Intersecting branes on smooth Calabi-Yau manifolds

Eran Palti (University of Oxford)

String Phenomenology 09, Warsaw

Based on arXiv:0902.3546 JHEP 0904:099,2009

Motivations

- Setting: Global models of intersecting D6 branes in IIA
- Study supersymmetric intersecting branes on non-torodial CYs
- Unexplored branch of the landscap (although see Gepner models)
- Advance connection with moduli stabilisation on CYs

Background

• Study of supersymmetric D-branes on the Fermat quintic $\psi = 0$ Brunner et al. '00

$$P = z_1^5 + z_2^5 + z_3^5 + z_4^5 + z_5^5 + \psi z_1 z_2 z_3 z_4 z_5 = 0 \qquad z_i \in CP^4$$

→ Intersection matrix of a set of 625 special Lagrangian submanifolds

• Search for appropriate intersections to give (non-susy) SM \checkmark

Blumenhagen et al. '02

- No supersymmetric chiral models (stability?)
- What about other manifolds?

Hypersurfaces in weighted projective spaces

• Simple class of CY manifolds are given by hypersurfaces (or intersections of) in (possibly weighted) projective spaces

 $CP_{[5,2,1,1,1]}^4$ $P = z_1^2 + z_2^5 + z_3^{10} + z_4^{10} + z_5^{10} + \psi z_1 z_2 z_3 z_4 z_5 = 0$

- There are 7890 CICYs and 7555 hypersurfaces in weighted projective spaces.
- Require smooth and concentrate on weighted projective spaces

 $CP^4_{[5,2,1,1,1]} = CP^4_{[4,1,1,1,1]} = CP^4_{[2,1,1,1,1]}$

• Depending on moduli there are large discrete symmetry groups associated to rotations of the co-ordinates.

$$CP_{[5,2,1,1,1]}^4 \qquad \frac{\mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_{10} \times \mathbb{Z}_{10} \times \mathbb{Z}_{10}}{\mathbb{Z}_{10} \times \mathbb{Z}_{10}}$$

Special Lagrangians from involutions

 \bullet Special Lagrangian submanifold $\,\Pi\,\,$ is defined by

$$\operatorname{Im}\left(e^{i\frac{\theta_{\Pi}}{2}}\Omega\right)\Big|_{\Pi} = 0 , \quad J|_{\Pi} = 0 , \quad \epsilon_{\Pi} = \operatorname{Re}\left(e^{i\frac{\theta_{\Pi}}{2}}\Omega\right)\Big|_{\Pi}.$$

• Isometric anti-holomorphic involution

$$\sigma\left(J\right)=-J\;,\;\;\sigma\left(\Omega\right)=\overline{\left(e^{i\theta}\Omega\right)}$$

Concentrate on type:

$$\sigma(z_i) = \overline{(\omega_i z_i)} \qquad P_A(\omega_i z_i) = P_A(z_i)$$

• Fixed point locus is a special Lagrangian manifold

$$P_A(\operatorname{Re}\left(\omega_i^{\frac{1}{2}}z_i\right)) = 0 \qquad \operatorname{Im}\left(\omega_i^{\frac{1}{2}}z_i\right) = 0$$

• Supersymmetry given by calibration angles

$$e^{i\theta_{\sigma}} = \prod_{i} \omega_{i}$$

Special Lagrangians from involutions

 So a special Lagrangian is specified by a set of rotation angles and an orientation

$$\Pi = \{\omega_i\}_p$$

• Actually (like orbifolds) need to sum over related angles

$$CP_{[w_i]}^n = \frac{CP^n}{\prod_i \mathbb{Z}_{w_i}} \,. \qquad \qquad \Pi^{P_{j_p}} = \sum_{k_{j_p}} \left\{ \left(\alpha_{j_p} \right)^{k_{j_p} w_i} \omega_i \right\}_{p(k_{j_p})}$$

• Here the superscript P_{jp} denotes a local patch given by setting z_{jp} to one and α denotes the w_{jp} root of unity.

