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Figure 1.3: Quantum well. Schematics of a quantum well. A layer of InGaAs (5%)
is inserted between two GaAs layer with larger band gap, resulting in a quantum well
for excitons. The dashed purple lines represent the shift of the gap energy because of
confinement.

Because of confinement, the gap energy Egap of the quantum well is shifted by
E0 > 0. The energies of the quantum well excitons read

E2D
X,n = Egap + E0 �

1

(n + 1/2)2
E⇤

I (1.9)

and the Bohr radius is a⇤2D
0 = a⇤0/2. In an In0.05Ga0.95As quantum well like shown

in Fig. 1.3, the exciton binding energy is about 7 meV, which corresponds to a Bohr
radius of about 10 nm [Senellart 03].

The most important consequence of confinement is the breaking of translational
symmetry in the direction of the confinement [Agranovich 66, Tassone 90]. In a
planar (2D) quantum well, excitons with a given in-plane wavevector k⌦ are coupled
to the continuum of photons having the same in-plane wavevector. Contrary to the
case of bulk excitons, it is now possible to calculate a radiative lifetime for the free
exciton within the Fermi golden rule [Andreani 91]. For this, we introduce a quantity
called the oscillator strength fosc, proportional to the probability for an electron in
the valence band to create an exciton by absorbing a photon. It is related to the
exciton lifetime �X by

1

�X
=

2e2

m0

fosc

S
(1.10)

where S is the surface of the crystal.

Selection rules in a semiconductor quantum well

Because of confinement, the momentum selection rule holds only for the in-plane
wavevector k⌦. Contrarily to the bulk case, a exciton level is now coupled to a
continuum of electromagnetic modes. The exciton energy EX(k⌦) is related to the
photon energy E�(k⌦) by the Fermi golden rule

EX(k⌦) = Egap + E0 � E2D
b +

⇥2k2
⌦

2mX
= E�(k⌦) = ⇥ c

n


k2
⌦ + k2

z (1.11)

w reżimie silnego sprzężenia



EKSCYTON W STUDNI KWANTOWEJ == MATERIA

Chapter 1

Exciton polaritons

In this chapter we describe the di�erent elements which constitute a semiconductor
microcavity, and how the strong light matter coupling leads to the formation of
“quasi-particles” called exciton polaritons. Examples will be given using a GaAs-
based microcavity, such as the one which is used in the experimental work of this
thesis. However, the concepts developed in this chapter can be applied to all other
direct gap semiconductors, such as GaN or CdTe.

1.1 Excitons in semiconductors

1.1.1 Bulk excitons
In direct gap semiconductors, the promotion of an electron to the conduction band
leaves a hole in the valence band. Coulombic interaction between the oppositely
charged electron and hole leads to the formation of a bound state called exciton. This
elementary excitation appears as a new line in the absorption spectrum, separated
from the band gap E

g

by the exciton binding energy E
b

. The exciton can be seen
as a hydrogenoic quasi-particle, whose binding energy is analogous to the hydrogen
Rydberg energy (although much smaller [35]). Semiconductor excitons are generally
of the Wannier type, meaning that they are delocalized over the whole crystal. The
exciton dispersion is given by

E
X

(k) = E
g

≠ E
b

+ ~2k2

2m
X

(1.1)

where ~k is the momentum of the exciton center of mass. The exciton e�ective mass
m

X

is given by the combination of electron and hole e�ective masses m
e

and m
h

as
1

m

X

= 1

m

e

+ 1

m

h

. In GaAs, the exciton e�ective mass is typically 20 times smaller
than the free electron mass [35].

1.1.2 Excitons in quantum wells
Semiconductor quantum wells (QWs) consist in a thin layer of semiconductor ma-
terial, inserted between an other semiconductor material of higher band gap, e.g.
10nm of In

0.05

Ga
0.95

As inserted in bulk GaAs. Excitations are then confined in

9

Ex
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Selection rules in a semiconductor quantum well

Because of confinement, the momentum selection rule holds only for the in-plane
wavevector k⌦. Contrarily to the bulk case, a exciton level is now coupled to a
continuum of electromagnetic modes. The exciton energy EX(k⌦) is related to the
photon energy E�(k⌦) by the Fermi golden rule
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b +
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ekscyton = elektron + dziura + oddziaływanie +
- 

Ekscyton 

kierunek wzrostu warstw w płaszczyźnie studni



 równanie falowe 
 prawa Maxwella
 warunki ciągłości na granicy materiałów
 prawo odbicia i załamania (pr. Snelliusa)
 wzory Fresnela 

(związki między amplitudami fal padającej,  
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Figure 1.1: DBR reflectivity spectrum, computed using a transfer matrix method for
�0 = 900nm, with 10 periods of GaAs/AlAs (red line) and 20 periods of GaAs/AlAs
(black line). The layer thicknesses correspond to �0

4n , where the refractive indexes have
been taken to be nGaAs = 3.5 and nAlAs = 3. Note that band gap absorption and
wavelength dependence of the refractive index have not been taken into account here.
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Figure 1.2: Microcavity reflectivity spectrum, computed using a transfer matrix method
for �0 = 900nm, with two DBRs of 20 periods of GaAs/AlAs each, around a GaAs
spacer of lenght �0

nGaAs
. Note that band gap absorption and wavelength dependence of the

refractive index have not been taken into account here.

for alternate layers of refractive indexes corresponding to those of GaAs and AlAs.
This example shows that increasing the number of GaAs/AlAs pairs increases the
reflectivity on the photonic band gap.

1.2.2 Microcavities
When two DBRs are placed face to face around a spacer, they form a Fabry-Pérot res-
onator. In this structure, electromagnetic waves are confined in the z direction, but
are still free to propagate in the in-plane directions, forming thus a two-dimensional
system. The only optical modes admitted in the cavity are those satisfying the
boundary conditions of the resonator. These modes will be allowed to be transmit-
ted through the resonator. In this way, the microcavity spacer acts as an impurity
in the one-dimensional photonic crystal [39]. A typical reflectivity spectrum is pre-
sented in Figure 1.2, for a �-cavity. A computed intensity plot of the cavity field is
presented in Figure 1.3.
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Figure 1.2: Microcavity reflectivity spectrum, computed using a transfer matrix method
for �0 = 900nm, with two DBRs of 20 periods of GaAs/AlAs each, around a GaAs
spacer of lenght �0

nGaAs
. Note that band gap absorption and wavelength dependence of the

refractive index have not been taken into account here.

for alternate layers of refractive indexes corresponding to those of GaAs and AlAs.
This example shows that increasing the number of GaAs/AlAs pairs increases the
reflectivity on the photonic band gap.

1.2.2 Microcavities
When two DBRs are placed face to face around a spacer, they form a Fabry-Pérot res-
onator. In this structure, electromagnetic waves are confined in the z direction, but
are still free to propagate in the in-plane directions, forming thus a two-dimensional
system. The only optical modes admitted in the cavity are those satisfying the
boundary conditions of the resonator. These modes will be allowed to be transmit-
ted through the resonator. In this way, the microcavity spacer acts as an impurity
in the one-dimensional photonic crystal [39]. A typical reflectivity spectrum is pre-
sented in Figure 1.2, for a �-cavity. A computed intensity plot of the cavity field is
presented in Figure 1.3.
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for �0 = 900nm, with two DBRs of 20 periods of GaAs/AlAs each, around a GaAs
spacer of lenght �0
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for alternate layers of refractive indexes corresponding to those of GaAs and AlAs.
This example shows that increasing the number of GaAs/AlAs pairs increases the
reflectivity on the photonic band gap.

1.2.2 Microcavities
When two DBRs are placed face to face around a spacer, they form a Fabry-Pérot res-
onator. In this structure, electromagnetic waves are confined in the z direction, but
are still free to propagate in the in-plane directions, forming thus a two-dimensional
system. The only optical modes admitted in the cavity are those satisfying the
boundary conditions of the resonator. These modes will be allowed to be transmit-
ted through the resonator. In this way, the microcavity spacer acts as an impurity
in the one-dimensional photonic crystal [39]. A typical reflectivity spectrum is pre-
sented in Figure 1.2, for a �-cavity. A computed intensity plot of the cavity field is
presented in Figure 1.3.
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Figure 1.1: DBR reflectivity spectrum, computed using a transfer matrix method for
�0 = 900nm, with 10 periods of GaAs/AlAs (red line) and 20 periods of GaAs/AlAs
(black line). The layer thicknesses correspond to �0

4n , where the refractive indexes have
been taken to be nGaAs = 3.5 and nAlAs = 3. Note that band gap absorption and
wavelength dependence of the refractive index have not been taken into account here.
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Figure 1.2: Microcavity reflectivity spectrum, computed using a transfer matrix method
for �0 = 900nm, with two DBRs of 20 periods of GaAs/AlAs each, around a GaAs
spacer of lenght �0

nGaAs
. Note that band gap absorption and wavelength dependence of the

refractive index have not been taken into account here.

for alternate layers of refractive indexes corresponding to those of GaAs and AlAs.
This example shows that increasing the number of GaAs/AlAs pairs increases the
reflectivity on the photonic band gap.

1.2.2 Microcavities
When two DBRs are placed face to face around a spacer, they form a Fabry-Pérot res-
onator. In this structure, electromagnetic waves are confined in the z direction, but
are still free to propagate in the in-plane directions, forming thus a two-dimensional
system. The only optical modes admitted in the cavity are those satisfying the
boundary conditions of the resonator. These modes will be allowed to be transmit-
ted through the resonator. In this way, the microcavity spacer acts as an impurity
in the one-dimensional photonic crystal [39]. A typical reflectivity spectrum is pre-
sented in Figure 1.2, for a �-cavity. A computed intensity plot of the cavity field is
presented in Figure 1.3.

microcavity reflectivity spectrum
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Figure 1.3: Transfer matrix simulation of the ⁄-microcavity EM field intensity (normal-
ized), with a GaAs spacer. The blue line shows the succession of GaAs and AlAs layers.
The green line corresponds to the cavity mode, which forms a standing wave pattern in
the cavity. Anti-nodes of the field are formed at the GaAs spacer boundaries, due to the
reflexion of a lower index material. The red line shows a wavelength which is not admitted
in the cavity, and thus gets reflected on the top DBR.

