

D	vnami	ka elel	ktronów	wk	rvsztale
	and a second	the second s			

Pasmo paraboliczne, w układzie osi głównych:

$$E_n(\vec{k}) = E_n(\vec{k}_0) + \frac{\hbar^2}{2} \left[\frac{(k_1 - k_{01})^2}{m_1^*} + \frac{(k_2 - k_{02})^2}{m_2^*} + \frac{(k_3 - k_{03})^2}{m_3^*} \right]$$
$$\vec{v} = \hbar \left[\frac{k_1 - k_{01}}{m_1^*}, \frac{k_2 - k_{02}}{m_2^*}, \frac{k_3 - k_{03}}{m_3^*} \right]$$

czyli: $\widehat{m}^* \vec{v} = \hbar \left(\vec{k} - \vec{k}_0 \right) \Rightarrow \widehat{m}^* \vec{v} = \widehat{m}^* \frac{1}{\hbar} \nabla_{\vec{k}} E(\vec{k}) = \hbar \left(\vec{k} - \vec{k}_0 \right)$

Dla dowolnego (także nieparabolicznego) przypadku dostajemy tensor pędowej masy efektywnej $\widehat{m_p^*}$:

$$\frac{1}{m_{p,i}^*} = \frac{1}{\hbar^2 (k_i - k_{0i})} \cdot \frac{\partial E}{\partial k_i}$$

Poprzednio wprowadziliśmy tzw. tensor odwrotności masy efektywnej: (wykład 7)

$$\frac{1}{m_{ij}^*} = \frac{\delta_{ij}}{m} + \frac{2\hbar^2}{m^2} \sum_{l \neq n} \frac{\int u_{n,0} \frac{\sigma}{\partial x_i} u_{l,0} d^3 r \cdot \int u_{n,0} \frac{\sigma}{\partial x_j} u_{l,0} d^3 r}{E_n(0) - E_l(0)}$$
13-06-02
R. Stępniewski

Dynamika elektronów w krysztale		
Przyspieszenie: $\vec{a} = \vec{v} = \frac{1}{\hbar} \frac{d}{dt} \left[\nabla_{\vec{k}} E(\vec{k}) \right] = \frac{1}{\hbar} \nabla_{\vec{k}} \nabla_{\vec{k}} E(\vec{k}) \dot{\vec{k}} = \frac{1}{\hbar^2} \nabla_{\vec{k}} \nabla_{\vec{k}} E(\vec{k}) \vec{F} = (\widehat{m^*})^{-1} \vec{F}$ teneor dynamicznej masy ofektywnej:		
$(\widehat{m}^*)^{-1} = \frac{1}{\hbar^2} \nabla_{\vec{k}} \nabla_{\vec{k}} E(\vec{k}) = \frac{1}{\hbar^2} \begin{bmatrix} \frac{\partial^2 E}{\partial k_1^2} & \frac{\partial^2 E}{\partial k_1 \partial k_2} & \frac{\partial^2 E}{\partial k_1 \partial k_3} \\ \frac{\partial^2 E}{\partial k_2 \partial k_1} & \frac{\partial^2 E}{\partial k_2^2} & \frac{\partial^2 E}{\partial k_2 \partial k_3} \\ \frac{\partial^2 E}{\partial k_3 \partial k_1} & \frac{\partial^2 E}{\partial k_3 \partial k_2} & \frac{\partial^2 E}{\partial k_3^2} \end{bmatrix}$		
Tensor dynamicznej masy efektywnej \widehat{m}^* i pędowej masy efektywnej \widehat{m}_p^* : w ogólności $\widehat{m}^* \neq \widehat{m}_p^*$.		
rensor m^* jest symetryczny, dla punktu 1 jest tożsamy z tensorem ddwrotności masy efektywnej wprowadzonym przy omawianiu zależności $E(\vec{k})$ w pobliżu ekstremum pasma (Wykład 7) w przypadku pasma parabolicznego masy pędowa i dynamiczna są identyczne $\widehat{m^*} = \widehat{m_p^*}$.		
2013-06-02 4		

R. Stępniewski

Przybliżenie masy efektywnej

Przybliżenie masy efektywnej (Effective Mass Approximation – EMA) Przybliżenie masy efektywnej podaje przepis jak znaleźć rozwiązanie jednoelektronowego równania Schrödingera z wolnozmiennym na obszarze komórki elementarnej potencjałem $U(\vec{r})$, jeśli znamy rozwiązania $u_{n,\vec{k}}(\vec{r})$ równania dla $U(\vec{r}) = 0$ i $\vec{k} = \vec{k}_0$ (oznaczymy je $u_{n,\vec{k}_0}(\vec{r})$):

$$\begin{bmatrix} -\frac{\hbar^2}{2m}\Delta + V(\vec{r}) + U(\vec{r}) \\ \Psi(\vec{r}) = E\Psi(\vec{r}) \\ Potencjał periodyczny sieci \\ Potencjał wolnozmienr$$

