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Introduction

The WMAP results show that the primordial density perturbations are
coherent, predominantly adiabatic and generated on superhorizon scales.

Why is the PPS PR (k) important?

It can discriminate between models of inflation.

Cosmological parameter estimation depends on the PPS (e.g. an EdeS
model can fit the WMAP data if there is a ‘bump’ in the PPS Hunt &
Sarkar 2007, 2008).

Usually the PPS is assumed to be a power-law with PR (k) ∝ kns−1.

However, inflationary models involving abnormal initial conditions (e.g.
Brandenberger and Martin 2001), interruptions to slow-roll evolution
(Starobinsky 1992, 1998) or additional dynamical degrees of freedom (e.g.
Salopek, Bond and Bardeen 1989) produce a wide variety of spectra.

Given our ignorance of the physics behind inflation a model-independent
method of estimating the PPS is essential.
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How to estimate PR (k)?

Model-independent approaches fall into two classes:

Parametric methods The number of parameters describing the PPS is
much less than the number of data points Mukherjee and Wang 2005,
Sealfon, Verde and Jimenez 2005, Leach 2006, Bridges, Lasenby and
Hobson 2006, Verde and Peiris 2008, Bridges et al. 2008

Deconvolution techniques The background cosmology is assumed to be
known Kogo, Sasaki and Yokoyama 2005, Tocchini-Valentini, Douspis
and Silk 2005, Tocchini-Valentini, Hoffman and Silk 2006, Shafieloo et al.

2007, Shafieloo and Souradeep 2007, 2009
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Deconvolution as an ill-posed problem

The data points of CMB anisotropy, galaxy clustering, Lyman α forest, cluster
abundance or weak lensing measurements can be written as

da =

Z

∞

0

Ka (k)PR (k) dk + na. (1)

We wish to estimate PR (k) from the data, assuming Ka (k) is known.

However, the convolution with Ka (k) acts as a smoothing operation.

Conversely, noise in the data is amplified in the reconstructed PR (k).

Therefore the inverse problem of recovering the PPS has no unique stable
solution and is mathematically ill-posed.

Regularisation schemes can be used to obtain approximate solutions to ill-posed
problems, usually by employing prior information.
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Tikhonov regularisation

Our strategy is to find the smoothest PPS consistent with the data.

Discretising the integral in eq.(1) produces

da =
X

i

Wai si + na, si ≡ PR (ki) .

The estimate ŝ of s is taken to be the vector which minimises

Q (s, d) = −2 lnP (d|s) + λR (s) .

The first term on the rhs enforces fidelity to the data while the second enforces
smoothness.

Following Tocchini-Valentini, Douspis and Silk 2005, Tocchini-Valentini,
Hoffman and Silk 2006 we choose

R (s) = s
t LtL s ∝

Z

„

dPR

d ln k

«2
dk

k
,

where L is a discrete approximation to the 1st-order derivative operator.
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Bayesian analysis

Tikhonov regularisation has a natural Bayesian interpretation.

Bayes’ theorem states
P (s|d) ∝ P (d|s)P (s) .

Posterior

distribution Likelihood

function

Prior

distribution

If P (s) ∝ exp [−λR (s) /2] then minimising Q (s,d) is equivalent to maximising
P (s|d), and ŝ corresponds to the mode of P (s|d).

For most data sets P (d|s) is approximately Gaussian ⇒ 〈s〉 = ŝ and the scatter
about 〈s〉 is described by the covariance matrix

ΣB ≡ 〈(s − 〈s〉) (s − 〈s〉)t〉 = H−1 (ŝ) , Hij ≡
1

2

∂2Q

∂si∂sj

.
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Frequentist analysis

Suppose that ŝ = Md.

Using d = WsT + n where sT is the true PPS this gives

ŝ = sT + (R − I) sT + Mn,

where R ≡ MW is known as the resolution matrix.

In the frequentist approach we imagine an ensemble of observers, each
measuring the data and estimating the PPS in the same way.

Then ŝ has a distribution P (ŝ|sT ) with mean 〈ŝ〉 = RsT and covariance matrix

ΣF ≡ 〈(ŝ − 〈ŝ〉) (ŝ − 〈ŝ〉)t〉 = MNMt .

The bias of ŝ is
Bias (ŝ) ≡ 〈ŝ − sT 〉 = (R − I) sT .

Regularisation reduces the variance but introduces a bias.
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Multiple data sets

Most deconvolution attempts have used the WMAP TT data alone.

By using multiple data sets we can recover PR (k) over a larger k range with
increased accuracy.

For example, if

L (s) =
X

I

(WI s − dI )
t N−1

I (WI s − dI ) ,

then the estimate of the PPS is

ŝ = ΣB

X

I

Wt
I N

−1
I dI ,

and the covariance matrices are

Σ−1
B = λLt

nLn +
X

I

Wt
I N

−1
I WI , ΣF = ΣB

 

X

I

Wt
I N

−1
I WI

!

Σt
B .
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Deconvolution without noise
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Deconvolution with noise
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Varying λ, WMAP TT data
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Adding data
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Comparison with data
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Resolution

We introduce resolution kernels R (k , k ′) as the continuous analogues of the
resolution matrix. These satisfy

〈P̂R (k)〉 =

Z

∞

0

R
`

k , k ′
´

PR

`

k
′
´

dk
′,

Z

∞

0

R
`

k , k ′
´

dk
′ = 1.

Clearly the closer R (k , k ′) is to the Dirac delta function δ (k ′ − k) the better
the resolution of the recovered PPS.
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Is the PPS different from a power-law?

ΣF , ns = 0.96

sT , ns = 0.96
〈ŝ〉, ns = 0.96

ŝ, WMAP
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We find a cut-off at 5 × 10−5 < k < 5 × 10−4 Mpc at 0.7σ cl, a dip at
0.001 < k < 0.0025 Mpc at 1.7σ cl and a peak at 0.0025 < k < 0.006 at 1.4σ
cl.

Paul Hunt Reconstruction of the Primordial Power Spectrum Using Multiple



Backus-Gilbert method

We seek coefficients qa (k) such that

P̂R (k) =
X

a

qa (k) da.

Combining this with eq.(1) gives

P̂R (k) =

Z

∞

0

X

a

qa (k)Ka

`

k
′
´

PR

`

k
′
´

dk
′.

Thus we want R (k , k ′) =
P

a
qa (k) Ka (k ′) to approximate a delta function

and so we impose
R

R (k , k ′) dk ′ = 1.

We also want to minimise the variance so we minimise

Q =

Z

∞

0

`

k
′ − k

´2
R

2
`

k , k ′
´

dk
′ + λ

X

ab

qa (k)Nabqb (k) .

‘Width’ of R (k , k ′) Variance
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Backus-Gilbert results
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Conclusions

In the future as data sets improve we will be able to treat the PPS as a
function instead of a set of parameters.

It is necessary to combine data sets to obtain the best results.

We have shown that Tikhonov regularisation and the Backus-Gilbert method
produce high resolution reconstructions of the PPS from multiple noisy data
sets.

Both methods give consistent results and have well-defined error estimates.

The recovered PPS show interesting features on large scales.

It should be possible to extend our method to isocurvature perturbations and
nonlinear data sets.

Our ultimate goal is to determine empirically the cosmological parameters and
the PPS.
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