The finite width of the cavity mode “
C

is proportional to the cavity photon escape
rate, or inversely proportional to the photon lifetime in the cavity ·

C

. The quality
factor Q of the cavity depends therefore of the quality of the mirrors, and is given
by Q = E

“

C

, where E is the emission energy. Depending on the area of measurement,
the measured cavity linewidth “ú

C

can be inhomogeneous due to thickness variations
of the cavity spacer and DBRs [40].

1.2.3 Photonic mode dispersion
Let us define k = (k

z

, k
x

, k
y

) the cavity field wave-vector and k
//

= (k
x

, k
y

) the
cavity field in-plane wave-vector, where z is the confinement direction and (x, y) the
directions in the plane of the layers. The optical modes allowed in the Fabry-Pérot
resonator correspond to

Nfi = k
z

L
c

(1.2)

where N is an integer, L
c

is, in first approximation2, the thickness of the cavity
spacer, and k

z

= 2fin

⁄0
, with n the cavity spacer refractive index. The in-plane

photonic dispersion is then given for small k
//

by

E
C

(k
//

) = ~c

n

Ò
k2

z

+ k2

//

≥= ~c

n
k

z

(1 +
k2

//

2k2

z

) = ~c

n
k

z

¸ ˚˙ ˝
hc

⁄0

+ ~c

2nk
z

k2

//

, (1.3)

where k
z

is linked to the cavity parameters by equation 1.2. This allows to define a
2In fact, the e�ective cavity length depends also of the DBRs composition, due to the finite

penetration length of the cavity field in the DBRs, as can be seen on Figure 1.3.
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Chapter 1 

Two-State System 

1.1 Two-State Hamiltonian 

The wave function for a two state system can be written as a linear combination of two 
basis states 

√(x, t) = c1(t)¡1(x) + c2(t)¡2(x) (1.1) 

where ¡1(x) and ¡2(x) are any complete basis states for the system. In particular, we can 
take the two basis states to be orthonormal so that 

h¡i(x)|¡j (x)i = ±ij (1.2) 

The time dependent coe±cients satisfy the Schrödinger equation in matrix form 

d µ 
c1(t) 

∂ µ 
H11 H12 

∂ µ 
c1(t) 

∂

ih̄ = . (1.3)
dt c2(t) H21 H22 c2(t) 

The matrix elements are given by 

Hij = h¡i(x)|Ĥ|¡j (x)i (1.4) 

1.2 Stationary Solutions: Eigen Functions and Eigen Ener-
gies 

To find the stationary solutions (the eigen vectors) which are states of constant energy, so 
that the eigen functions are of the form 

µ 

c
c

2

1

(
(
t
t
)
) 
∂ 

= e°iEt/h̄ 
µ 

c
c

2

1 
∂ 

(1.5) 

Then the time-independent coe±cients and energies are given by 
µ 

H11 H12 
∂ µ 

c1 
∂ 

= E 
µ 

c1 
∂ 

(1.6)
H21 H22 c2 c2 
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There are two eigen energies given by the solutions to the determinant 
Ø

Ø

Ø

Ø

H11 ° E H12 
Ø

Ø

Ø

Ø

= 0 . (1.7)
H21 H22 ° E 

Recall the fact that H12 = H§ , and we find21

∂2H11 + H22 

s

µ 
H22 ° H11E = + 2 (1.8)° 2 

° 
2 

|H12|

∂2 
E+ = 

H11 +
2 

H22 + 

s

µ 
H22 °

2 
H11 + |H12|2 (1.9) 

Substitution of the eigen energies in the matrix equation (Eqn. 1.6) gives 
µ 

H11 H12 
∂ µ 

c1
± ∂ µ 

c1
± ∂ 

H21 H22 2 
= E± 

2 
(1.10)

c± c±

which leads to 
+ (H22 ° E )c± = 0 (1.11)H21c

±
1 ± 2 

which results in the normalized solutions 
µ 

c1
± ∂ 1 µ 1 ∂ 

c±2 
= r

1 + 
≥ 

E±
H
°
21 
H22 

¥ 
E±

H
°
21 
H22 

(1.12) 

The algebra can be simplified by letting 

E ¯ = 
H11 + H22 and ¢ = 

H22 ° H11 (1.13)
2 2 

and H12 = H§ = V . Then21 

Ĥ = 
µ 

E ¯ ° ¢ V 
∂ 

(1.14)
V § E ¯ + ¢ 

and 

E° = E ¯ ° 
q

¢2 + |V |2 (1.15) 

E+ = E ¯ + 
q

¢2 + |V |2 (1.16) 

with eigen vectors 
µ 

c1
° ∂ 

=
1 µ 

¢ + 
p

¢2 + V 2 ∂ 
= 

µ 
cos µ 

∂ 
(1.17)

c°2 
r 

V 2 + 
≥

¢ + 
p

¢2 + V 2
¥2 °V sin µ 

and 
+µ 

c 
∂ 1 µ 

°¢ + 
p

¢2 + V 2 ∂ µ 
° sin µ 

∂

1 
+ = = (1.18)

c2 
r 

V 2 + 
≥

°¢ + 
p

¢2 + V 2
¥2 +V cos µ 
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Figure 1.5: Polariton dispersions for �
�
k// = 0

⇥
= 0. Bare exciton and photon modes

are indicated with dashed lines. The eigenmodes are the lower polariton (LP) and upper
polariton (UP) branches, indicated with plain lines.

where a†
k//

and ak//
are the creation and annihilation operators for a cavity

photon of given in-plane momentum k// and polarization, b†
k//

and bk//
the creation

and annihilation operators for the corresponding QW exciton and ��
2 is the exciton-

photon coupling energy. In the matrix form, the Hamiltonian reads :

M(k//) =
⇤

EC(k//) ��
2

��
2 EX(k//)

⌅

. (1.6)

Diagonalizing H0 allows to find the normal modes of the system:

H0(k//) = E�(k//)p†
k//

pk//
+ E+(k//)u†

k//
uk//

(1.7)

where p†
k//

and u†
k//

are the creation operators for the lower polariton (LP) and
upper polariton (UP), respectively. These normal modes are the new eigenmodes of
the system, while the bare exciton and photon modes are not stationary solutions
any more. The energies of the polariton branches can be found by diagonalizing
M(k//):

E±(k//) = EX(k//) + EC(k//)
2 ± 1

2
⇧

�2(k//) + �2 |⇥|2 (1.8)

where �(k//) = EC(k//) � EX(k//) is the detuning of the excitonic resonance with
respect to the cavity field. Figure 1.5 shows the polariton in-plane dispersion, for
�(0) = 0.

As the exciton e�ective mass is much larger than the photon’s, it appears con-
stant on this wavevector range. At zero exciton-photon detuning, the energy split-
ting is given by �⇥, and is called the vacuum Rabi splitting, by analogy with atomic

Energy of polariton branches
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The finesse of the cavity and quality of the QW layer are therefore of crucial impor-
tance, as well as the value of the exciton-photon coupling. This latter is proportional
to [41]

⇥ ⇥
⇥

foscNQW

Lc
, (1.14)

where fosc is the QW exciton oscillator strength, NQW is the number of QWs in
the cavity, and Lc is the cavity length. This shows that the strong coupling can
be saturated when the exciton oscillator strength is saturated (see next section).
The exciton-photon coupling is also proportional to the overlap integral between
the QW excitons wavefunction and the cavity electromagnetic field [43]. One has
then to make sure to position the QWs at anti-nodes of the cavity field, in order to
maximize the coupling.

1.4 Polaritonic nonlinearities
Polaritonic nonlinearities arise from their excitonic component. The exciton-exciton
interactions are due to elastic coulomb scattering, a process which is dominated
by the inter-exciton exchange of carriers [44]. The Hamiltonian term describing
the elastic scattering processes of two excitons with initial wavevectors k and k⇥,
respectively, reads [45] :

HX�X = 1
2

�

k,k�,q

VX�Xb†
k+qb

†
k��qbkbk� , (1.15)

where VX�X is the e�ective interaction potential. The main consequence of this
interaction is a blue-shift of the polariton energy. Another source of nonlinearities
is the bleaching of the exciton-photon coupling due to a screening of the exciton
oscillator strength [46]. This nonlinear e�ect is expected at high exciton densities
(nsat � 1011cm�2 for InGaAs QWs) [47, 48]. In the polariton basis, these two
contributions (exciton-exciton interaction and saturation) can be merged into an
e�ective interaction term for the LP branch [3, 45], providing a repulsive interaction
between co-circularly polarized polaritons3.

1.5 Generalized Gross-Pitaevskii equations
The most successful way of simulating the behavior of a coherent polariton gas is
the framework of the mean field theory, which consider fully coherent excitonic and
photonic fields �C(X)(r, t) = |�C(X)(r, t)|ei�(r,t). The time evolution of the mean
polariton and exciton fields �C and �X , in the presence of a resonant pump field
Fp,C(r, t) = |Fp,C |ei(kp.x�⇥pt) (where �⇥p and �kp are the driving laser field energy
and momentum, respectively) is described by the two coupled equations [15, 14]:

3The value and sign of the e⌦ective interaction potential between cross-circularly polarized
polaritons is currently subject to debate and investigation in the polariton community [49, 24].
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Figure 4. Calculated reflectivity spectrum for microcavity of
figures 1 and 2 for on-resonance case. The two
coupled-mode polariton dips are superimposed on the
high-reflectivity stop band of the DBR.