Rozwiazaniem dla *n*-tego pasma są funkcje $\Psi_n(\vec{r}) = \Phi_n(\vec{r})u_{n,\vec{k}_0}(\vec{r})$, gdzie funkcja enwelopy (obwiedni)_ $\Phi_n(\vec{r})$ musi spełniać **równanie masy efektywnej**:

$$\left[\frac{\hbar^2}{2}\sum_{\alpha,\beta}\left(\frac{1}{m^*}\right)_{\alpha,\beta}\left(-i\frac{\partial}{\partial x_{\alpha}}\right)\left(-i\frac{\partial}{\partial x_{\beta}}\right)+U(\vec{r})\right]\Phi_n(\vec{r})=\left(E-E_n(0)\right)\Phi_n(\vec{r})$$

R. Stepniewsk

Przybliżenie masy efektywnej

Przybliżenie masy efektywnej (Effective Mass Approximation – EMA) Rozwiazaniem dla *n*-tego pasma są funkcje $\Psi_n(\vec{r}) = \Phi_n(\vec{r})u_{n,\vec{k}_0}(\vec{r})$, gdzie funkcja enwelopy (obwiedni) $\Phi_n(\vec{r})$ musi spełniać **równanie masy efektywnej**:

$$\begin{bmatrix} \frac{\hbar^2}{2} \sum_{\alpha,\beta} \left(\frac{1}{m^*}\right)_{\alpha,\beta} \left(-i\frac{\partial}{\partial x_{\alpha}}\right) \left(-i\frac{\partial}{\partial x_{\beta}}\right) + U(\vec{r}) \end{bmatrix} \Phi_n(\vec{r}) = [E - E_n(0)] \Phi_n(\vec{r})$$
Np.:

$$E(\vec{k}) = E_n(0) + \frac{\hbar^2 k^2}{2m}$$
Daje

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \Delta + U(\vec{r}) \end{bmatrix} \Phi_n(\vec{r}) = [E - E_n(0)] \Phi_n(\vec{r})$$

jest to, formalnie rzecz biorąc, równanie Schrödingera dla kwazicząstki o masie równej masie efektywnej m^* poruszającej się w potencjale $U(\vec{r})$. Potencjał periodyczny sieci jest uwzględniony poprzez masę efektywną. Jeśli np. $U(\vec{r})$ jest przyciągającym potencjałem domieszki, to enwelopa będzie funkcją zlokalizowaną (donory, akceptory itp.!)

Metoda ciasnego wiązania - wnioski

2013-06-02

W ramach metody ciasnego wiązania powstawanie pasm wyjaśniamy jako efekt wzajemnego oddziaływania stanów atomowych poszczególnych atomów tworzących ciało stałe. Stany atomowe klasyfikujemy jako należące do odpowiednich powłok:

Dziury

Kwazicząstki - dziury

Dla opisania sumarycznych właściwości tych 2N-1 elektronów wprowadzamy pojęcie nowej kwazicząstki -dziury. Dziura quasi cząstka z dodatnią masą efektywną, która opisuje własności zbioru elektronów w ciele stałym o masie ujemnej z jednym stanem pustym.

Jeśli f(k) pewna wielkość fizyczna charakteryzująca elektron o wektorze falowym k to wartość tej wielkości dla dziury:

$$f_{d} = \sum_{\substack{i=1\\i\neq j}}^{2N} f(\vec{k}_{i}) \quad \text{dla pasma w którym brakuje elektronu w stanie } j$$
Np. wektor falowy dziury: $\vec{k}_{d} = \sum_{\substack{i=1\\i\neq j}}^{2N} \vec{k}_{i} = \sum_{\substack{i=1\\i\neq j}}^{2N} \vec{k}_{i} - \vec{k}_{e} = -\vec{k}_{e}$
Np. masa dziury $m_{d}^{*}(\vec{k}) = -m_{e}^{*}(\vec{k})$ jest DODATNIA $(-m_{e}^{*}(\vec{k}) < 0)$
Np. prędkość dziury: $\vec{v}_{d}(\vec{k}_{e}) = -\vec{v}_{e}(\vec{k}_{e})$
 $\vec{v}_{d}(\vec{k}_{d}) = \vec{v}_{e}(\vec{k}_{e})$
2013-06-02

Dziury

Kwazicząstki - dziury

Dla opisania sumarycznych właściwości tych 2N - 1 elektronów wprowadzamy pojęcie nowej kwazicząstki -dziury. Dziura quasi cząstka z dodatnią masą efektywną, która opisuje własności zbioru elektronów w ciele stałym o masie ujemnej z jednym stanem pustym.

Dziury Kwazicząstki - dziury Ładunek dziury jest dodatni gdyż w polu elektrycznym równanie Newtona daje: $\hbar \vec{k}_{d} = -\hbar \vec{k}_{e} = +e\vec{E}$ Energia dziury: $E_{d} = \sum_{i=1}^{2N} E(\vec{k}_{i}) - E(\vec{k}_{e}) = E_{0} - E(\vec{k}_{e})$ rośnie, kiedy E_{e} (a więc energia brakującego elektronu) maleje Jeśli liczymy energię elektronów od dna pasma przewodnictwa, to (E_{0} skaluje "O" energii): $E_{e} = -E_{G} - \frac{\hbar^{2}k^{2}}{2|m_{e}^{*}|} \Rightarrow E_{d} = E_{0} + E_{G} + \frac{\hbar^{2}k^{2}}{2m_{d}^{*}}$ Dziura jest fermionem (tak jak elektron, którego brakuje w paśmie)

Dziury Kwazicząstki - dziury W pasmie walencyjnym wygodnie jest operować językiem dziur $\hat{r}_d = \frac{1}{h} V_k E_d(\vec{k}_d)$ $\hat{hk}_d = +e\vec{k}$ $E_d = E(0) + \frac{\hbar^2 k^2}{2m_d^2}$ Często obecne są równocześnie i elektrony w paśmie rzewodnictwa i dziury w paśmie walencyjnym. Trzeba wtedy brać oba pasma pod uwagę. M. Baj

W T ≠ 0 równowaga układu termodynamicznego (w warunkach V = const i N = const) odpowiada minimum energii swobodnej Helmholtza F = U – TS, a nie minimum U – obsadzane są stany o większych energiach.

