POLARYTONY EKSCYTONOWE W MIKROWNĘKACH PÓŁPRZEWODNIKOWYCH

dr B. Piętka, Zakład Fizyki Ciała Stałego, Wydział Fizyki w ramach wykładu Wybrane Aspekty Nanotechnologii dla IN 2015

OUTLINE

co to jest

? POLARYTON ?

co można z nim zrobić

KONDENSAT BOSEGO - EINSTEINA

NADCIEKŁOŚĆ I WIRY KWANTOWE

OBRAZOWANIE MECHANIKI KWANTOWEJ -FUNKCJE FALOWE STANÓW ZWIĄZANYCH

OUTLINE

co to jest

? POLARYTON ?

co można z nim zrobić

KONDENSAT BOSEGO - EINSTEINA

NADCIEKŁOŚĆ I WIRY KWANTOWE

OBRAZOWANIE MECHANIKI KWANTOWEJ -FUNKCJE FALOWE STANÓW ZWIĄZANYCH

Kwazi-cząstki bozonowe : polarytony

POLARYTON = EKSCYTON + FOTON 1/2 materia + 1/2 światło

w reżimie silnego sprzężenia

Kwazi-cząstki bozonowe : polarytony

JAK UWIĘZIĆ FOTON ?

Podstawowe pojęcia potrzebne do opisu problemu:

równanie falowe
 prawa Maxwella
 warunki ciągłości na granicy materiałów
 prawo odbicia i załamania (pr. Snelliusa)
 wzory Fresnela
 (związki między amplitudami fal padającej,
 przechodzącej i odbitej)

- znajdźmy idealne lustro -

JAK UWIĘZIĆ FOTON ?

- znajdźmy idealne lustro -

! IDEALNE LUSTRO ! R=I

przykład : PŁYTKA PŁASKO - RÓWNOLEGŁA

$$\vec{E} = \vec{A}_0 e^{i(\omega t - \vec{k}\vec{r})}$$

interferencja - tu: wzmocnienie i osłabienie fali wypadkowej na skutek złożenia fal po wielokrotnych odbiciach

Amplituda fali odbitej

$$\vec{A} = \sum_{m=1}^{\infty} \vec{A}_m e^{i(m-1)\delta}$$

 δ - przesunięcie fazowe między promieniami I i 2

 $\delta = 2 \cdot k \cdot d \cdot n \cdot \cos \beta$

można łatwo przeliczyć analitycznie

Zasada działania : rezonator Fabry - Perot (etalon)

przykład : PŁYTKA PŁASKO - RÓWNOLEGŁA

Stosunek intensywności fali odbitej do fali padającej

$$\frac{I_R}{I_0} = \frac{\vec{A}\vec{A^*}}{\vec{A}_0\vec{A}_0^*} = R\frac{2-2\cos\delta}{1+R^2-2R\cos\delta} = \frac{4R\sin^2(\frac{\delta}{2})}{(1-R)^2+4R\sin^2(\frac{\delta}{2})}$$

LUSTRO BRAGGA

w celu uzyskania dużego współczynnika odbicia R

istnienie konstruktywnej interferencji fal dla $n_1d_1 = n_2d_2 = \frac{\lambda}{4}$

odbicie fali e-m od warstw ułożonych naprzemiennie o różnych współczynnikach załamania single DBR reflectivity spectrum

DWA LUSTRA BRAGGA = MIKROWNĘKA

zaburzenie periodyczności implikuje powstanie nowych poziomów w przerwie energetycznej

microcavity reflectivity spectrum

MOD FOTONOWY W MIKROWNĘCE

SPRZĘŻENIE POMIĘDZY FOTONAMI I EKSCYTONAMI

EKSCYTON W STUDNI KWANTOWEJ

FOTON W MIKROWNĘCE

SPRZĘŻENIE POMIĘDZY FOTONAMI I EKSCYTONAMI

EKSCYTON W STUDNI KWANTOWEJ

FOTON W MIKROWNĘCE

$$\psi(x,t) = c_1(t)\phi_1(x) + c_2(t)\phi_2(x)$$

The time dependent coefficients satisfy the Schrödinger equation in matrix form

$$\begin{split} \hbar \frac{d}{dt} \begin{pmatrix} c_1(t) \\ c_2(t) \end{pmatrix} &= \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} c_1(t) \\ c_2(t) \end{pmatrix} \\ &= e^{-iEt/\hbar} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \\ \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} &= E \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \\ & \left| \begin{array}{c} H_{11} - E & H_{12} \\ H_{21} & H_{22} - E \end{array} \right| = 0 \,. \end{split}$$