The simplest situation which can be treated like this is
a single QW in a microcavity. The coupling between the
exciton and cavity oscillators is described by a 2⇥2 matrix
Hamiltonian:

H =


"e  h�i/2
 h�i/2 "l

�
. (9)

Here, "e and "l are the energies of the exciton and cavity
modes respectively and �i is the vacuum Rabi splitting.
This Hamiltonian is easily diagonalized, to give eigenvalues

"± = "e + "l

2
± [( h�)2 + ("e � "l)

2]1/2. (10)

The coupled oscillator model can readily be used to
calculate microcavity in-plane dispersions [3]. To do this,
the uncoupled exciton and cavity photon energies are made
k dependent according to their dispersions. The polariton
dispersion is then obtained by solving the coupled oscillator
problem for each value of k. Excellent agreement with
measured dispersions from angle tuning experiments can
be obtained.

Figure 5 shows a typical polariton dispersion calculated
in this way, for a structure on resonance at k = 0. Around
k = 0, the polariton mass in both branches is approximately
twice that of the photon. However, since the dispersions
of the photon and exciton are very different, varying k

moves the system away from resonance, with the lower
branch becoming more massive and exciton like, the upper
branch more photon like. Such polariton dispersions were
first measured in angle tuning experiments by Houdré
et al [3] and are discussed in section 6. The strong
in-plane dispersion of the polariton modes gives rise to
a number of interesting phenomena including ‘motional
narrowing’ of the polariton linewidths [10], as discussed

Figure 5. Calculated polariton dispersion up to in-plane
wavevector of 108 m�1. The broken curves show the
uncoupled exciton and photon dispersion curves. The
wavevector region below the broken vertical line can be
probed in angle tuning experiments. For k  106 cm�1

strong exciton–cavity coupling occurs, with characteristic
very small polariton mass of 10�5me . For wavevectors
greater than ⇠2⇥ 107 m�1, the lower-branch dispersion
becomes characteristic of uncoupled exciton states, with a
large mass of ⇠0.25me .

in section 7, and the prediction of inhibited polariton
relaxation [36, 37].

One of the most important modifications to the simple
Hamiltonian given above is the inclusion of some form
of broadening. This is most obviously done by adding
an imaginary part to the exciton and photon energies,
corresponding to a homogeneous, or lifetime, broadening
of the oscillator. For the cavity mode, this is probably
appropriate, as the linewidth is believed to be mainly
homogeneous, originating from the tunnelling decay of the
photon through the mirrors. For the exciton, by contrast,
the dominant broadening mechanism is inhomogeneous,
because of disorder. The inhomogeneous linewidth of a
QW exciton is typically a few meV, while the homogeneous
width is at most a small fraction of an meV. Hence it
is not really appropriate to treat the exciton linewidth
as due to homogeneous broadening. However, this is
frequently done, because a better treatment, as discussed
in section 7, is considerably more difficult. The reason
why some sort of broadening needs to be included is
that the separation of the spectral features is reduced by
the broadening, so the measured splitting at resonance
is less than  h�i [35]. Moreover, as was shown by
Houdré et al [38], the modification to the splitting
is different in absorption, transmission and reflectivity.
If accurate values of  h�i are to be extracted from
experimental data, care is required to account properly for
the broadening.

650
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dyspersja fotonu w mikrownęce

Chapter 1

Exciton polaritons

In this chapter we describe the di�erent elements which constitute a semiconductor
microcavity, and how the strong light matter coupling leads to the formation of
“quasi-particles” called exciton polaritons. Examples will be given using a GaAs-
based microcavity, such as the one which is used in the experimental work of this
thesis. However, the concepts developed in this chapter can be applied to all other
direct gap semiconductors, such as GaN or CdTe.

1.1 Excitons in semiconductors

1.1.1 Bulk excitons
In direct gap semiconductors, the promotion of an electron to the conduction band
leaves a hole in the valence band. Coulombic interaction between the oppositely
charged electron and hole leads to the formation of a bound state called exciton. This
elementary excitation appears as a new line in the absorption spectrum, separated
from the band gap E

g

by the exciton binding energy E
b

. The exciton can be seen
as a hydrogenoic quasi-particle, whose binding energy is analogous to the hydrogen
Rydberg energy (although much smaller [35]). Semiconductor excitons are generally
of the Wannier type, meaning that they are delocalized over the whole crystal. The
exciton dispersion is given by

E
X

(k) = E
g

≠ E
b

+ ~2k2

2m
X

(1.1)

where ~k is the momentum of the exciton center of mass. The exciton e�ective mass
m

X

is given by the combination of electron and hole e�ective masses m
e

and m
h

as
1

m

X

= 1

m

e

+ 1

m

h

. In GaAs, the exciton e�ective mass is typically 20 times smaller
than the free electron mass [35].

1.1.2 Excitons in quantum wells
Semiconductor quantum wells (QWs) consist in a thin layer of semiconductor ma-
terial, inserted between an other semiconductor material of higher band gap, e.g.
10nm of In

0.05

Ga
0.95

As inserted in bulk GaAs. Excitations are then confined in
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Figure 4. Calculated reflectivity spectrum for microcavity of
figures 1 and 2 for on-resonance case. The two
coupled-mode polariton dips are superimposed on the
high-reflectivity stop band of the DBR.

The simplest situation which can be treated like this is
a single QW in a microcavity. The coupling between the
exciton and cavity oscillators is described by a 2⇥2 matrix
Hamiltonian:

H =


"e  h�i/2
 h�i/2 "l

�
. (9)

Here, "e and "l are the energies of the exciton and cavity
modes respectively and �i is the vacuum Rabi splitting.
This Hamiltonian is easily diagonalized, to give eigenvalues

"± = "e + "l

2
± [( h�)2 + ("e � "l)

2]1/2. (10)

The coupled oscillator model can readily be used to
calculate microcavity in-plane dispersions [3]. To do this,
the uncoupled exciton and cavity photon energies are made
k dependent according to their dispersions. The polariton
dispersion is then obtained by solving the coupled oscillator
problem for each value of k. Excellent agreement with
measured dispersions from angle tuning experiments can
be obtained.

Figure 5 shows a typical polariton dispersion calculated
in this way, for a structure on resonance at k = 0. Around
k = 0, the polariton mass in both branches is approximately
twice that of the photon. However, since the dispersions
of the photon and exciton are very different, varying k

moves the system away from resonance, with the lower
branch becoming more massive and exciton like, the upper
branch more photon like. Such polariton dispersions were
first measured in angle tuning experiments by Houdré
et al [3] and are discussed in section 6. The strong
in-plane dispersion of the polariton modes gives rise to
a number of interesting phenomena including ‘motional
narrowing’ of the polariton linewidths [10], as discussed

Figure 5. Calculated polariton dispersion up to in-plane
wavevector of 108 m�1. The broken curves show the
uncoupled exciton and photon dispersion curves. The
wavevector region below the broken vertical line can be
probed in angle tuning experiments. For k  106 cm�1

strong exciton–cavity coupling occurs, with characteristic
very small polariton mass of 10�5me . For wavevectors
greater than ⇠2⇥ 107 m�1, the lower-branch dispersion
becomes characteristic of uncoupled exciton states, with a
large mass of ⇠0.25me .

in section 7, and the prediction of inhibited polariton
relaxation [36, 37].

One of the most important modifications to the simple
Hamiltonian given above is the inclusion of some form
of broadening. This is most obviously done by adding
an imaginary part to the exciton and photon energies,
corresponding to a homogeneous, or lifetime, broadening
of the oscillator. For the cavity mode, this is probably
appropriate, as the linewidth is believed to be mainly
homogeneous, originating from the tunnelling decay of the
photon through the mirrors. For the exciton, by contrast,
the dominant broadening mechanism is inhomogeneous,
because of disorder. The inhomogeneous linewidth of a
QW exciton is typically a few meV, while the homogeneous
width is at most a small fraction of an meV. Hence it
is not really appropriate to treat the exciton linewidth
as due to homogeneous broadening. However, this is
frequently done, because a better treatment, as discussed
in section 7, is considerably more difficult. The reason
why some sort of broadening needs to be included is
that the separation of the spectral features is reduced by
the broadening, so the measured splitting at resonance
is less than  h�i [35]. Moreover, as was shown by
Houdré et al [38], the modification to the splitting
is different in absorption, transmission and reflectivity.
If accurate values of  h�i are to be extracted from
experimental data, care is required to account properly for
the broadening.
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Chapter 1

Exciton polaritons

In this chapter we describe the di�erent elements which constitute a semiconductor
microcavity, and how the strong light matter coupling leads to the formation of
“quasi-particles” called exciton polaritons. Examples will be given using a GaAs-
based microcavity, such as the one which is used in the experimental work of this
thesis. However, the concepts developed in this chapter can be applied to all other
direct gap semiconductors, such as GaN or CdTe.

1.1 Excitons in semiconductors

1.1.1 Bulk excitons
In direct gap semiconductors, the promotion of an electron to the conduction band
leaves a hole in the valence band. Coulombic interaction between the oppositely
charged electron and hole leads to the formation of a bound state called exciton. This
elementary excitation appears as a new line in the absorption spectrum, separated
from the band gap E

g

by the exciton binding energy E
b

. The exciton can be seen
as a hydrogenoic quasi-particle, whose binding energy is analogous to the hydrogen
Rydberg energy (although much smaller [35]). Semiconductor excitons are generally
of the Wannier type, meaning that they are delocalized over the whole crystal. The
exciton dispersion is given by

E
X

(k) = E
g

≠ E
b

+ ~2k2

2m
X

(1.1)

where ~k is the momentum of the exciton center of mass. The exciton e�ective mass
m

X

is given by the combination of electron and hole e�ective masses m
e

and m
h

as
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. In GaAs, the exciton e�ective mass is typically 20 times smaller
than the free electron mass [35].

1.1.2 Excitons in quantum wells
Semiconductor quantum wells (QWs) consist in a thin layer of semiconductor ma-
terial, inserted between an other semiconductor material of higher band gap, e.g.
10nm of In

0.05

Ga
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As inserted in bulk GaAs. Excitations are then confined in
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Figure 4. Calculated reflectivity spectrum for microcavity of
figures 1 and 2 for on-resonance case. The two
coupled-mode polariton dips are superimposed on the
high-reflectivity stop band of the DBR.