Dla fermionów w równowadze termodynamicznej – rozkład Fermiego-Diraca (μ – potencjał chemiczny, "poziom Fermiego"):

Średnia statystyczna (wielkości zależnej od energii):

Niech A(E) będzie jakąś wielkością fizyczną zależną od energii elektronu

$$A(T) = \int_{SB} A\left(E(\vec{k})\right) \cdot f\left(E(\vec{k}), T\right) \cdot \rho(\vec{k}) \, dV_k = \int_{pasmo} A(E) \cdot f(E, T) \cdot \rho(E) \, dE$$

A(T) jest uśrednionym termodynamicznie całkowitym wkładem do wielkości A od wszystkich elektronów w paśmie; Przykład: koncentracja elektronów w paśmie (A = 1):

Przykład: koncentracja elektronów w paśmie (
$$A = 1$$
):

$$A(T) \equiv n(T) = \int_{SB} 1 \cdot f(E(\vec{k}), T) \cdot \rho(\vec{k}) \, dV_k = \int_{pasmo} 1 \cdot f(E, T) \cdot \rho(E) \, dE$$
M. Baj

Klasyczny metal
Średnia statystyczna (wielkości zależnej od energii):
$A(T) = \int_{pasmo} A(E) \cdot f(E,T) \cdot \rho(E) dE = \int_{pasmo} \frac{\partial G}{\partial E} \cdot f(E,T) dE = \int_{0}^{E_{max}} \frac{\partial G}{\partial E} \cdot f(E,T) dE \approx$
$\approx \left[G(E) \cdot f(E,T)\right] \Big _{0}^{E_{max}} - \int_{0}^{E_{max}} G(E) \cdot \left(\frac{\partial f}{\partial E}\right) dE \approx \int_{0}^{\infty} G(E) \cdot \left(-\frac{\partial f}{\partial E}\right) dE$
Znika w 0, bo $\rho(0) = 0$ Dla metali: znika w E_{max} , bo $f(E) = 0$
Wprowadzamy $x=rac{E-E_F}{k_BT}$ czyli $E=E_F+xk_BT$
$A(T) = \int_{0}^{\infty} G(E) \cdot \left(-\frac{\partial f}{\partial E}\right) dE = \int_{-\frac{E_F}{k_B T}}^{\infty} G(E_F + xk_B T) \cdot \left(-\frac{\partial f}{\partial x}\right) dx \approx \int_{-\infty}^{\infty} \dots dx$
2013.06.02

Klasyczny metal
Srednia statystyczna (wielkości zależnej od energii):
Nicch
$$A(E)$$
 będzie jakąś wielkością fizyczną zależną od energii elektronu

$$A(T) = \int_{SB} A\left(E(\vec{k}) \cdot f(E(\vec{k}), T) \cdot \rho(\vec{k}) dV_k = \int_{pasmo} A(E) \cdot f(E, T) \cdot \rho(E) dE$$
Jost uśrednionym termodynamicznie całkowitym wkładem do wielkości A od wszystkich
Jost uśrednionym termodynamicznie całkowitym wkładem do wielkości A od wszystkich
Jost uśrednionym termodynamicznie całkowitym wkładem do wielkości A od wszystkich
Jost netali $\mu \equiv E_F \approx 5$ eV, więc $\frac{E_F}{k_B T} \gg 1$ dla $T = 300$ K ($k_B T = 25$ meV). Wprowadzamy
 $G(E) = \int_{0}^{E} A(E') \cdot \rho(E') dE'$
Jostajemy
 $A(T) = \int_{pasmo} A(E) \cdot f(E, T) \cdot \rho(E) dE = \int_{pasmo} \frac{\partial G}{\partial E} \cdot f(E, T) dE$
M. Baj