Intersection numbers

- The special Lagrangian cycles can intersect at points or surfaces.
- Only point intersections can be supersymmetric.
- Point intersections are simply calculated by the number of point solutions to the two defining equations.
- Must sum over the patches on the manifold can give multiple intersections.
- Rank of intersection matrix gives the homology span

Ambient Space	Defining Polynomial	SLAG	SUSY	b^3	Rank
$CP^4_{[1,1,1,1,1]}$	$P = \eta_1^0 z_1^5 + \eta_2^0 z_2^5 + \eta_3^0 z_3^5 + \eta_4^0 z_4^5 + \eta_5^0 z_5^5 = 0$	625	125	204	204
$CP^{4}_{[2,1,1,1,1]}$	$P = \eta_1^0 z_1^3 + \eta_2^0 z_2^6 + \eta_3^0 z_3^6 + \eta_4^0 z_4^6 + \eta_5^0 z_5^6 = 0$	648	108	208	54
$CP^4_{[4,1,1,1,1]}$	$P = \eta_1^0 z_1^2 + \eta_2^0 z_2^8 + \eta_3^0 z_3^8 + \eta_4^0 z_4^8 + \eta_5^0 z_5^8 = 0$	960	120	300	82
$CP^{4}_{[5,2,1,1,1]}$	$P = \eta_1^0 z_1^2 + \eta_2^0 z_2^5 + \eta_3^0 z_3^{10} + \eta_4^0 z_4^{10} + \eta_5^0 z_5^{10} = 0$	1000	100	292	100

Intersecting Branes

- Wrap orientifold on a chosen special Lagrangian.
- Supersymmetry requires brane cycles share calibration.
- Tadpole constraint reads

$$\sum_{a} N_a \left(\Pi_a + \Pi_{a'} \right) - 4 \Pi_{O6} = 0 \,.$$

• Since only know intersection numbers can rewrite as

$$\sum_{a} N_a \left(I_{ab} + I_{a'b} \right) - 4I_{O6,b} = 0 \quad \forall \ b$$

• The two are equivalent if we intersect with a set that spans the full homology of the manifold.

• Otherwise can require the weaker condition of intersecting with only visible gauge group branes: anomaly cancellation and no new exotics but need global completion.

• Chiral spectrum given as usual by the intersection numbers $I_{ab} = (n_a, \bar{n}_b)$

Model Building

• Computer model search on weighted projective spaces and a selection of CICYs.

• No GUT models: could not find three copies of the anti-symmetric representation of SU(5).

•	Pati-Salam	model	on	$CP^4_{[5,2,1,1,1]}$
---	------------	-------	----	----------------------

$$\Pi_{a} = \{0, 0, 0, 3, 7\}_{-}, \quad \Pi_{a'} = \{0, 0, 0, 7, 3\}_{-}$$
$$\Pi_{b} = \{0, 0, 7, 2, 1\}_{-}, \quad \Pi_{b'} = \{0, 0, 3, 8, 9\}_{+}$$
$$\Pi_{c} = \{0, 0, 3, 9, 8\}_{+}, \quad \Pi_{c'} = \{0, 0, 7, 1, 2\}_{-}$$

	Π_a	Π_b	Π_c	$\Pi_{a'}$	$\Pi_{b'}$	$\Pi_{c'}$	Π_0
Π_a	0	-1	1	0	-2	2	0
Π_b		0	1		3	0	1
Π_c			0			-3	-1

Field	Multiplicity	Representation
Q_{L}	3	(4, 2, 1)
Q_{R}	3	$(\bar{4},1,2)$
h	1	(1, 2, 2)
H_+	1	$(\bar{4}, 1, 2)$
H_{-}	1	(4, 1, 2)
B_1	1	$[S]_{SU(2)}$
B_2	2	$[A]_{SU(2)}$
C_1	1	$[\mathbf{S}]_{SU(2)}$
C_2	2	$[A]_{SU(2)}$