The simplest situation which can be treated like this is
a single QW in a microcavity. The coupling between the
exciton and cavity oscillators is described by a 2⇥2 matrix
Hamiltonian:

H =


"e  h�i/2
 h�i/2 "l

�
. (9)

Here, "e and "l are the energies of the exciton and cavity
modes respectively and �i is the vacuum Rabi splitting.
This Hamiltonian is easily diagonalized, to give eigenvalues

"± = "e + "l

2
± [( h�)2 + ("e � "l)

2]1/2. (10)

The coupled oscillator model can readily be used to
calculate microcavity in-plane dispersions [3]. To do this,
the uncoupled exciton and cavity photon energies are made
k dependent according to their dispersions. The polariton
dispersion is then obtained by solving the coupled oscillator
problem for each value of k. Excellent agreement with
measured dispersions from angle tuning experiments can
be obtained.

Figure 5 shows a typical polariton dispersion calculated
in this way, for a structure on resonance at k = 0. Around
k = 0, the polariton mass in both branches is approximately
twice that of the photon. However, since the dispersions
of the photon and exciton are very different, varying k

moves the system away from resonance, with the lower
branch becoming more massive and exciton like, the upper
branch more photon like. Such polariton dispersions were
first measured in angle tuning experiments by Houdré
et al [3] and are discussed in section 6. The strong
in-plane dispersion of the polariton modes gives rise to
a number of interesting phenomena including ‘motional
narrowing’ of the polariton linewidths [10], as discussed

Figure 5. Calculated polariton dispersion up to in-plane
wavevector of 108 m�1. The broken curves show the
uncoupled exciton and photon dispersion curves. The
wavevector region below the broken vertical line can be
probed in angle tuning experiments. For k  106 cm�1

strong exciton–cavity coupling occurs, with characteristic
very small polariton mass of 10�5me . For wavevectors
greater than ⇠2⇥ 107 m�1, the lower-branch dispersion
becomes characteristic of uncoupled exciton states, with a
large mass of ⇠0.25me .

in section 7, and the prediction of inhibited polariton
relaxation [36, 37].

One of the most important modifications to the simple
Hamiltonian given above is the inclusion of some form
of broadening. This is most obviously done by adding
an imaginary part to the exciton and photon energies,
corresponding to a homogeneous, or lifetime, broadening
of the oscillator. For the cavity mode, this is probably
appropriate, as the linewidth is believed to be mainly
homogeneous, originating from the tunnelling decay of the
photon through the mirrors. For the exciton, by contrast,
the dominant broadening mechanism is inhomogeneous,
because of disorder. The inhomogeneous linewidth of a
QW exciton is typically a few meV, while the homogeneous
width is at most a small fraction of an meV. Hence it
is not really appropriate to treat the exciton linewidth
as due to homogeneous broadening. However, this is
frequently done, because a better treatment, as discussed
in section 7, is considerably more difficult. The reason
why some sort of broadening needs to be included is
that the separation of the spectral features is reduced by
the broadening, so the measured splitting at resonance
is less than  h�i [35]. Moreover, as was shown by
Houdré et al [38], the modification to the splitting
is different in absorption, transmission and reflectivity.
If accurate values of  h�i are to be extracted from
experimental data, care is required to account properly for
the broadening.
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Chapter 1

Exciton polaritons

In this chapter we describe the di�erent elements which constitute a semiconductor
microcavity, and how the strong light matter coupling leads to the formation of
“quasi-particles” called exciton polaritons. Examples will be given using a GaAs-
based microcavity, such as the one which is used in the experimental work of this
thesis. However, the concepts developed in this chapter can be applied to all other
direct gap semiconductors, such as GaN or CdTe.

1.1 Excitons in semiconductors

1.1.1 Bulk excitons
In direct gap semiconductors, the promotion of an electron to the conduction band
leaves a hole in the valence band. Coulombic interaction between the oppositely
charged electron and hole leads to the formation of a bound state called exciton. This
elementary excitation appears as a new line in the absorption spectrum, separated
from the band gap E

g

by the exciton binding energy E
b

. The exciton can be seen
as a hydrogenoic quasi-particle, whose binding energy is analogous to the hydrogen
Rydberg energy (although much smaller [35]). Semiconductor excitons are generally
of the Wannier type, meaning that they are delocalized over the whole crystal. The
exciton dispersion is given by
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≠ E
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+ ~2k2
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X

(1.1)

where ~k is the momentum of the exciton center of mass. The exciton e�ective mass
m
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is given by the combination of electron and hole e�ective masses m
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and m
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as
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. In GaAs, the exciton e�ective mass is typically 20 times smaller
than the free electron mass [35].

1.1.2 Excitons in quantum wells
Semiconductor quantum wells (QWs) consist in a thin layer of semiconductor ma-
terial, inserted between an other semiconductor material of higher band gap, e.g.
10nm of In
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As inserted in bulk GaAs. Excitations are then confined in
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1.3. STRONG LIGHT-MATTER COUPLING IN MICROCAVITIES 13

Figure 1.4: Scheme of the semiconductor microcavity, with one embedded quantum well.
Only a few DBR periods are shown.

cavity photon e�ective mass:

mú
C

= ~k
z

n

c
= hn2

c⁄
0

. (1.4)

For a GaAs ⁄-cavity, with ⁄
0

= 835nm, we find mú
C

= hn

2

c⁄0
≥= 0.2meV · ps2 · µm≠2.

1.3 Strong light-matter coupling in microcavities
1.3.1 Exciton-photon coupling
In the cavity spacer are embedded one or several QWs (see Figure 1.4), whose
excitonic resonance will interact with the microcavity optical mode. As the QW
exciton and the microcavity electromagnetic field are both two-dimensional (2D)
objects, there is a one-to-one coupling, with conservation of in-plane momentum and
energy, between photons ans excitons. As explain in section 1.1.3, there is also a one-
to-one correspondence between the exciton spin and the photon polarization. Light-
matter coupling in the microcavity can thus be modeled by two coupled oscillators
[2]. The light-matter coupling Hamiltonian for a given in-plane momentum k
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Figure 4. Calculated reflectivity spectrum for microcavity of
figures 1 and 2 for on-resonance case. The two
coupled-mode polariton dips are superimposed on the
high-reflectivity stop band of the DBR.

The simplest situation which can be treated like this is
a single QW in a microcavity. The coupling between the
exciton and cavity oscillators is described by a 2⇥2 matrix
Hamiltonian:

H =


"e  h�i/2
 h�i/2 "l

�
. (9)

Here, "e and "l are the energies of the exciton and cavity
modes respectively and �i is the vacuum Rabi splitting.
This Hamiltonian is easily diagonalized, to give eigenvalues

"± = "e + "l

2
± [( h�)2 + ("e � "l)

2]1/2. (10)

The coupled oscillator model can readily be used to
calculate microcavity in-plane dispersions [3]. To do this,
the uncoupled exciton and cavity photon energies are made
k dependent according to their dispersions. The polariton
dispersion is then obtained by solving the coupled oscillator
problem for each value of k. Excellent agreement with
measured dispersions from angle tuning experiments can
be obtained.

Figure 5 shows a typical polariton dispersion calculated
in this way, for a structure on resonance at k = 0. Around
k = 0, the polariton mass in both branches is approximately
twice that of the photon. However, since the dispersions
of the photon and exciton are very different, varying k

moves the system away from resonance, with the lower
branch becoming more massive and exciton like, the upper
branch more photon like. Such polariton dispersions were
first measured in angle tuning experiments by Houdré
et al [3] and are discussed in section 6. The strong
in-plane dispersion of the polariton modes gives rise to
a number of interesting phenomena including ‘motional
narrowing’ of the polariton linewidths [10], as discussed

Figure 5. Calculated polariton dispersion up to in-plane
wavevector of 108 m�1. The broken curves show the
uncoupled exciton and photon dispersion curves. The
wavevector region below the broken vertical line can be
probed in angle tuning experiments. For k  106 cm�1

strong exciton–cavity coupling occurs, with characteristic
very small polariton mass of 10�5me . For wavevectors
greater than ⇠2⇥ 107 m�1, the lower-branch dispersion
becomes characteristic of uncoupled exciton states, with a
large mass of ⇠0.25me .

in section 7, and the prediction of inhibited polariton
relaxation [36, 37].

One of the most important modifications to the simple
Hamiltonian given above is the inclusion of some form
of broadening. This is most obviously done by adding
an imaginary part to the exciton and photon energies,
corresponding to a homogeneous, or lifetime, broadening
of the oscillator. For the cavity mode, this is probably
appropriate, as the linewidth is believed to be mainly
homogeneous, originating from the tunnelling decay of the
photon through the mirrors. For the exciton, by contrast,
the dominant broadening mechanism is inhomogeneous,
because of disorder. The inhomogeneous linewidth of a
QW exciton is typically a few meV, while the homogeneous
width is at most a small fraction of an meV. Hence it
is not really appropriate to treat the exciton linewidth
as due to homogeneous broadening. However, this is
frequently done, because a better treatment, as discussed
in section 7, is considerably more difficult. The reason
why some sort of broadening needs to be included is
that the separation of the spectral features is reduced by
the broadening, so the measured splitting at resonance
is less than  h�i [35]. Moreover, as was shown by
Houdré et al [38], the modification to the splitting
is different in absorption, transmission and reflectivity.
If accurate values of  h�i are to be extracted from
experimental data, care is required to account properly for
the broadening.
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Figure 1.6: Anticrossing. The energies of the upper (EUP ) and lower (ELP ) polaritons
are calculated using Eqs. (1.14) and (1.15) for a constant exciton energy EX = 1484.5 meV
and a varying cavity energy EC , with a Rabi splitting �R = 3.5 meV. The anticrossing
behavior is characteristic of the strong-coupling regime.

states around k = 0 are closer to the bare cavity dispersion than to the exciton
dispersion. These polaritons have a dominant photonic content C2 > X2. The
contrary picture holds at positive detuning (Fig. 1.7 c). At zero detuning �k = 0
(Fig. 1.7 b), k = 0 polaritons are exactly half-light, half matter.