Klasyczny metal
Średnia statystyczna (wielkości zależnej od energii):
Wprowadzamy $x = \frac{E-E_F}{k_B T}$ czyli $E = E_F + x k_B T$
$A(T) pprox \int\limits_{-\infty}^{\infty} G(E_F + xk_BT) \cdot \left(-\frac{\partial f}{\partial x}\right) dx$
Ze względu na silną degenerację istotny wkład do całki daje tylko obszar w pobliżu $x=0$ \Rightarrow rozwijamy funkcję G:
$G(E_F + xk_BT) = G(E_F) + \left(\frac{\partial G}{\partial E}\right)_{E_F} xk_BT + \frac{1}{2}\left(\frac{\partial^2 G}{\partial E^2}\right)_{E_F} x^2(k_BT)^2 + \cdots$
Korzystając z całkowania przez części oraz wzoru:
$\int_{0}^{\infty} \frac{x}{e^x + 1} dx = \frac{\pi^2}{12}$
Dostajemy:
$A(T) \approx \int_{0}^{E_F} A(E) \cdot \rho(E) dE + \frac{\pi^2}{6} (k_B T)^2 \left(\frac{\partial [A(E) \cdot \rho(E)]}{\partial E} \right)_{E_F} $ M. Baj
2013-06-02 28

ednia statystyczna (wielkości za ykład: E∮	leżnej od energii):
	W metalach gęstość stanów na powierzchni Fermiego decyduje o wszystkim!
	Fig. 6.7. Explanation of the specific heat capacity of quasi-free metal electrons. The effect of raising the temperature from 0K to T is to allow elec- trons from $\leq 2/T$ below the Fermi energy to be promoted to $\leq 2/T$ above $E_{\rm F}$. The tangent () intersects the energy axis at $E_{\rm F} + 2/T$

Klasyczny metal
Średnia statystyczna (wielkości zależnej od energii): Przykład:
Zależność $E_F(T)$ (podstawiamy $A(E) = 1$ i zakładamy $n(T) = const$)
$A(T) \approx \int_{0}^{E_F} A(E) \cdot \rho(E) dE + \frac{\pi^2}{6} (k_B T)^2 \left(\frac{\partial [A(E) \cdot \rho(E)]}{\partial E} \right)_{E_F}$
$E_F = E_{F0} - \frac{\pi^2}{6} (k_B T)^2 \left(\frac{\partial [\ln \rho(E)]}{\partial E} \right)_{E_F}$
Przykład:
Energia wewnętrzna gazu elektronowego (podstawiamy $A(E) = E$)
$U(T) = U_0 + \frac{\pi^2}{6} (k_B T)^2 \rho(E_F)$
W metalach liczą się elektrony na poziomie Fermiego:
$ \rho(E) \propto \sqrt{E} \Rightarrow \rho(E_F) \propto \sqrt{E_F} \Rightarrow \rho(E) = \rho(E_F) \sqrt{E/E_F} $
$n = \int_{0}^{E_F} \rho(E) dE = \frac{2}{3} \rho(E_F) \frac{E_F^3}{\sqrt{E_F}} = \frac{2}{3} \rho(E_F) E_F \Rightarrow \rho(E_F) = \frac{3}{2} \frac{n}{E_F}$
$U(T) = U_0 + \frac{\pi^2}{4} (k_B T)^2 \frac{n}{E_n}$
2013-06-02 31

Średnia stat Przykład:	systyczna (wielkości zależnej od energii):
Energia wewi	nętrzna gazu elektronowego (podstawiamy $A(E) = E$)
	$U(T) = U_0 + \frac{\pi^2}{6} (k_B T)^2 \rho(E_F)$
W metalach l	iczą się elektrony na poziomie Fermiego:
	$\rho(E) \propto \sqrt{E} \Rightarrow \rho(E_F) \propto \sqrt{E_F} \Rightarrow \rho(E) = \rho(E_F) \sqrt{E/E_F}$
	$n = \int_{0}^{E_F} \rho(E) dE = \frac{2}{3} \rho(E_F) \frac{E_F^{\frac{3}{2}}}{\sqrt{E_F}} = \frac{2}{3} \rho(E_F) E_F \Rightarrow \rho(E_F) = \frac{3}{2} \frac{n}{E_F}$
	$U(T) = U_0 + \frac{\pi^2}{4} (k_B T)^2 \frac{n}{E_F}$
Przykład:	Г
Elektronowe	ciepło molowe (podstawiamy $A(E) = E$, a gęstość $\rho(E_F) = n = N_A, k_B N_A = R$) $c_{e_B} - \frac{\pi^2}{2} p \left(k_B T \right)$
	$C_{el} = \frac{1}{2} R \left(\frac{E_F}{E_F} \right)$

 $\begin{aligned} & \begin{cases} & \textbf{Srednia statystyczna (wielkości zależnej od energii):} \\ & \textbf{Przykład:} \\ & \textbf{Zależność} E_F(T) (podstawiamy <math>A(E) = 1$ i zakładamy $n(T) = const) \\ & A(T) \approx \int_{0}^{E_F} A(E) \cdot \rho(E) \, dE + \frac{\pi^2}{6} (k_B T)^2 \left(\frac{\partial [A(E) \cdot \rho(E)]}{\partial E} \right)_{E_F} \\ & E_F = E_{F0} - \frac{\pi^2}{6} (k_B T)^2 \left(\frac{\partial [\ln \rho(E)]}{\partial E} \right)_{E_F} \\ & \textbf{Przykład:} \\ & \textbf{Energia wewnętrzna gazu elektronowego (podstawiamy <math>A(E) = E) \\ & U(T) = U_0 - \frac{\pi^2}{6} (k_B T)^2 \rho(E_F) \\ & \textbf{W metalach liczą się elektrony na poziomie Fermiego: <math>\rho(E) \propto \sqrt{E} \Rightarrow \rho(E_F) \propto \sqrt{E_F} \Rightarrow \\ & \rho(E) = \rho(E_F) \sqrt{E/E_F} \\ & \textbf{Przykład:} \\ & \textbf{Elektronowe ciepło molowe (podstawiamy <math>A(E) = E, \text{ a gęstość } \rho(E_F) = n = N_A) \\ & C_{el} = \frac{\pi^2}{2} R \left(\frac{k_B T}{E_F} \right) \end{aligned}$

