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Introduction

'Two main different paths to heterotic string phenomenology

Orbifold
compactifications

My task:
—>

Reconciliate

them!

Smooth manifold
compactifications

Reproduce the orbifold models in a SUGRA

language, i.€. as

- compactifications of 10d SUGRA/SYM
- on smooth manifolds (blown-up orbifolds)
- in the presence of gauge fluxes.

See also Stefan’s talk tomorrow




Outline

1) Getting the smooth CY space
1.1) Resolution ot orbifold singularities using toric geometry
- Local resolution of orbifold singularities

- Gluing the resolved singularities
1.2) The T®/Z¢11 case (a source of MSSM?s)

2) 10d SUGRA on the smooth CY space
2.1) Consistency conditions (flux quantization, SYM e.o.m, ... )
2.2) Matching the orbifold models

3) Matching in the T°®/Zs.11 case:
the fate of the hypercharge

4) Conclusions and outlook




1 - Getting the smooth CY space:
orbifold resolutions



1.1 Resolution: the spirit

Ia - Given the orbifold m

Ib - Cut apart each singularity and resolve it:

characterize the local geometric structure “hidden” in
the singularity (localized (1,1)-cycles)

Ic - Glue together the resolved singularities:

characterize the tolpology ot the whole CY space
(non-localized cycles)

Get a smooth compact CY space
(having the original orbifold as singular limit)




Resolution of local C» / /i singularities see e.g. Fulton’s book

- Before resolution, the space has n divisors Dj,

- 'The resolution is obtained by providing
- r new “‘exceptional” divisors, E;:
- with n linear relations: Dj ~ aj Ei.

- and giving all the intersection numbers.

Gluing together the singularities into T%*/Z,,
Lust, Retfert, Scheidegger, Stieberger

- For ach resolved singularity:
a set {Dj, Ei} with D; ~ aj E; and local intersection #.
- Gluing:
-“put together” the divisors in a single set
- extend the linear equivalences to include all the objects
- compute the intersections among the various divisors.

- Caveats:
- T?1 is topologically different than C®
- extra “inherited” divisors R;.
- Divisors may be “shared” between ditferent singularities.



1.2 - The T6/26 II CASC

- T6 ="T2 X T? X T2 complex coordinates z1, z2, z3.
- Zsm has 1 X 3 X 4 C3/Zs singularities,

- but there are also C?/ Z; and C2/ Z; smgulantles to bezesolved
N
o ‘/\ ® . ® \

Resolve all the singularities and glue them together.



- C%/Z3 singularities: 2 exceptional divisors

D 5 5 D>
Ea4 Eo»
- C%/Z; singularities: 1 exceptional divisor
D 5 D3
Es3
- C?/Z¢ singularities: 4 exceptional divisor
Do 5 different possible triangulations (resolutions)

ENIY

otven that there are 12 such singularities, each
with 5 options, we have “many” ways of

resolving the T®/Ze.11 orbifold.




Counting the E’s:
E1 -localized in the 12 Zs singularities, one each: 12

E3; - “shared” in the second torus: 4 from the Zg singularities
+ 3/3 X 4 = 4 from the Z; singularities not “inside” Zg

E2/4 - “shared” in the third torus: 3 from the Z¢ singularities
+ 2/2 X 3 = 3 from the Z3 singularities not “inside” Zg

Counting the (1,1) forms: 32 E’s + 3 R’s = 35

What about the (1,2) forms?

These can be reconstructed from the “untwisted” 1-form dz;

and the non-orbifold-invariant exceptional divisors E; (1 = 2, 3, 4):
we have exactly 10 of them (+ an extra “untwisted” 3 form): 11

Complete reconstruction of the Hodge diamond
Including the intersection number - but this depends on the
triangulations we choose!



Summary:
Divisors: Ry, Ro, Rs; D11, D12, D13, D2g, D3y
Ei1gy , Ez/418 , Eo/a3p, B3y, E32y

3 4 3 4
Linear equivalences: R, ~ 6011+ > Eigy + > (@Foig+4Ei15) +3Y Esiy
f=1v=1 p=1 =1
4 3
Ry ~ 2D+ Z E392~ , Ry ~ 3Dy3+ Z (B2 +2E4133) ,
y=1 B=1

4
Ry ~ 3D25+ Y BEig,+ ) (2Bsap+ Euap) |

v=1 a=1,3
3
R3 ~ 2D3,7+ZE1,BV+ Z EB,afya
. . . =1 a=1,2
Triple intersection numbers:
- triangulation independent
RiRsR3 = 6 . RyE3,, = —2, ReE}, = —6, RyE} ;= -2,
R3E3 45 = —4, R3E; 5 = —2, R3E; 45 = —4, R3F218E415 = 1

R3E2735E4735 = 2.
- triangulation dependent (here one specific choice)
Efg, =6, Eyig =8, Efy, =8, Eiig =8,
EvopBy 5 = =2, Bip B3, = =2, BEigyBlig = =2, EigyBripFiig =1
E%,l BE4’1ﬁ —_— 2 .