SPRZĘŻENIE POMIĘDZY FOTONAMI I EKSCYTONAMI

FOTON W MIKROWNĘCE

Energy of polariton branches

$$E_{\pm}(k_{//}) = \frac{E_X(k_{//}) + E_C(k_{//})}{2} \pm \frac{1}{2}\sqrt{\delta^2(k_{//}) + \hbar^2 |\Omega|^2}$$

 $\delta(k_{//}) = E_C(k_{//}) - E_X(k_{//})$

STUDNI

KWANTOWE

odstrojenie = detuning

Rabi splitting
$$\Omega \propto \sqrt{\frac{f_{osc}N_{QW}}{L_c}}$$

oddziaływanie między stanami: przykłady

Wzbudzenia magnetoplazmonowe w GaN/AlGaN K. Nogajewski, J. Łusakowski, M. Grynberg

> Magneto-spectroscopy of donor-bound excitons in GaN A. Wysmolek^{a.,}, R. Stępniewski^a, M. Potemski^b

DYSPERSJA POLARYTONÓW

DYSPERSJA POLARYTONÓW

 $k = (k_x, k_y, k_z)$ DYSPERSJA POLARYTONÓW

dyspersja ekscyton
$$\frac{2\pi}{L_c}$$
 w studni kwant $\sqrt[5^2+e]^2 \approx a + \frac{\varepsilon^2}{2a}$
 $E_X(k) = E_g - E_b + \frac{\hbar^2 k^2}{2m_X}$
dysper \vec{k} and \vec{k}

$$E\left(\vec{k}\right) \approx \frac{\hbar c}{n} \left[\frac{2\pi}{L_c} + \frac{k_{II}^2 L_c}{4\pi}\right] = E_0 + \frac{\hbar^2 k_{II}^2}{2m_{ph}^*}$$

wnioski:

foton o masie efektywnej !!!

$$m_C^* = \frac{\hbar k_z n}{c} = \frac{\hbar n^2}{c\lambda_0}$$

2a

image after: M. S. Skolnick et al. Semicond. Sci. Technol. 13, 645 (1998)

POLARYTONY W MIKROWNĘCE

TYPOWY UKŁAD EKSPERYMENTALNY

REAL (x) & MOMENTUM (k) SPACE

REAL (x) & MOMENTUM (k) SPACE

REAL (x) & MOMENTUM (k) SPACE

POLARYTONY W MIKROWNĘCE

image after: M. S. Skolnick et al. Semicond. Sci. Technol. 13, 645 (1998)

DISPERSION SHAPE AND DETUNING

images after B. Deveaud et. al.

DYSPERSJA = ZALEŻNOŚĆ ENERGII OD PĘDU CZĄSTKI

masa, energia
 oddziaływania pomiędzy polarytonami
 (polaryton-polaryton, spinowe, polaryton - fonon)

MOŻLIWE CZYSTE LASEROWANIE !

Wavevector

OUTLINE

co to jest

? POLARYTON ?

co można z nim zrobić

KONDENSAT BOSEGO - EINSTEINA

NADCIEKŁOŚĆ I WIRY KWANTOWE

OBRAZOWANIE MECHANIKI KWANTOWEJ -FUNKCJE FALOWE STANÓW ZWIĄZANYCH Kwazi-cząstki :

krótkie podsumowanie

polarytony

POLARYTON = EKSCYTON + PHOTON 50% materia + 50% światło

(lub w dowolnym innym podziale procentowym)

Polarytony
mają małą masę efektywną (są lekkie)
mogą mieć pęd - mogą się poruszać w płaszczyźnie próbki
są bozonami

KONDENSAT ?

nowy stan materii tworzony przez bozony w niskiej temperaturze

STANY SKUPIENIA:

(powszechne)

ALE RÓWNIEŻ (mniej znane):

- stany nieklasyczne (szkła, żele, zole)
- nadprzewodniki
- stany nadciekłe
- stany superstałe
- stany kwantowego efektu halla
- ciecze nadkrytyczne
- materia zdegenerowana
- materia dziwna
- materia Rydbergowska
- i wiele innych...

KONDENSAT ?

nowy stan materii tworzony przez bozony w niskiej temperaturze

STANY SKUPIENIA:

(powszechne)

ciało stałe przejście fazowe ↓ ■ gaz ↓ ■ plazma **KONDENSAT**

H₂O

SOLIDE

glace

LIQUIDE

GAZ Vapeur d'eau

BOSEGO -

EINSTEINA

ALE RÓWNIEŻ (mniej znane):

- 🖗 stany nieklasyczne (szkła, żele, zole)
- 🕨 nadprzewodniki
- stany nadciekłe
- stany superstałe
- 🔍 stany kwantowego efektu halla
- ciecze nadkrytyczne
- materia zdegenerowana
- materia dziwna
- materia Rydbergowska
- i wiele innych...