Klasyczny metal
Średnia statystyczna (wielkości zależnej od energii): Przykład: Elektronowe ciepło molowe (podstawiamy $A(E) = E$, a gęstość $\rho(E_F) = n = N_A$) $C_{el} = \frac{\pi^2}{2} R\left(\frac{k_B T}{E_F}\right)$
Fig. 6.8. Plot of $c_{v/T}$ against T^* for copper. The experimental points (\bigcirc and \square) stem from two separate measurements [6.3] Ibach, Luth
2013-06-02 35

Statystyka elektronów w kryształach

Jeśli gaz elektronowy (dziurowy) nie jest silnie zdegenerowany, to w celu policzenia A(T) trzeba wykonywać całkowania bez przybliżeń stosowanych powyżej dla metali:

$$A(T) = \int_{SB} A\left(E(\vec{k})\right) \cdot f\left(E(\vec{k}), T\right) \cdot \rho(\vec{k}) \, dV_k = \int_{pasmo} A(E) \cdot f(E, T) \cdot \rho(E) \, dE$$

Zarówno A(E) jak i można rozwinąć na szereg: $f(E) = E^{\alpha} \sum_{n=0}^{\infty} c_n E^n$, a więc A(T) będzie się wyrażało poprzez tzw. całki Fermiego-Diraca (czasami definiowane bez funkcji Γ Eulera stojącej przed całką):

$$F_{j}(\eta) = \frac{1}{\Gamma(j+1)} \int_{0}^{\infty} \frac{\varepsilon^{j}}{\exp(\varepsilon - \eta) + 1} d\varepsilon$$

zredukowany poziom

Fermiego

Przykład:

dla
$$A = 1$$
 oraz trójwymiarowej gęstości stanów parabolicznego pasma przewodnictwa:

$$\rho(E) = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{3/2} \sqrt{E}$$
otrzymujemy:

$$n(T) = \int_{0}^{\infty} f(E,T)\rho(E)dE = 2 \left(\frac{m^*k_BT}{2\pi\hbar^2}\right)^{3/2} F_{1/2}(\eta)$$

otrzymujemy:

Statystyka elektronów w kryształach

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Koncentracja samoistna

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego. Koncentracja samoistna typowych półprzewodników

$\mathbf{E}\mathbf{g} \setminus \mathbf{T}$	77K	300K	1200K	materiał	
0,25eV	10 ⁹ cm ⁻³	10 ¹⁶ cm ⁻³	10 ¹⁸ cm ⁻³	InSb PbSe	
1eV	-	10 ¹⁰ cm ⁻³	10 ¹⁷ cm ⁻³	Ge, <mark>S</mark> i, GaAs	hewsk
4eV	-	-	10 ¹¹ cm ⁻³	ZnS, SiC, GaN, ZnO, C (diament)	R. Stepi

W powyższej tabelce wartości poniżej 10¹⁰ cm⁻³ nie mają sensu gdyż koncentracja zanieczyszczeń, a co za tym idzie koncentracja wynikająca z nieintencjonalnego $n = N_c e^{\frac{(E_F - E_c)}{k_B T}}$ domieszkowania jest większa

 $n = p = \sqrt{N_c N_v} e^{-\frac{E_g}{2k_0 T}}$ $p = N_{,,e}$

 $e^{-\frac{(E_F-E_v)}{k_BT}}$

Domieszki i defekty

W jaki sposób kontrolować koncentrację nośników?

Defekty – odstępstwa od idealnej periodycznej struktury kryształu

Klasyfikacja defektów:

ze względu na zawartość obcych atomów:

rodzime (niezawierające obcych atomów) i niesamoistne (np. domieszki)

ze względu na wymiar:

• punktowe – luki (np. V_{Ga}, V_{As} w GaAs), atomy międzywęzłowe (np. Ga_i), atomy antypodstawieniowe (np. As w miejscu Ga: As_{Ga}), obce atomy podstawieniowe, tzn. domieszki (np. Si_{Ga})

M. Baj

- kompleksy defektów punktowych, np. pary Frenkla V_A– A_i
- liniowe (np. dyslokacje),
- defekty powierzchniowe (np. granice ziaren)
- defekty objętościowe (np. wytrącenia)

12-06-02

Domieszki i defekty

W jaki sposób kontrolować koncentrację nośników?

W półprzewodnikach spotykamy szereg odstępstw od idealnej struktury kryształu: · defekty struktury kryształu, luki, atomy w położeniu międzywęzłowym, dyslokacje powstałe np. w procesie wzrostu.

 \cdot obce atomy (domieszki) wprowadzane intencjonalnie lub wskutek zanieczyszczeń (poziom czystości)

Wskutek ich występowania pojawiają się między innymi:

stany dozwolone w przerwie wzbronionej na skutek odstępstw od potencjału idealnej sieci
 ładunki przestrzenne w izolatorach

· ekranowanie przez swobodne nośniki

Stany domieszkowe dzielimy na:

głębokie –potencjał krótkozasięgowy, zlokalizowany głównie w obszarze jednej komórki elementarnej – np. luka, domieszka izoelektronowa (o tej samej wartościowości co macierzysty atom np. N w InP). • płytkie - głownie potencjał długozasięgowy – kulombowski

Domieszki i defekty

W jaki sposób kontrolować koncentrację nośników?