Figure 1.7: Polariton dispersions. Exemples at a negative, b zero and c positive
detuning. The polariton dispersion can be approximated by a parabola in the vicinity
of k = 0. At larger wavevectors, because of the anticrossing, the dispersion of the lower
polariton presents an inflection angle.
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Figure 4. Calculated reflectivity spectrum for microcavity of
figures 1 and 2 for on-resonance case. The two
coupled-mode polariton dips are superimposed on the
high-reflectivity stop band of the DBR.

The simplest situation which can be treated like this is
a single QW in a microcavity. The coupling between the
exciton and cavity oscillators is described by a 2⇥2 matrix
Hamiltonian:

H =


"e  h�i/2
 h�i/2 "l

�
. (9)

Here, "e and "l are the energies of the exciton and cavity
modes respectively and �i is the vacuum Rabi splitting.
This Hamiltonian is easily diagonalized, to give eigenvalues

"± = "e + "l

2
± [( h�)2 + ("e � "l)

2]1/2. (10)

The coupled oscillator model can readily be used to
calculate microcavity in-plane dispersions [3]. To do this,
the uncoupled exciton and cavity photon energies are made
k dependent according to their dispersions. The polariton
dispersion is then obtained by solving the coupled oscillator
problem for each value of k. Excellent agreement with
measured dispersions from angle tuning experiments can
be obtained.

Figure 5 shows a typical polariton dispersion calculated
in this way, for a structure on resonance at k = 0. Around
k = 0, the polariton mass in both branches is approximately
twice that of the photon. However, since the dispersions
of the photon and exciton are very different, varying k

moves the system away from resonance, with the lower
branch becoming more massive and exciton like, the upper
branch more photon like. Such polariton dispersions were
first measured in angle tuning experiments by Houdré
et al [3] and are discussed in section 6. The strong
in-plane dispersion of the polariton modes gives rise to
a number of interesting phenomena including ‘motional
narrowing’ of the polariton linewidths [10], as discussed

Figure 5. Calculated polariton dispersion up to in-plane
wavevector of 108 m�1. The broken curves show the
uncoupled exciton and photon dispersion curves. The
wavevector region below the broken vertical line can be
probed in angle tuning experiments. For k  106 cm�1

strong exciton–cavity coupling occurs, with characteristic
very small polariton mass of 10�5me . For wavevectors
greater than ⇠2⇥ 107 m�1, the lower-branch dispersion
becomes characteristic of uncoupled exciton states, with a
large mass of ⇠0.25me .

in section 7, and the prediction of inhibited polariton
relaxation [36, 37].

One of the most important modifications to the simple
Hamiltonian given above is the inclusion of some form
of broadening. This is most obviously done by adding
an imaginary part to the exciton and photon energies,
corresponding to a homogeneous, or lifetime, broadening
of the oscillator. For the cavity mode, this is probably
appropriate, as the linewidth is believed to be mainly
homogeneous, originating from the tunnelling decay of the
photon through the mirrors. For the exciton, by contrast,
the dominant broadening mechanism is inhomogeneous,
because of disorder. The inhomogeneous linewidth of a
QW exciton is typically a few meV, while the homogeneous
width is at most a small fraction of an meV. Hence it
is not really appropriate to treat the exciton linewidth
as due to homogeneous broadening. However, this is
frequently done, because a better treatment, as discussed
in section 7, is considerably more difficult. The reason
why some sort of broadening needs to be included is
that the separation of the spectral features is reduced by
the broadening, so the measured splitting at resonance
is less than  h�i [35]. Moreover, as was shown by
Houdré et al [38], the modification to the splitting
is different in absorption, transmission and reflectivity.
If accurate values of  h�i are to be extracted from
experimental data, care is required to account properly for
the broadening.
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Figure 1.6: Anticrossing. The energies of the upper (EUP ) and lower (ELP ) polaritons
are calculated using Eqs. (1.14) and (1.15) for a constant exciton energy EX = 1484.5 meV
and a varying cavity energy EC , with a Rabi splitting �R = 3.5 meV. The anticrossing
behavior is characteristic of the strong-coupling regime.

states around k = 0 are closer to the bare cavity dispersion than to the exciton
dispersion. These polaritons have a dominant photonic content C2 > X2. The
contrary picture holds at positive detuning (Fig. 1.7 c). At zero detuning �k = 0
(Fig. 1.7 b), k = 0 polaritons are exactly half-light, half matter.

Figure 1.7: Polariton dispersions. Exemples at a negative, b zero and c positive
detuning. The polariton dispersion can be approximated by a parabola in the vicinity
of k = 0. At larger wavevectors, because of the anticrossing, the dispersion of the lower
polariton presents an inflection angle.
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Fig. 1. – Criterion for Bose-Einstein condensation. At high temperatures, a weakly interacting gas can be treated
as a system of “billiard balls.” In a simplified quantum description, the atoms can be regarded as wavepackets
with an extension λdB . At the BEC transition temperature, λdB becomes comparable to the distance between
atoms, and a Bose condensate forms. As the temperature approaches zero, the thermal cloud disappears leaving
a pure Bose condensate.

techniques and experiments performed through the end of 1997. The technique of evaporative cooling is
reviewed in [15]. Refs. [16, 17, 18, 19] are more popular papers, with ref. [18] containing many animated
movies of experimental data and ref. [19] discussing the concept of an atom laser.

1
.1. Basic features of Bose-Einstein condensation. – BEC in an ideal gas, described in various text-

books (e.g. [20]), is a paradigm of quantum statistical mechanics which offers profound insight into
macroscopic quantum phenomena. We want to focus here on selected aspects of BEC pertaining to
current experiments in trapped Bose gases.

1
.1.1. Length and energy scales. Bose-Einstein condensation is based on the indistinguishability and

wave nature of particles, both of which are at the heart of quantum mechanics. In a simplified picture,
atoms in a gas may be regarded as quantum-mechanical wavepackets which have an extent on the order
of a thermal de Broglie wavelength λdB = (2πh̄2/mkBT )1/2 where T is the temperature and m the mass
of the atom. λdB can be regarded as the position uncertainty associated with the thermal momentum
distribution. The lower the temperature, the longer λdB. When atoms are cooled to the point where λdB is
comparable to the interatomic separation, the atomic wavepackets “overlap” and the indistinguishability
of particles becomes important (fig. 1). At this temperature, bosons undergo a phase transition and form
a Bose-Einstein condensate, a coherent cloud of atoms all occupying the same quantum mechanical state.
The transition temperature and the peak atomic density n are related as nλ3

dB ! 2.612.

Bose-Einstein condensation in gases allows for a “first-principles” theoretical description because there
is a clear hierarchy of length and energy scales (table I). In a gas, the separation between atoms n−1/3

is much larger than the size of the atoms (characterized by the s-wave scattering length a), i.e. the
quantity na3 " 1. In a Bose condensed gas, the separation between atoms is equal to or smaller than
the thermal de Broglie wavelength. The largest length scale is the confinement, either characterized by
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Bose–Einstein condensation of
exciton polaritons
J. Kasprzak1, M. Richard2, S. Kundermann2, A. Baas2, P. Jeambrun2, J. M. J. Keeling3, F. M. Marchetti4,
M. H. Szymańska5, R. André1, J. L. Staehli2, V. Savona2, P. B. Littlewood4, B. Deveaud2 & Le Si Dang1

Phase transitions to quantum condensed phases—such as Bose–Einstein condensation (BEC), superfluidity, and
superconductivity—have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has,
for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin.
Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems
are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to
the creation of exciton polaritons. These bosonic quasi-particles are 109 times lighter than rubidium atoms, thus
theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of
experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation
of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence,
and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a
macroscopic quantum phase.

Bosons—particles with an integer spin—can undergo BEC when
their de Broglie wavelength becomes comparable to their average
separation. Then a large fraction of the bosons condense in the lowest
quantum state, resulting in the appearance of macroscopic coher-
ence. Massive occupation of the ground state1,2 and the expected
spontaneous coherence3–5 have been clearly demonstrated for dilute
atom gases cooled down to temperatures of about 1026 K.
For solid-state systems, excitons in semiconductors have long been

considered a promising candidate for BEC at temperatures of a few
kelvin, reachable by standard cryogenic techniques6–8. Excitons are
light-mass Bose particles analogous to positronium, consisting of
bound electron–hole pairs, usually produced by optical excitation.
Over the past three decades there have been numerous studies and
early claims of exciton BEC in three-dimensional (3D) semiconduc-
tors (for a recent review see refs 9 and 10). Other systems in the solid
state have also exhibited unusual physical properties tentatively
attributed to BEC11,12.
Recently new directions have been explored for exciton BEC, using

two-dimensional (2D) quantum structures, such as coupled quan-
tum wells under an external applied electric field13,14, or quantum
wells embedded in optical microcavities. The second system consists
in planar Fabry–Perot resonators whose optical length is tuned to a
half-integer multiple of the emission wavelength of quantum well
excitons. The near-degeneracy and strong coupling of the exciton and
cavity photon leads to the formation of new eigenstates (see Fig. 1)
called polaritons, which are half-light, half-matter bosonic quasi-
particles15,16. The extremely steep dispersion of the cavity polariton
modes, due to the optical confinement along the zdirection, results in a
typical polariton effective mass of 1024 times the free electron mass.
Thus, in theory, the temperature and density criteria for BEC of
polaritons in their kk ¼ 0 ground state should be satisfied much
more easily than for excitons. Moreover, from the experimental side,