Summary:

Hodge diamond 1
0 0
0 35 0
1 11 11 1
0 35 0
0 0
1

Characteristic classes
10 32

o(X) = []]]a+D)H1+E)1-R)(1 - Ry)(1— Rs)”
J=1r=1
- first Chern class: ....... 0
- integrated second Chern class:
X)Eljﬁfy = 0, CQ(X)EQ 183 = — 4, C2(X)E3 1y — — 1. 02(X)E4,15
X)Ey33 = 0, c2(X)E32, = 0, c2(X)Ey38 = 0,
X)Rl == O, CQ(X)RQ = 24, CQ(X)Rg = 24 .

_47



2 - 10d SUGRA on the resolved space



2.1 - Consistency conditions
1) Flux quantization: / Fez
Y

2) Equations of motion/SUSY:
- F'must be a (1,1)-form, fulfilling the DUY condition

/J/\J/\F — 0 (6d case), /J/\F — 0 (4d case)

3) The Bianchi Identity for H must be fulfilled
dH ~ FAF — RAR implies /F/\F ~ RAR =0
Y

In the language of divisors:

- " can be written as ' = E; Vst H!
- E; the localized (1,1)-forms (flux invisible in blow-down)
- H! elements in the Cartan algebra of SO(32) or Eg X Eg

- Quantization: Vi#! must be integers (half-integers)



- E.o.m.: conditions on the Kaehler moduli:
J=YnX = /J/\J/\F — Py(7), /J/\F — Py(7)

quadratic (linear) polinomial equation in the moduli
(+ loop corrections, see e.g. Blumenhagen et al. ‘05)

- Bianchi Identity: use the splitting principle and the F definition
RANR ~ H(1+X)\qo, F = EVE'H!
we can write
LUM F—RAR) =Y, (BEEVE-VE) = Y, [[(1L+X)jq0. = Q2(Vi) = 0

a quadratic polinomial equatiorzl in the V’s (for each cycle)

Spectrum: from the Dirac index (reduction of the 10d anomaly
polynomial): all the states from the adjoint of SO(32)
or EgX Eg



2.2 - Matching the orbifolds

Local Informations:

- on the orbifold side there are non-trivial identifications “going
“round” the singularity, dictated by the embedding of
the orbifold action in the gauge degrees of freedom
o T eZm’HI Vi/n T e—ZniHI Vi/n B
- on the bundle side the same
identifications are generated by the
presence of the tlux (depending on how
it 1s embedded in SO(32) or Eg X Eg)
“Simple” example: C°/Z;
- the resolution 1s obtained adding a single exceptional divisor E.
- take then F = V}g H'E/3, quantization fixes the vector to integer
or half integer values, the boundary etffect (and identification) is

Ve Vi 1%
F = —LH' ED,D; = —H'~ —H!
DDy 3 3 3

N.B. The Bianchi identity is V¢ > =12, to be compared with the
modular invariance condition V? = 0 mod 6 !



3 - The T°/Z¢.11 case



3.1 - Flux identification

Z¢ singularity
- Orbifold side: a shift vector V
- Resolution side: 4 shift vectors V&, one for each line bundle E;

D> E1 1s identified with a genuine Zs “action” V& =V
B, /4 are identified with the C?/Z3 action in Zg: V&4 = 12V

E. see also T.-W. Ha, S. Groot Nibbelink, M'T

! Es is identified with the C4/Zs action...: V& =3V
B, where A=B means A = B +A, A being some E8XES

| lattice element
D, E; D3 D1 : : D> Dy : D3

Es Eo Es

Z3 /| Z, singularity “out of a Zg singularity”

- As for the Z3 / Z» singularity “inside a Zg singularity’:
V& =12V, Ves=13V

Addition of discrete Wilson lines by just giving different shift
vectors in different (resolved) singularities.



3.2 - Bianchi Identity ... we can find a solution

We have, in principle

- 32 different shift vectors, one per “exceptional” line bundle

- 35 different compact 4-cycles giving rise to 35 Bianchi

Identity conditions

- 35 quadratic equations in 32 “variable” vectors, made of 16 integer
entries each .....