Defekty – odstępstwa od idealnej periodycznej struktury kryształu

Klasyfikacja defektów:

2013-06-02

2013-06-02

ze względu na ich aktywność elektryczną:

donory (ewentualnie wielokrotne – np. As_{Ga} w GaAs jest podwójnym donorem), akceptory, domieszki izoelektronowe (np. N_P w GaP czy C_{si} w krzemie)

ze względu na charakter (w szczególności lokalizację) funkcji falowej elektronu związanego przez defekt:

- płytkie (wodoropodobne, opisywane w przybliżeniu masy efektywnej, gdzie potencjał wiążący jest wolnozmienny – kulombowski), długozasięgowy
- Głębokie mające stany zlokalizowane leżące w przerwie energetycznej, i/lub stany rezonansowe, zdegenerowane z kontinuum stanów pasmowych, ale pomimo tego mające w dużym stopniu charakter zlokalizowany – np. luki, domieszki metali przejściowych, tzw. centra DX w związkach półprzewodnikowych A_nB_{vi} i A_mB_v, czy izoelektronowe domieszki N w GaAs lub GaP. Potencjał wiążący jest w dużym stopniu krótkozasięgowy.

M. Baj 52

Domieszki i defekty

W jaki sposób kontrolować koncentrację nośników?

Defekty – odstępstwa od idealnej periodycznej struktury kryształu

Klasyfikacja defektów:

- wprowadzają stany zlokalizowane zarówno w przerwie jak i stany rezonansowe
- determinują własności elektryczne półprzewodników
- mogą mieć bardzo poważny wpływ na niektóre własności optyczne (np. wydajność rekombinacji promienistej)
- prowadzą do powstawania obszarów ładunku przestrzennego (także w izolatorach)
- mogą mieć istotny, niepożądany wpływ na funkcjonowanie przyrządów półprzewodnikowych – np. dyslokacje

M. Baj

Undoped Si

Sb-doped Si

State-of-the-art TEM image of ultrathinned (5 nm) sample.

-1 nm

Płytkie stany domieszkowe

Stan donorowy stowarzyszony ze sferycznym pasmem przewodnictwa z minimum w punkcie Γ :

Atom domieszki o wartościowości o jeden większej niż atom podstawiany – np. Si_{Ga} w GaAs staje się źródłem potencjału kulombowskigo zmodyfikowanego stałą dielektryczną kryształu, wywołanego dodatkowym protonem w jądrze. Dodatkowy elektron będący w paśmie przewodnictwa odczuwa ten potencjał. Jego stany są opisane **równaniem masy efektywnej.**

Potencjał domieszki – głównie kulombowski ekranowany statyczną stałą dielektryczną ε_s :

$$U(r) = -\frac{e^2}{4\pi\varepsilon_0\varepsilon_s} \cdot \frac{1}{r}$$

Część krótkozasięgową potencjału zaniedbujemy (przynajmniej na razie)

Równanie masy efektywnej na funkcję enwelopy $\Phi(\vec{r})$:

$$\left(-\frac{\hbar^2}{2m^*}\Delta - \frac{e^2}{4\pi\varepsilon_0\varepsilon_s}\cdot\frac{1}{r}\right)\Phi(\vec{r}) = \left(E - E_c(0)\right)\Phi(\vec{r})$$

gdzie $E_c(0)$ jest energią minimum pasma przewodnictwa.

2013-06-02

Płytkie stany domieszkowe

Rozwiązanie jak dla "przeskalowanego" atomu wodoru. Energie stanów związanych:

$$E_n = -Ry^* \cdot \frac{1}{n^2}, \qquad \qquad Ry^* = Ry \frac{1}{\varepsilon_c^2} \left(\frac{m}{m}\right)$$

np. dla GaAs: $m^*=$ 0,067 m_e , $\varepsilon_s=$ 12,6 $\Rightarrow~Ry^*\approx$ 5,7 meV – energia jonizacji donora względem dna pasma przewodnictwa

efektywny promień Bohra:

$$a_B^* = a_B \cdot \varepsilon_s \left(\frac{m^*}{m_e}\right)$$

1 -

co dla GaAs daje $a_B^* \approx 100$ Å, co stanowi około 20 stałych sieci GaAs

Płytkie stany domieszkowe

Równanie masy efektywnej na funkcję enwelopy $\Phi(\vec{r})$ (przypomnienie z wykładu 9):

$$\left(-\frac{\hbar^2}{2m}\Delta + \mathbf{V}(\vec{r}) + U(\vec{r})\right)\Psi(\vec{r}) = E_n(\vec{k})\Psi(\vec{r})$$

gdzie $V(\vec{r})$ – potencjał periodyczny sieci, $U(\vec{r})$ – potencjał wolnozmienny (dodany), $V(\vec{r})$ – potencjał periodyczny sieci, $E_n(\vec{k})$ – energie dla $U(\vec{r}) = 0$.