we note that the coherence, polarization and population distribution
properties of polaritons can be conveniently probed by analysing the
far-field emission, because the light emitted by the microcavity is
part of the polariton wavefunction17. The drawback of the strong
coupling is the very short polariton lifetime, typically of around
10212 s, which could be an obstacle to reach thermal equilibrium.
Although full thermalization cannot be achievedwith the host lattice,
it will be shown below that polariton–polariton scattering processes
are fast enough under high excitation to produce a fully thermalized
polariton gas.
The first indication of spontaneous quantum degeneracy of

polaritons was the observation of stimulated emission under non-
resonant pumping in CdTe microcavities18: above some excitation
power threshold, the polariton emission exhibits a strong nonlinear-
ity, while the linewidth shows significant narrowing. Since then
several claims of polariton condensation have been made. In par-
ticular, the second-order time correlations in a GaAs-based micro-
cavity were measured to support such a claim19. However, no
measurement of the polarization or of the spatial coherence is
performed. Also, the second-order correlations do not follow the
expected signature: at the stimulation threshold they are found to be
quasi-thermal, and above threshold remain far from that expected
for a coherent state. Of the defining features of BEC—that is,
spontaneous symmetry breaking and long-range order20,21—no
direct proof in semiconductor systems has ever been given9,10.
Of course, an infinite 2D system never develops true long-range

order (see the Supplementary Information)22. However, owing to the
finite size of the excitation spot, the size of the polariton cloud is
finite, and one can achieve complete coherence across the cloud at
low enough temperatures and macroscopic occupation of a single
quantum state. Polaritons also have some specific features: first, they
exhibit strong interactions even at modest densities23,24, so the
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physics soon exits the regime of weakly interacting bosons that
describes ultracold atoms; second, the lifetime is short enough that
we must confront the role of non-equilibrium physics25. Never-
theless, the principal experimental characteristics expected for BEC
are clearly reported here: condensation into the ground state arising
out of a population at thermal equilibrium; the development of
quantum coherence, indicated by long-range spatial coherence, and
sharpening of the temporal coherence of the emission.

Experimental procedure
The sample we studied consists of a CdTe/CdMgTe microcavity
grown by molecular beam epitaxy. It contains 16 quantum wells,

displaying a vacuum field Rabi splitting of 26meV (ref. 26). The
microcavity was excited by a continuous-wave Ti:sapphire laser,
combined with an acousto-optic modulator (1-ms pulse, 1% duty
cycle) to reduce sample heating. The pulse duration is sufficiently
long (by four orders of magnitude) in comparison with the charac-
teristic times of the system to guarantee a steady-state regime. The
laser beam was carefully shaped into a ‘top hat’ intensity profile
providing a uniform excitation spot of about 35 mm in diameter on
the sample surface, as shown in Fig. 4i. The excitation energy was
1.768 eV, well above the polariton ground state (1.671 eV at cavity
exciton resonance), at the first reflectivity minimum of the Bragg
mirrors, allowing proper coupling to the intra-cavity field. This
ensures that polaritons initially injected in the system are incoherent,
which is a necessary condition for demonstrating BEC. In atomic
BEC or superfluid helium, the temperature is the parameter driving
the phase transition. Here the excitation power, and thus the injected
polariton density, is an easily tunable parameter, and so we chose it as
the experimental control parameter. The large exciton binding
energy in CdTe quantum wells (25meV), combined with the large
number of quantum wells in the microcavity, is crucial in maintain-
ing the strong coupling regime of polaritons at high carrier density.
The far-field polariton emission pattern was measured to probe the
population distribution along the lower polariton branch. The
spatially resolved emission and its coherence properties are accessible
in a real-space imaging set-up combined with an actively stabilized

Figure 1 |Microcavity diagram and energy dispersion. a, A microcavity is a
planar Fabry–Perot resonator with two Bragg mirrors at resonance with
excitons in quantum wells (QW). The exciton is an optically active dipole
that results from the Coulomb interaction between an electron in the
conduction band and a hole in the valence band. In microcavities operating
in the strong coupling regime of the light–matter interaction, 2D excitons
and 2D optical modes give rise to new eigenmodes, called microcavity
polaritons. b, Energy levels as a function of the in-plane wavevector kk in a
CdTe-based microcavity. Interaction between exciton and photon modes,
with parabolic dispersions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions featuring an anticrossing
typical of the strong coupling regime. The excitation laser is at high energy
and excites free carrier states of the quantum well. Relaxation towards the
exciton level and the bottom of the lower polariton branch occurs by
acoustic and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission of photons that
can be used to probe their properties. Photons emitted at angle v correspond
to polaritons of energy E and in-plane wavevector kk ¼ ðE="cÞsinv:

Figure 2 | Far-field emission measured at 5K for three excitation
intensities. Left panels, 0.55P thr; centre panels, P thr; and right panels,
1.14P thr; where P thr ¼ 1.67 kWcm22 is the threshold power of
condensation. a, Pseudo-3D images of the far-field emission within the
angular cone of^238, with the emission intensity displayed on the vertical axis
(in arbitrary units).With increasing excitation power, a sharp and intensepeak
is formed in the centre of the emission distribution ðvx ¼ vy ¼ 08Þ;
corresponding to the lowest momentum state kk ¼ 0. b, Same data as in a
but resolved in energy. For such a measurement, a slice of the far-field
emission corresponding to vx ¼ 08 is dispersed by a spectrometer and
imaged on a charge-coupled device (CCD) camera. The horizontal axes
display the emission angle (top axis) and the in-plane momentum (bottom
axis); the vertical axis displays the emission energy in a false-colour scale
(different for each panel; the units for the colour scale are number of counts
on the CCD camera, normalized to the integration time and optical density
filters, divided by 1,000 so that 1 corresponds to the level of dark counts:
1,000). Below threshold (left panel), the emission is broadly distributed in
momentum and energy. Above threshold, the emission comes almost
exclusively from the kk ¼ 0 lowest energy state (right panel). A small blue
shift of about 0.5meV, or 2%of the Rabi splitting, is observed for the ground
state, which indicates that the microcavity is still in the strong coupling
regime.
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Phase transitions to quantum condensed phases—such as Bose–Einstein condensation (BEC), superfluidity, and
superconductivity—have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has,
for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin.
Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems
are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to
the creation of exciton polaritons. These bosonic quasi-particles are 109 times lighter than rubidium atoms, thus
theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of
experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation
of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence,
and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a
macroscopic quantum phase.

Bosons—particles with an integer spin—can undergo BEC when
their de Broglie wavelength becomes comparable to their average
separation. Then a large fraction of the bosons condense in the lowest
quantum state, resulting in the appearance of macroscopic coher-
ence. Massive occupation of the ground state1,2 and the expected
spontaneous coherence3–5 have been clearly demonstrated for dilute
atom gases cooled down to temperatures of about 1026 K.
For solid-state systems, excitons in semiconductors have long been

considered a promising candidate for BEC at temperatures of a few
kelvin, reachable by standard cryogenic techniques6–8. Excitons are
light-mass Bose particles analogous to positronium, consisting of
bound electron–hole pairs, usually produced by optical excitation.
Over the past three decades there have been numerous studies and
early claims of exciton BEC in three-dimensional (3D) semiconduc-
tors (for a recent review see refs 9 and 10). Other systems in the solid
state have also exhibited unusual physical properties tentatively
attributed to BEC11,12.
Recently new directions have been explored for exciton BEC, using

two-dimensional (2D) quantum structures, such as coupled quan-
tum wells under an external applied electric field13,14, or quantum
wells embedded in optical microcavities. The second system consists
in planar Fabry–Perot resonators whose optical length is tuned to a
half-integer multiple of the emission wavelength of quantum well
excitons. The near-degeneracy and strong coupling of the exciton and
cavity photon leads to the formation of new eigenstates (see Fig. 1)
called polaritons, which are half-light, half-matter bosonic quasi-
particles15,16. The extremely steep dispersion of the cavity polariton
modes, due to the optical confinement along the zdirection, results in a
typical polariton effective mass of 1024 times the free electron mass.
Thus, in theory, the temperature and density criteria for BEC of
polaritons in their kk ¼ 0 ground state should be satisfied much
more easily than for excitons. Moreover, from the experimental side,

we note that the coherence, polarization and population distribution
properties of polaritons can be conveniently probed by analysing the
far-field emission, because the light emitted by the microcavity is
part of the polariton wavefunction17. The drawback of the strong
coupling is the very short polariton lifetime, typically of around
10212 s, which could be an obstacle to reach thermal equilibrium.
Although full thermalization cannot be achievedwith the host lattice,
it will be shown below that polariton–polariton scattering processes
are fast enough under high excitation to produce a fully thermalized
polariton gas.
The first indication of spontaneous quantum degeneracy of

polaritons was the observation of stimulated emission under non-
resonant pumping in CdTe microcavities18: above some excitation
power threshold, the polariton emission exhibits a strong nonlinear-
ity, while the linewidth shows significant narrowing. Since then
several claims of polariton condensation have been made. In par-
ticular, the second-order time correlations in a GaAs-based micro-
cavity were measured to support such a claim19. However, no
measurement of the polarization or of the spatial coherence is
performed. Also, the second-order correlations do not follow the
expected signature: at the stimulation threshold they are found to be
quasi-thermal, and above threshold remain far from that expected
for a coherent state. Of the defining features of BEC—that is,
spontaneous symmetry breaking and long-range order20,21—no
direct proof in semiconductor systems has ever been given9,10.
Of course, an infinite 2D system never develops true long-range

order (see the Supplementary Information)22. However, owing to the
finite size of the excitation spot, the size of the polariton cloud is
finite, and one can achieve complete coherence across the cloud at
low enough temperatures and macroscopic occupation of a single
quantum state. Polaritons also have some specific features: first, they
exhibit strong interactions even at modest densities23,24, so the

ARTICLES

1CEA-CNRS-UJF joint group ‘Nanophysique et Semiconducteurs’, Laboratoire de Spectrométrie Physique (CNRS UMR5588), Université J. Fourier-Grenoble, F-38402 Saint Martin
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Michelson interferometer to study phase spatial correlations. Exper-
iments discussed in this work were performed for a slightly positive
cavity–exciton detuning (3 to 8meV).