KONDENSAT odkrycie teoretyczne

Satyendra Natah Bose

Recepta:

Statystyka kwantowa kwantów światła (fotony) S. N. Bose, Z. Phys. 26, 178 (1924)

wiele fotonów w tym samym stanie kwantowym
całkowita nierozróżnialność dwóch fotonów w tym samym stanie

Albert Einstein

Nie tylko światło, ale i materia (bozony) mogą mieć te same własności.

> A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Bericht 3, p. 18 (1925)

↓T , pułapka

przejście fazowe (II rodzaju)

KONDENSAT (schemat)

źródło: WHEN ATOMS BEHAVE AS WAVES: BOSE-EINSTEIN CONDENSATION AND THE ATOM LASER W. Ketterle, Nobel Lecture, December 8, 2001

T=0: Pure Bose condensate "Giant matter wave"

$$\psi = \sqrt{N}e^{i\theta}$$

Zero bezwzględne: "makroskopowa fala materii"

> Makroskopowa faza kwantowa

- Makroskopowe obsadzenie stanu podstawowego
- Wzrost spójności czasowej
- Pojawienie się korelacji dalekiego zasięgu (long-range order)

zdolność do interferencji !!

Fizyka kwantowa w skali makroskopowej !

HISTORIA realizacji eksperymentalnej

Techniki chłodzenia laserowego : Nagroda Nobla z Fizyki 1997

70 lat po pracach Bosego & Einsteina... 1995

Carl Wieman Eric Cornell University of Colorado at Boulder NIST-JILA Gaz atomów rubidu schłodzony do 170nK !!!

4 miesiące później 1995

Gaz atomów sodu (100 razy więcej atomów)

Wolfgang Ketterle Massachusetts Institute of Technology

Nagroda Nobla z Fizyki 2001

HISTORIA c.d. - dane eksperymentalne

Rozkład prędkości gazu atomów rubidu. M. H. Anderson et al., Science **269**, 198 (1995)

Niedestrukcyjna obserwacja kondensatu Bosego - Einsteina M. R. Andrews et al., Science **273**, 84 (1996)

Interferencja pomiędzy dwoma atomowymi kondensatami Bosego - Einsteina M. R. Andrews et al., Science **275**, 637 (1997)

KONDENSAT

w temperaturze pokojowej ?

w ciele stałym ?

Kwazi-cząstki bozonowe :

polarytony

POLARYTON = EKSCYTON + PHOTON 1/2 materia + 1/2 światło

	atoms	POLARITONS
m	Rb: 10 ⁴ m _e	10 ⁻⁴ m _e
Т	10 ⁻⁷ K	>100K
Ν	$10^{14}/cm^3$	<10 ¹¹ /cm ²
t	œ	10 ps
TRAP	(x,y,z)	(k_x,k_y)

podstawowe pytania: czy jest to możliwe ? jakie byłyby własności takiego stanu ?

zastosowania :

spójne źródło światła
urządzenia optoelektroniczne
integracja w obwodach optoelektronicznych

T=0: Pure Bose condensate "Giant matter wave"

Zero bezwzględne: "makroskopowa fala materii"

Makroskopowa faza kwantowa

- Makroskopowe obsadzenie stanu podstawowego
- Wzrost spójności czasowej
- Pojawienie się korelacji dalekiego zasięgu (long-range order)

zdolność do interferencji ‼

-Einstein condensation of on polaritons

nature

M. Richard², S. Kundermann², A. Baas², P. Jeambrun², J. M. J. Keeling³, F. M. Marchetti⁴, M. H. Szymańska⁵, R. André¹, J. L. Staehli², V. Savona², P. B. Littlewood⁴, B. Deveaud² & Le Si Dang¹

zwiększanie gęstości polarytonów

MAKROSKOPOWE OBASEDZENIE STANU PODSTAWOWEGO

> J. Kasprzak, et. al *Nature* **443**, 409 (2006)

Bose-Einstein condensation of exciton polaritons

J. Kasprzak¹, M. Richard², S. Kundermann², A. Baas², P. Jeambrun², J. M. J. Keeling³, F. M. Marchetti⁴, M. H. Szymańska⁵, R. André¹, J. L. Staehli², V. Savona², P. B. Littlewood⁴, B. Deveaud² & Le Si Dang¹

