]µ , ηµν = diag
{
−1, τ2, 1, 1

}
• perfect hydro (∇µTµν = 0 for Tµν = ε · uµuν + p ·∆µν) gives

∂τ ε (τ) = −ε (τ) + p (τ)

τ

• which together with ε = 3p leads to ε ∼ 1
τ4/3

Gradient expansion

• remainder: in hydro the expansion parameter is 1
L·T

• in this setting T ∼ τ−1/3, L−1 ∼ ∇u = τ−1, so 1
L·T ∼

1
τ2/3

• one should expect the general structure of ε (τ) of the form

ε (τ) ∼ 1

τ4/3

{
#0 +

1

τ2/3
#1 +

1

τ4/3
#2 + . . .

}



Boost-invariant flow and gradient expansion

Reminder:

ds2 =
−ea(τ,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2

⊥ + dz2

z2

Gravitational gradient expansion:

a (τ, z) = a0

( z

τ1/3

)
+

1

τ2/3
a1

( z

τ1/3

)
+

1

τ4/3
a2

( z

τ1/3

)
+ . . .

b (τ, z) = b0

( z

τ1/3

)
+

1

τ2/3
b1

( z

τ1/3

)
+

1

τ4/3
b2

( z

τ1/3

)
+ . . .

c (τ, z) = c0

( z

τ1/3

)
+

1

τ2/3
c1

( z

τ1/3

)
+

1

τ4/3
c2

( z

τ1/3

)
+ . . .

R2(τ, z) = R2
0(

z

τ1/3
) +

1

τ2/3
R2

1(
z

τ1/3
) +

1

τ4/3
R2

2(
z

τ1/3
) + . . .

This is AdS counterpart of hydrodynamics

ε(τ) =

(
N2

c

2π2

)
1

τ4/3

{
1−2η0

1

τ2/3
+
[3

2
η2

0−
2

3
(η0τ

0
Π−λ0

1)
] 1

τ4/3
+· · ·

}



Further developments and why AdS/CFT is useful

Further developents

• corrections to the transport coefficients from finite λ and Nc

”S = 1
2l3

p

∫
detg

{
R+ 12

L2 + γ · L2 Weyl2 + δ · L6 Weyl4
}

”

• apparent, event horizons and slow evolution

Why useful?

• transport properties at strong coupling

• inspired the correct formulation of second order hydro

• implications in GR as well ( fluid/gravity correspondence )



τ ≈ 0 regime – dynamics far from equilibrium



Initial conditions and early times expansion of ε (τ)

• warp factors can be solved near the boundary given ε (τ)

a (τ, z) = −ε(τ) · z4 +

{
−ε
′(τ)

4τ
− ε′′(τ)

12

}
· z6 + . . .

• for ε (τ) = ε0 + ε1τ + ε2τ
2 + ε3τ

3 + ε4τ
4 + ε5τ

5 + . . .

all ε2k+1 must vanish , otherwise a (0, z)→∞
• setting τ to zero in a (τ, z) for

ε (τ) = ε0 + ε2τ
2 + ε4τ

4 + . . .

gives

a (0, z) = a0 (z) = ε0 · z4 +
2

3
ε2 · z6 +

(
ε4

2
− ε2

0

6

)
· z8 + . . .

• it defines map between initial profiles in the bulk and ε (τ)



Resummation of the energy density

• energy density power series @ τ = 0

ε (τ) = ε0 + ε2τ
2 + . . .+ ε2Ncutτ

2Ncut + . . .

has a finite radius of convergence and thus

a resummation is needed

• presumably the simplest can be given by Pade approximation

εapprox (τ)3 =
ε

(0)
U + ε

(2)
U τ2 + . . .+ ε

(Ncut−2)
U τNcut−2

ε
(0)
D + ε

(2)
D τ2 + . . .+ ε

(Ncut−2)
D τNcut+2

which uses the uniqueness of the asymptotic behavior

ε ∼ 1

τ4/3



Approach to local equilibrium

• nice example of initial data in the bulk is given by

a (0, z) = b (0, z) = 2 log
{

cos π2 z2
}

and c (τ, z) = 2 log
{

cosh π
2 z2
}

leading to the following ε (τ) and ∆p (τ) = 1− p‖(τ)

p⊥(τ)



Summary

Results:

• AdS/CFT is indispensable not only near equilibrium

• Gauge/gravity duality may serve as a definition of

strongly coupled non-equilibrium gauge theory

• transport properties of various plasmas at strong coupling

• estimates of thermalization time

Open questions:

• towards colliding shock-waves

• applications of non-conformal gauge/gravity dualities