Thermalization and condensation
Under non-resonant and high excitation, the polariton emission in
CdTe-based microcavities becomes highly nonlinear18,27–30. We first
analyse the spectral and angular distribution of the emission as a
function of the excitation power. Figure 2a displays pseudo-3D
images of the angular distribution of the spectrally integrated
emission. Below threshold (left), the emission exhibits a smooth
distribution around vx ¼ v y ¼ 08, that is, around kk ¼ 0. When the
excitation intensity is increased, the emission from the zero momen-
tum state becomes predominant at threshold (centre) and a sharp
peak forms at kk ¼ 0 above threshold (right). Figure 2b shows the
energy and angle-resolved emission intensities. The width of the
momentum distribution shrinks with increasing excitation intensity,
and above threshold, the emission mainly comes from the lowest
energy state at kk ¼ 0. The polariton occupancy has been extracted
from such emission patterns by taking into account the radiative
lifetime of polaritons.
Figure 3a shows the occupancy of the ground state, as well as its

emission energy and linewidth as a function of excitation power.
With increasing excitation power, the occupancy first increases
linearly, then exponentially, with sharp threshold-like behaviour. It
should be noted that the occupancy at threshold is close to unity,
consistent with a polariton relaxation process stimulated by the
ground-state population: a specific feature of bosons. The emission
blue shift was measured to be less than a tenth of the Rabi splitting at
a pumping level ten times above the nonlinear threshold, confirming
that the microcavity is still in the strong coupling regime. We
measured the ordinary lasing excitation threshold and found it to
be 50 times higher than the condensation threshold (not shown).
The linewidth of the kk ¼ 0 emission shows significant narrowing

at the nonlinear threshold29,30, down to half of the polariton line-
width in the linear regime (Fig. 3a). The line broadening observed at
higher excitation is due to decoherence induced by polariton self-
interaction31. We studied the coherence time more directly using a
Michelson interferometer (not shown). This measurement gives a
coherence time of 1.5 ps below the nonlinear threshold, and 6 ps
above threshold, consistent with the spectral narrowing observed at
threshold.
Signatures of polariton coherence in CdTe-based microcavities

have been previously reported28,29. Macroscopic coherence in the
momentum plane was observed above the nonlinear threshold28.
However, the use of a small excitation spot (3 mm diameter) pre-
vented relaxation into the lowest polariton energy states: polariton
stimulation occurred in excited states and was thus only remotely
connected with BEC. An experiment under conditions more favour-
able to BEC (25-mm-diameter spot), in which polaritons could
condense into the lowest energy state, indirectly showed the build-
up of macroscopic coherence in real space above threshold29. How-
ever, that measurement was obtained under pulsed excitation (150-fs
pulses), thus precluding steady state in the system and mixing high
polariton densities at short times and low densities at long times on
the same spectra.
Figure 3b displays the occupancy of polaritons as a function of

their energy. The occupancy is computed by measuring the intensity
of the signal, taking into account the polariton radiative recombina-
tion rate and the efficiency of the collection set-up. The uncertainty
may be estimated to be roughly a factor of two. The estimation has
been performed for different detunings and the threshold is always
observed for occupancies of the order of one, in agreement with all
previous measurements. For the sake of simplicity, we have arbitra-
rily adjusted the ground-state occupancy to be one at threshold. At
very low excitation power, the polariton occupancy is not therma-
lized29,32,33. Close to threshold, the occupancy can be fitted with a
Maxwell–Boltzmann distribution, indicating a polariton gas in

Figure 3 |Polariton occupancymeasured at 5K. a, Occupancy of the kk ¼ 0
ground state (solid black diamonds), its energy blue shift (solid green
circles) and linewidth (open red triangles) versus the excitation power. The
blue shift is plotted in units of the Rabi splitting Q ¼ 26meV. At low
excitation densities, the ground-state occupancy increases linearly with the
excitation and then, immediately after threshold, increases exponentially
before becoming linear again. This sharp transition is accompanied by a
decrease of the linewidth by about a factor of two, corresponding to an
increase of the polariton coherence. Further increase in linewidth is due to
interaction between polaritons in the condensate. The polariton ground
state slightly blue shifts, by less than 7% of the Rabi splitting for densities up
to seven times the threshold density, staying well below the uncoupled
exciton (EX) and photon mode (Eph) energies. This provides clear evidence
of the strong coupling regime. b, Polariton occupancy in ground- and
excited-state levels is plotted in a semi-logarithmic scale for various

excitation powers. For each excitation power, the zero of the energy scale
corresponds to the energy of the kk ¼ 0 ground state. The occupancy is
deduced from far-field emission data (see Fig. 2b), taking into account the
radiative lifetime of polaritons. At the excitation threshold, the polariton gas
is fully thermalized, as indicated by the Boltzmann-like exponential decay of
the distribution function. Above threshold, the ground state becomes
massively occupied, whereas the excited states are saturated, which is typical
of BEC. The polariton thermal cloud is found to be at 19K without
significant changes when increasing the excitation to twice the threshold
power. The low-energy part of the polariton occupancy cannot usually be
properly fitted by a Bose distribution function, as expected for BEC of
interacting particles. The error bars indicate standard deviation for each
point; and the absolute uncertainty in occupation factor and polariton
energy is given as the black scale bars.
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Phase transitions to quantum condensed phases—such as Bose–Einstein condensation (BEC), superfluidity, and
superconductivity—have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has,
for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin.
Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems
are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to
the creation of exciton polaritons. These bosonic quasi-particles are 109 times lighter than rubidium atoms, thus
theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of
experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation
of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence,
and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a
macroscopic quantum phase.

Bosons—particles with an integer spin—can undergo BEC when
their de Broglie wavelength becomes comparable to their average
separation. Then a large fraction of the bosons condense in the lowest
quantum state, resulting in the appearance of macroscopic coher-
ence. Massive occupation of the ground state1,2 and the expected
spontaneous coherence3–5 have been clearly demonstrated for dilute
atom gases cooled down to temperatures of about 1026 K.
For solid-state systems, excitons in semiconductors have long been

considered a promising candidate for BEC at temperatures of a few
kelvin, reachable by standard cryogenic techniques6–8. Excitons are
light-mass Bose particles analogous to positronium, consisting of
bound electron–hole pairs, usually produced by optical excitation.
Over the past three decades there have been numerous studies and
early claims of exciton BEC in three-dimensional (3D) semiconduc-
tors (for a recent review see refs 9 and 10). Other systems in the solid
state have also exhibited unusual physical properties tentatively
attributed to BEC11,12.
Recently new directions have been explored for exciton BEC, using

two-dimensional (2D) quantum structures, such as coupled quan-
tum wells under an external applied electric field13,14, or quantum
wells embedded in optical microcavities. The second system consists
in planar Fabry–Perot resonators whose optical length is tuned to a
half-integer multiple of the emission wavelength of quantum well
excitons. The near-degeneracy and strong coupling of the exciton and
cavity photon leads to the formation of new eigenstates (see Fig. 1)
called polaritons, which are half-light, half-matter bosonic quasi-
particles15,16. The extremely steep dispersion of the cavity polariton
modes, due to the optical confinement along the zdirection, results in a
typical polariton effective mass of 1024 times the free electron mass.
Thus, in theory, the temperature and density criteria for BEC of
polaritons in their kk ¼ 0 ground state should be satisfied much
more easily than for excitons. Moreover, from the experimental side,

we note that the coherence, polarization and population distribution
properties of polaritons can be conveniently probed by analysing the
far-field emission, because the light emitted by the microcavity is
part of the polariton wavefunction17. The drawback of the strong
coupling is the very short polariton lifetime, typically of around
10212 s, which could be an obstacle to reach thermal equilibrium.
Although full thermalization cannot be achievedwith the host lattice,
it will be shown below that polariton–polariton scattering processes
are fast enough under high excitation to produce a fully thermalized
polariton gas.
The first indication of spontaneous quantum degeneracy of

polaritons was the observation of stimulated emission under non-
resonant pumping in CdTe microcavities18: above some excitation
power threshold, the polariton emission exhibits a strong nonlinear-
ity, while the linewidth shows significant narrowing. Since then
several claims of polariton condensation have been made. In par-
ticular, the second-order time correlations in a GaAs-based micro-
cavity were measured to support such a claim19. However, no
measurement of the polarization or of the spatial coherence is
performed. Also, the second-order correlations do not follow the
expected signature: at the stimulation threshold they are found to be
quasi-thermal, and above threshold remain far from that expected
for a coherent state. Of the defining features of BEC—that is,
spontaneous symmetry breaking and long-range order20,21—no
direct proof in semiconductor systems has ever been given9,10.
Of course, an infinite 2D system never develops true long-range

order (see the Supplementary Information)22. However, owing to the
finite size of the excitation spot, the size of the polariton cloud is
finite, and one can achieve complete coherence across the cloud at
low enough temperatures and macroscopic occupation of a single
quantum state. Polaritons also have some specific features: first, they
exhibit strong interactions even at modest densities23,24, so the
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for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin.
Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems
are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to
the creation of exciton polaritons. These bosonic quasi-particles are 109 times lighter than rubidium atoms, thus
theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of
experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation
of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence,
and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a
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Bosons—particles with an integer spin—can undergo BEC when
their de Broglie wavelength becomes comparable to their average
separation. Then a large fraction of the bosons condense in the lowest
quantum state, resulting in the appearance of macroscopic coher-
ence. Massive occupation of the ground state1,2 and the expected
spontaneous coherence3–5 have been clearly demonstrated for dilute
atom gases cooled down to temperatures of about 1026 K.
For solid-state systems, excitons in semiconductors have long been