Model Building

• MSSM-like model on ${\it CP}^4_{[5,2,1,1,1]}$

$$\begin{split} \Pi_{a} &= \{0, 0, 0, 3, 7\}_{-}, \quad \Pi_{a'} = \{0, 0, 0, 7, 3\}_{-}, \\ \Pi_{b} &= \{0, 0, 3, 8, 9\}_{+}, \quad \Pi_{b'} = \{0, 0, 7, 2, 1\}_{-}, \\ \Pi_{c} &= \{0, 0, 3, 0, 7\}_{-}, \quad \Pi_{c'} = \{0, 0, 7, 0, 3\}_{-}, \\ \Pi_{d} &= \{0, 0, 4, 1, 5\}_{-}, \quad \Pi_{d'} = \{0, 0, 6, 9, 5\}_{+}, \\ \Pi_{e} &= \{0, 0, 7, 8, 5\}_{-}, \quad \Pi_{e'} = \{0, 0, 3, 2, 5\}_{+}, \\ \Pi_{f} &= \{0, 0, 2, 6, 2\}_{-}, \quad \Pi_{f'} = \{0, 0, 8, 4, 8\}_{+}, \\ \Pi_{g} &= \{0, 0, 3, 4, 3\}_{-}, \quad \Pi_{g'} = \{0, 0, 7, 6, 7\}_{+}. \end{split}$$

Field	Multiplicity	Representation
Q	3	$(3,2)_{\frac{1}{6}}$
U	3	$(\bar{3},1)_{-\frac{2}{3}}$
D	3	$(\bar{3},1)_{\frac{1}{2}}^{3}$
\mathbf{L}	3	$(1,2)_{-\frac{1}{2}}^{3}$
\mathbf{E}	3	$(1,1)_{1}^{2}$
Ν	3	$(1,1)_{0}$
H_{u}	1	$(1,2)_{\frac{1}{2}}$
H_{d}	1	$(1,2)_{-\frac{1}{2}}^{2}$
H_1	1	$(1,2)_{\frac{1}{2}}$
H_2	1	$(1,2)_{-\frac{1}{2}}^{2}$
B_1	1	$(\bar{3},1)_{-\frac{2}{3}}$
B_2	1	$(\bar{3},1)_{\frac{2}{3}}$
B_3	1	$(\bar{3},1)_{-\frac{1}{2}}$
B_4	1	$(3,1)_{\frac{1}{2}}$
C_1	4	$(1,2)_{0}^{2}$
D_1	6	$(1,1)_{\frac{1}{2}}$
D_2	7	$(1,1)_{-\frac{1}{2}}^{2}$
E_1	1	$[\mathbf{S}]_{SU(2)}$
\mathbf{F}_1	3	$(1,1)_X$
F_2	3	$(1,1)_X$

Summary

- Studied intersecting D6 branes on smooth non-torodial CYs
- Found supersymmetric chiral (semi-realistic) models.

• In the cases studied the set of special Lagrangians did not span the full homology of the manifold implying the models are incomplete.

• Can enlarge the special Lagrangian set by studying fixed points of anti-holomorphic permutations.

• Can study singular hypersurfaces that are blown up to CYs. This would greatly increase the possible models.

• Models rely on locus in moduli space – need to study interaction with moduli stabilisation.

Intersecting Branes: U(1)s

 \bullet To determine if a U(1) remains massless need to span the full homology

$$U(1) = \sum_{a} Q_a U(1)_a , \quad \text{massless if} \quad \sum_{a} N_a Q_a \left(\Pi_a - \Pi_{a'} \right) = 0 .$$

• Can also consider the weaker condition

$$\sum_{a} N_a Q_a \left(I_{ab} - I_{a'b} \right) = 0 , \quad \forall \ b$$

This would imply that if we could add a brane to make the U(1) massless it would not give rise to new chiral charged exotics.