J. Kasprzak, et. al *Nature* **443**, 409 (2006)

rozkład Maxwella - Boltzmanna w równowadze termicznej

$$n_j = \frac{N}{Z} e^{-\frac{\varepsilon_j}{kT}}$$

rozkład Bosego- Einsteina w stanie kondensatu

$$n_i = \frac{g_i}{Be^{\frac{\varepsilon_i}{kT}} - 1}$$

(z dokładnością do tego że kondensat polarytonów nie jest kondensatem w równowadze termodynamicznej : pojawianie się stanów wzbudzonych i zmiana gęstości stanów stanu podstawowego)

nature

PRZEJŚCIE FAZOWE

KLASYCZNY GAZ POLARYTONÓW PRZEJŚCIE FAZOWE

temperatura polarytonów 🛪

lub gęstość polarytonów 🜌

+ niska temperatura (10K), nie jest konieczna dla meteriałów o dużej przerwie energetycznej np. GaN

literatura: GaN based microcavities prof. N. Grandjean EPFL, Lausanne

STAN

KONDENSATU

PRZEJŚCIE FAZOWE I RODZAJU

Istnienie nieciągłości (skoku) pierwszej pochodnej energii swobodnej (po jakiejś zmiennej termodynamicznej)

Istnienie nieciągłości (skoku) pierwszej pochodnej potencjału chemicznego po temperaturze

dostarczamy ciepło - temperatura nie zmienia się aż do zmiany fazy w całej objętości

ciało stałe ciecz gaz f nieciągłość gęstości

PRZEJŚCIE FAZOWE II RODZAJU

"przejścia ciągłe"

Pierwsza pochodna, ciepło właściwe, jest ciągła.

- 😡 nie ma utajonego ciepła przemiany dla dowolnej objętości ośrodka
- 🥥 nie ma bariery energetycznej pomiędzy fazami
- 🖌 fazy mogą współistnieć i zupełnie płynnie, bez wydatku energii, przechodzić jedna w drugą

Istnienie nieciągłości (skoku) kolejnej pochodnej potencjału chemicznego po temperaturze

MAKROSKOPOWE FLUKTUACJE PARAMETRU UPORZĄDKOWANIA W OKOLICY PRZEJŚCIA FAZOWEGO !!! & pojawienie się korelacji dalekiego zasięgu

PARAMETR UPORZĄDKOWANIA

coś co jest zero przed przemianą, a ma skończoną wartość po przemianie

ORDER PARAMETER

 $g^{(1)}(\mathbf{r},\mathbf{r}',\tau,t) = \left\langle \psi \ast (\mathbf{r},\tau,t) \psi (\mathbf{r}',\tau,t) \right\rangle$

(macierz gęstości)

FIRST ORDER CORRELATION FUNCTION

SPÓJNOŚĆ FAZY !!!

czasowa i przestrzenna

T=0: Pure Bose condensate "Giant matter wave"

METODY EKSPERYMENTALNE

METODY EKSPERYMENTALNE

MEASUREMENT OF SPATIAL COHERENCE Operation principle

Stabilized Michelson interferometer

CONDENSED STATE OF POLARITONS

KONDENSAT VS OBRAZ INTERFERENCYJNY

Experimental realization:

Mirror arm real space

Retroreflector arm real space

Interferogram

Disorder in sample Different positions will give different interferograms

JAKĄ WIEDZĘ DAJE NAM INTERFEROGRAM

Interferogram

Po transformacie Fouriera (FFT)
 Informacja o amplitudzie
 Informacja o fazie

$$C(\mathbf{r}, \mathbf{d}) = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} = \frac{2\sqrt{I(\mathbf{r})I(\mathbf{r} + \mathbf{d})}}{I(\mathbf{r}) + I(\mathbf{r} + \mathbf{d})}g^{(1)}(\mathbf{r}, \mathbf{r} + \mathbf{d})$$
kontrast
funkcia korelaci

PARAMETR UPORZĄDKOWANIA

 $g^{(1)}(\mathbf{r},\mathbf{r}',\tau,t) = \left\langle \psi \ast (\mathbf{r},\tau,t) \psi (\mathbf{r}',\tau,t) \right\rangle$

PARAMETR UPORZĄDKOWANIA

MAPPOWANIE KORELACJI PRZESTRZENNEJ

$$g^{(1)}(\mathbf{r},\mathbf{r}',\tau=0) = \left\langle \psi * (\mathbf{r})\psi(\mathbf{r}') \right\rangle$$

PONIŻEJ PROGU KONDENSACJI

POWYŻEJ PROGU KONDENSACJI

Korelacje na skalę termicznej długości fali de Broglie (λ)

Rozmiar korelacji na cały kondensat (25λ)

FUNKCJA FALOWA NIESPÓJNEGO GAZU POLARYTONÓW

FUNKCJA FALOWA KONDENSATU KOLEKTYWNY STAN ZDELOKALIZOWANY

INTERFEROGRAM

& WIRY KWANTOWE !!!

+ nadciekłość