Rozwiązaniami dla *n*-tego pasma są funkcje $\Psi_n(\vec{r}) = \Phi_n(\vec{r}) \cdot u_{n,\vec{k}_0}(\vec{r})$, gdzie $u_{n,\vec{k}_0}(\vec{r}) -$ rozwiązanie dla $U(\vec{r}) = 0$ i $\vec{k} = \vec{k}_0$,

Jest to tzw. równanie masy efektywnej:

2013-06-02

$$\left[-\frac{\hbar^2}{2m}\Delta + U(\vec{r})\right]\Phi_n(\vec{r}) = [E - E_n(0)]\Phi_n(\vec{r})$$

Płytkie stany domieszkowe

Wolnozmienna enwelopa \Rightarrow paczka falowa zrobiona z funkcji Blocha z małego obszaru wokół (stan "zlokalizowany" w przestrzeni \vec{k})

Równanie masy efektywnej dopuszcza **rozwiązania stowarzyszone z innymi lokalnymi minimami pasma przewodnictwa** – pod każdym z bocznych minimów (np. w punkcie *X* czy *L*) mogą być stany wodoropodobne, które należy traktować jak stany wzbudzone.

<text><text><text><text><text><text><text><text>

Płytkie stany domieszkowe

Równanie masy efektywnej dopuszcza **rozwiązania stowarzyszone z innymi lokalnymi minimami pasma przewodnictwa** – pod każdym z bocznych minimów (np. w punkcie X czy L) mogą być stany wodoropodobne, które należy traktować jak stany wzbudzone.

Stan donorowy stowarzyszony z bocznym minimum pasma przewodnictwa – powierzchnie stałej energii – elipsoidy obrotowe z minimum w \vec{k}_0 : $\vec{k} = \vec{k}_0 + \vec{k}_{\perp} + \vec{k}_{\parallel}$

$$E(\vec{k}) = E(\vec{k}_0) + \frac{\hbar^2}{2} \left(\frac{\vec{k}_{1\perp}^2}{m_{\perp}^4} + \frac{\vec{k}_{2\perp}^2}{m_{\perp}^4} + \frac{\vec{k}_{\parallel}^2}{m_{\parallel}^*} \right)$$

Równanie masy efektywnej na Φ :

$$\left[-\frac{\hbar^2}{2}\left(\frac{1}{m_\perp^*}\frac{\partial^2}{\partial x_{\perp\perp}^2}+\frac{1}{m_\perp^*}\frac{\partial^2}{\partial x_{\perp\perp}^2}+\frac{1}{m_\parallel^*}\frac{\partial^2}{\partial x_\parallel^2}\right)-\frac{e^2}{4\pi\varepsilon_0\varepsilon_s}\cdot\frac{1}{r}\right]\Phi(\vec{r})=\left[E-E_c(\vec{k}_0)\right]\Phi(\vec{r})$$

Symetria hamiltonianu – walcowa ⇒ będzie częściowo zniesiona degeneracja stanów wodoropodobnych.

Jeśli np. chcemy znaleźć stan podstawowy, możemy zastosować metodę wariacyjną z funkcją próbną postaci (W. Kohn, J.M. Luttinger, *Physical Review* **98**, 915 (1955)):

$$\Phi(x, y, z) = (\pi a^2 b)^{-1/2} \exp\left[-\left(\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2}\right)^{1/2}\right]$$

Płytkie stany domieszkowe

minimów jest 6 (a więc można byłoby oczekiwać 6-krotnej degeneracji, ale to w krysztale niemożliwe !)

potencjał krótkozasięgowy sprzęga stany pod różnymi dolinami

2013-06-02

rozszczepienie (tzw. valley-orbit coupling), 6-krotna degeneracja zniesiona (1+2+3) + przesunięcie chemiczne

funkcje falowe są odpowiednimi (reprezentacje nieprzywiedlne grupy $T_d\colon A_1, E, T_2)$ kombinacjami funkcji z różnych dolin

podobna sytuacja w innych półprzewodnikach z minimum pasma przewodnictwa poza punktem \varGamma (np. Ge, GaP ...)

M. Baj.

Głębokie stany domieszkowe

<section-header><text><text><text><image>

Obsadzenie poziomów domieszkowych

Obsadzenie poziomów domieszkowych/defektowych w stanie równowagi termodynamicznej

"Obsadzanie" stanów (nie tylko zlokalizowanych – domieszek czy defektów, ale także stanów pasmowych) elektronami oznacza **wymianę cząstek (elektronów) pomiędzy rezerwuarem i rozważanym podukładem**.

Wielki zespół kanoniczny (podukład wymienia cząstki i energię z otoczeniem)

Prawdopodobieństwo termodynamiczne (nieunormowane) znalezienia podukładu w stanie *j*, w którym znajduje się n_j cząstek (elektronów) i w którym energia podukładu wynosi E_j (jest to całkowita energia, obejmująca wszystkie n_i cząstek):

$$\beta_j = e^{-\beta(E_j - n_j\xi)}, \qquad \beta = \frac{1}{k_B T}$$

 ξ - potencjał chemiczny.