But we also have, luckily

- not all the 35 equations are independent: we can reduce to 24

- a large reduction of the 32 shifts from the orbifold identitications
(still freedom on the EgXFEg lattice elements /A, but the freedom
is largely reduced once we require the SM group to remain
unbroken in the resolution)

- the quadratic equations can be cast in sum of squares!

- we can find a good choice of gauge fluxes and identify the
“resolved version” of the MSSM models listed in th/0611095

- we did so for the so-called “Benchmark Model II”” and find . . .



3.3 - MSSM’s in blow-up

Gauge Symmetry benchmark model IT of 0611095 (L.ebedev et al.)

- Orbifold: SU3)XSU2)xU(1)yxU(1)* X SO(8)xSU(2)xU(1)

- Blow-up: SUB)XSU2)xU(1)yxU(1)* X SU4)xU(1)*
gauge symmetry breaking in the “hidden” E8

SO(B)XSU((2) — SU#)XU(1)

+ the “breaking” of some U(1)’s that are (now) anomalous
(from the orbifold perspective it’s the usual fact that “blow-up”
means giving a vev to some (charged) twisted fields, and this
induces a Higgs mechanism)

Spectrum

- SM chiral spectrum

- SM vector-like exotics (chiral with respect to some hidden U(1))

- 2 additional singlets with non-trivial hypercharge (extra r.h. electrons)!
= The U(1)y 1s anomalous!



Focus on the anomalous hypercharge

- In the orbifold model a unified SU(5) symmetry is broken to SM
“locally”, 1n some of the singularities (while others preserve a
unified group)

- In the SUGRA version this breaking is realized by U(1) fluxes,
and U(1)y is in SU(5) = U(1)y is anomalous

Orbifold perspective

- The blow-up modes of the singularities where SU(5) 1s broken
are all charged under the SM gauge group
=> no blow-up without breaking the SM gauge group

see also S. Groot Nibbelink, H.P. Nilles, M. T. 07



3.4 - Solving the U(1)y “problem”

Simple way out: just do not resolve the “bad” singularities

- Orbifold perspective: U(1)y breaking particle at zero vev — no breaking
- Resolved perspective: U(1)y is anomalous, but the anomalous mass
is zero (but out of the SUGRA perspective studied in Blumenhagen et al. ‘05 )

More complicated, still keeping the Ze.11 construction:
consider models where U(1)y 1s not embedded “standardly” in SU(5)
(see e.g. S. Raby and A. Wingerter ‘07)

Complicated & more interesting

consider orbifold geometries where all the fixed points preserve GUT,
and SU(D) is broken “truly non-locally”
-- in progress ... see Patrick’s talk



3.4 - “Delocalized” orbifold breaking:
a Simple ZZXZZ, mOdel A. Hebecker and M.T. ‘04

Basic idea: the orbifold actions breaking the GUT group must have
free action (no fixed points)

- We need at least two different orbifold operators
1) ¢, breaking the GUT group,
acting as a translation in some internal dimension

2) g, acting as a rotation in that direction
otherwise too much SUSY -- N=2

- Minimal construction Z>xZ>" =11, g, g, gxg’}, with action on T®

71 z1+m Ry 71— - Z] 71 -721+7 Ry
g: - -2+t Ry g 20 -2 oxg’s 22 Z2+T Ry
13— 13 23— 1713 23— - 13
free action fixed points free action!
GUT breaking GUT preserving gauge embedding fixed

gauge embedding gauge embedding  to be GUT breaking






Byproduct: split MguT from m;

Due to the de-localization the scale of gauge symmetry breaking

is decoupled from the string scale
Maur ~ (Ri Ry)™”

Magur

MZ mS

But usual problem with “large” volumes in heterotic string




4 - Conclusions & Outlook

... see also Stefan’s talk on friday

- Reproduced the heterotic orbifold models as SUGRA
construction with gauge bundles (metric resolution and
toric geometry resolution).

-local C*"/Zm and C*/Zm X Zy  S. Groot Nibbelink, MT, M. Walter
T.-W. Ha, S. Groot Nibbelink, MT.

- global case T®/Z3
S. Groot Nibbelink, D. Klevers, . Ploger, M'T, P. K. S. Vaudrevenge
- K3 with U(l) bundles G. Honecker, MT.

- K3 with generic bundles (and “jumping” between bundles)
S. Groot Nibbelink, F. Paccetti, M'T

- the pheno appealing T¢/Z¢ 11 model
S. Groot Nibbelink, MT, J.Held, E Ruehle, P. K. S. Vaudrevange

- The breaking of SU(5) to the SM group by U(1) fluxes is
problematic (anomalous hypercharge)
- consider different orbifolds (e.g. A. Hebecker, MT ‘04)
with “de-localized” gauge symmetry breaking

... Patrick’s talk