Suma statystyczna:

$$Z = \sum_{j} P_{j} = \sum_{j} e^{-\beta(E_{j} - n_{j}\xi)}$$

013-06-02

Obsadzenie poziomów domieszkowych
Suma statystyczna:
$Z = \sum P_j = \sum e^{-\beta(E_j - n_j \xi)}$
Średnie statystyczne:
$\langle A \rangle = \frac{\sum_{j} A_{j} \cdot e^{-\beta(E_{j} - n_{j}\xi)}}{\sum_{k} e^{-\beta(E_{j} - n_{j}\xi)}}$
Przykład:
elektron swobodny obsadzający (lub nie) stan elektronowy o danym $ec{k}$ i danym spinie:
możliwe 2 stany podukładu:
$n_0 = 0; E_0 = 0$ $n_0 = 1; E_0 = E$
średnia liczba cząstek podukładu:
$\langle n \rangle = \frac{0 \cdot e^0 + 1 \cdot e^{-\beta(E-\xi)}}{1 + e^{-\beta(E-\xi)}} = \frac{1}{e^{-\beta(E-\xi)} + 1} = f(E,T)$
(rozkład Fermiego-Diraca)
2013-06-02 76

Obsadzenie poziomów domieszkowych

Przykład:

2013-06-02

elektron swobodny obsadzający (lub nie) stan elektronowy o danym \vec{k} i dowolnym spinie: możliwe 2 stany podukładu: $n_0 = 0; E_0 = 0$ $n_1 = 1; E_1 = E \text{ (spin }\uparrow\text{)}$

$n_2 = 1; E_2 = E \text{ (spin }\downarrow\text{)}$ $n_3 = 2; E_3 = 2E$ (spin $\uparrow\downarrow$)

 $\begin{aligned} &\text{średnia liczba cząstek podukładu:} \\ &\langle n \rangle = \frac{0 \cdot e^0 + 1 \cdot e^{-\beta(E-\xi)} + 1 \cdot e^{-\beta(E-\xi)} + 2 \cdot e^{-\beta(2E-2\xi)}}{1 + e^{-\beta(E-\xi)} + e^{-\beta(E-\xi)} + e^{-\beta(2E-2\xi)}} = 2 \frac{e^{-\beta(E-\xi)} \left(1 + e^{-\beta(E-\xi)}\right)}{(e^{-\beta(E-\xi)} + 1)^2} = 2 \frac{e^{-\beta(E-\xi)}$

(rozkład Fermiego-Diraca x2)

Obsadzenie poziomów domieszkowych

 g_{n+1}, g_n – tzw. degeneracje stanów podukładu z n + 1 i n elektronami Degeneracje g_{n+1} i g_n uwzględniają możliwość występowania wielu różnych stanów podukładu odpowiadających tej samej liczbie cząstek (w tym stanów wzbudzonych):

2013-06-02

Obsadzenie poziomów domieszkowych

Stosunek prawdopodobieństw znalezienia domieszki/defektu z n + 1 elektronami i z nelektronami: $\frac{p_{n+1}}{p_n} = \frac{N_{n+1}}{N_n} = \frac{\sum_{j:n_j=n+1} e^{-\beta [E_j - (n+1)\xi]}}{\sum_{k:n_k=n} e^{-\beta [E_k - n\xi]}} = \frac{g_{n+1}}{g_n} \cdot e^{-\beta [(E_{n+1} - E_n) - \xi]}$ $\sum_n N_n = N$ – koncentracja domieszek [-/0] 1.00 5 E_{n+1} i E_n – najniższe spośród wszystkich energii E_i podukładu odpowiednio z n + 1 i n elektronami Przy podnoszeniu poziomu Fermiego zapełniaja sie ÷. koleine poziomy domieszkowe Energy C

 $E^{n+1/n}$ – tzw. energia poziomu domieszkowego/ defektowego "numerowana" stanami ładunkowymi n+1 i n

 g_{n+1}, g_n – tzw. degeneracje stanów podukładu z n + 1 i n elektronami Fig. 15. Energy levels of interstitial 3d metals in silicon (full lines), s Table 3, compared with the results of X_s calculations of DeLeo et al. [15] (broken lines)

Obsadzenie poziomów domieszkowych

Przykład – donor (pomijamy stany wzbudzone)

Volence bond

[*/4+]

0.2

2013-06-02

stan ładunkowy (+) realizowany na 1 sposób: $g_{+} = 1$ stan ładunkowy (0) realizowany na 2 sposoby (spin \uparrow lub \downarrow): $g_0 = 2$ energia poziomu donorowego $E^{0/+} = E_d$ koncentracja donorów N_d

$$\frac{p_{n+1}}{p_n} = \frac{p_0}{p_+} = \frac{g_0}{g_+} \cdot e^{-\beta [E_d - \xi]}, \qquad p_+ + p_0 = 1$$

Prawdopodobieństwo obsadzenia stanu donorowego: $p_0 =$

$$\langle n \rangle = \frac{1}{1 + \frac{g_+}{g_0} \cdot e^{-\beta[E_d - \xi]}} = \frac{1}{1 + \frac{1}{2} \cdot e^{-\beta[E_d - \xi]}}$$

koncentracja obsadzonych donorów (donorów neutralnych)

 n_{c}

$$a = \frac{N_d}{1 + \frac{1}{2} \cdot e^{-\beta[E_d - \xi]}}$$