considered a promising candidate for BEC at temperatures of a few
kelvin, reachable by standard cryogenic techniques6–8. Excitons are
light-mass Bose particles analogous to positronium, consisting of
bound electron–hole pairs, usually produced by optical excitation.
Over the past three decades there have been numerous studies and
early claims of exciton BEC in three-dimensional (3D) semiconduc-
tors (for a recent review see refs 9 and 10). Other systems in the solid
state have also exhibited unusual physical properties tentatively
attributed to BEC11,12.
Recently new directions have been explored for exciton BEC, using

two-dimensional (2D) quantum structures, such as coupled quan-
tum wells under an external applied electric field13,14, or quantum
wells embedded in optical microcavities. The second system consists
in planar Fabry–Perot resonators whose optical length is tuned to a
half-integer multiple of the emission wavelength of quantum well
excitons. The near-degeneracy and strong coupling of the exciton and
cavity photon leads to the formation of new eigenstates (see Fig. 1)
called polaritons, which are half-light, half-matter bosonic quasi-
particles15,16. The extremely steep dispersion of the cavity polariton
modes, due to the optical confinement along the zdirection, results in a
typical polariton effective mass of 1024 times the free electron mass.
Thus, in theory, the temperature and density criteria for BEC of
polaritons in their kk ¼ 0 ground state should be satisfied much
more easily than for excitons. Moreover, from the experimental side,

we note that the coherence, polarization and population distribution
properties of polaritons can be conveniently probed by analysing the
far-field emission, because the light emitted by the microcavity is
part of the polariton wavefunction17. The drawback of the strong
coupling is the very short polariton lifetime, typically of around
10212 s, which could be an obstacle to reach thermal equilibrium.
Although full thermalization cannot be achievedwith the host lattice,
it will be shown below that polariton–polariton scattering processes
are fast enough under high excitation to produce a fully thermalized
polariton gas.
The first indication of spontaneous quantum degeneracy of

polaritons was the observation of stimulated emission under non-
resonant pumping in CdTe microcavities18: above some excitation
power threshold, the polariton emission exhibits a strong nonlinear-
ity, while the linewidth shows significant narrowing. Since then
several claims of polariton condensation have been made. In par-
ticular, the second-order time correlations in a GaAs-based micro-
cavity were measured to support such a claim19. However, no
measurement of the polarization or of the spatial coherence is
performed. Also, the second-order correlations do not follow the
expected signature: at the stimulation threshold they are found to be
quasi-thermal, and above threshold remain far from that expected
for a coherent state. Of the defining features of BEC—that is,
spontaneous symmetry breaking and long-range order20,21—no
direct proof in semiconductor systems has ever been given9,10.
Of course, an infinite 2D system never develops true long-range

order (see the Supplementary Information)22. However, owing to the
finite size of the excitation spot, the size of the polariton cloud is
finite, and one can achieve complete coherence across the cloud at
low enough temperatures and macroscopic occupation of a single
quantum state. Polaritons also have some specific features: first, they
exhibit strong interactions even at modest densities23,24, so the
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Three distributions

We have now completed our collection of three distributions.

First, a collection of distinguishable particles follows the

Boltzmann distribution:

nj =
N

Z
e−

εj
kT . (19)

Note that j indexes particle states, not energy levels.

Then, for a collection of indistinguishable fermions, we found

the Fermi-Dirac distribution:

ni =
gi

e
εi−µ
kT + 1

. (20)

In this case, i indexes energy levels, not individual states.

Finally, we found the Bose-Einstein distribution for a collection

of indistinguishable bosons (18):

ni =
gi

Be
εi
kT − 1

.
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Fermions and bosons

The formulas for the Fermi-Dirac distribution (20):

ni =
gi

e
εi−µ
kT + 1

and the Bose-Einstein distribution (18):

ni =
gi

Be
εi
kT − 1

.

appear very similar. However, the difference in sign in the

denominator is critical. Since ex > 0 for all x, for the

Fermi-Dirac distribution, we always have ni < gi; in other

words, fermions always obey the Pauli exclusion principle.

But for bosons, it is possible to have ni " gi, if εi # kT , and

B ≈ 1. In other words, it is possible for many identical bosons

to exist in the same state.

Statistical Physics 13 Part 5: The Bose-Einstein Distribution

PHYS393 – Statistical Physics

Part 5: The Bose-Einstein Distribution

Distinguishable and indistinguishable particles

In the previous parts of this course, we derived the Boltzmann

distribution, which described how the number of distinguishable

particles in different energy states varied with the energy of

those states, at different temperatures:

nj =
N

Z
e−

εj
kT . (1)

However, in systems consisting of collections of identical

fermions or identical bosons, the wave function of the system

has to be either antisymmetric (for fermions) or symmetric (for

bosons) under interchange of any two particles. With the

allowed wave functions, it is no longer possible to identify a

particular particle with a particular energy state. Instead, all

the particles are “shared” between the occupied states. The

particles are said to be indistinguishable.

Statistical Physics 1 Part 5: The Bose-Einstein Distribution
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Fig. 1. – Criterion for Bose-Einstein condensation. At high temperatures, a weakly interacting gas can be treated
as a system of “billiard balls.” In a simplified quantum description, the atoms can be regarded as wavepackets
with an extension λdB . At the BEC transition temperature, λdB becomes comparable to the distance between
atoms, and a Bose condensate forms. As the temperature approaches zero, the thermal cloud disappears leaving
a pure Bose condensate.

techniques and experiments performed through the end of 1997. The technique of evaporative cooling is
reviewed in [15]. Refs. [16, 17, 18, 19] are more popular papers, with ref. [18] containing many animated
movies of experimental data and ref. [19] discussing the concept of an atom laser.

1
.1. Basic features of Bose-Einstein condensation. – BEC in an ideal gas, described in various text-

books (e.g. [20]), is a paradigm of quantum statistical mechanics which offers profound insight into
macroscopic quantum phenomena. We want to focus here on selected aspects of BEC pertaining to
current experiments in trapped Bose gases.

1
.1.1. Length and energy scales. Bose-Einstein condensation is based on the indistinguishability and

wave nature of particles, both of which are at the heart of quantum mechanics. In a simplified picture,
atoms in a gas may be regarded as quantum-mechanical wavepackets which have an extent on the order
of a thermal de Broglie wavelength λdB = (2πh̄2/mkBT )1/2 where T is the temperature and m the mass
of the atom. λdB can be regarded as the position uncertainty associated with the thermal momentum
distribution. The lower the temperature, the longer λdB. When atoms are cooled to the point where λdB is
comparable to the interatomic separation, the atomic wavepackets “overlap” and the indistinguishability
of particles becomes important (fig. 1). At this temperature, bosons undergo a phase transition and form
a Bose-Einstein condensate, a coherent cloud of atoms all occupying the same quantum mechanical state.
The transition temperature and the peak atomic density n are related as nλ3

dB ! 2.612.

Bose-Einstein condensation in gases allows for a “first-principles” theoretical description because there
is a clear hierarchy of length and energy scales (table I). In a gas, the separation between atoms n−1/3

is much larger than the size of the atoms (characterized by the s-wave scattering length a), i.e. the
quantity na3 " 1. In a Bose condensed gas, the separation between atoms is equal to or smaller than
the thermal de Broglie wavelength. The largest length scale is the confinement, either characterized by
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the emission below threshold reveals a splitting of the order of
0.1meV between two linearly cross-polarized emissions at kk ¼ 0,
most probably due to anisotropic photonic structural disorder. This
splitting is much smaller than kT < 1.6 meV, and yet above
threshold, the system selects the lowest energy of these two states40.
Such a selection, as observed in atomic BEC, is a strong indication
that a phase transition has occurred.
The final step of our demonstration is the evidence of macroscopic

phase coherence20,21, that is, the direct measurement of long-range
spatial correlations. In particular, it will rule out the possibility of
several independent condensates.

Long-range spatial coherence
Spatial coherence has been investigated by measuring the classical
first-order correlation function of the polariton emission:

gð1Þðr; r 0 Þ ¼ kE*ðrÞEðr 0 Þl
kE*ðrÞlkEðr 0 Þl

where E(r) is the electric field at point r. For classical fields, gð1Þðr; r 0 Þ
gives the amount of phase correlations between the fields at points r
and r 0 without relative time delay. In the low-density regime, the
polaritons are expected to exhibit short-range correlations, with a
correlation length given by the thermal de Broglie wavelength. In the
condensed phase, complete coherence, up to the size of the con-
densate is expected20,21.
We combined a Michelson interferometer with a high-resolution

imaging set-up: two images of the condensate magnified 40 times,
each coming from one arm of the interferometer, are combined at the
output of the interferometer and overlap in the image plane, forming
an interference pattern. One image can be displaced with respect
to the other by any vector d simply by tilting a mirror of the
interferometer. The contrast C of the interference is measured for
each point of the image plane by scanning the relative phase of the
interferometer over ,6p, providing a direct measurement of the
correlation function:

Cðr;dÞ ¼ Imax 2 Imin

Imax þ Imin
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðrÞIðrþ dÞ

p

IðrÞ þ Iðrþ dÞ g
ð1Þðr; rþ dÞ

in which I denotes light intensity and Imax and Imin denote the
maximum and the minimum of the interference pattern (intensity
versus phase). We first measured the first-order correlation between
two small regions (,4 mm2) of the emission separated by 6 mm (see
Fig. 5a, b), as a function of the driving parameter—the excitation
power. Below threshold, the interference contrast is below 5%
resolution limited. Above the stimulation threshold, the contrast
grows up to 45%, indicating a significant increase in the correlation
length. Similar results have been obtained for any pair of bright spots
chosen within the condensate.
Next, we measured the correlations between any pair of points r

and r 0 symmetric with respect to the centre of the condensate. To do
so, we replaced the mirror in one arm of the interferometer by a
retro-reflector to invert the image in a centro-symmetric way. Thus,

Figure 5 | Spatial correlation measurements using a Michelson
interferometer. a, Solid red circles indicate correlations between two spots
separated by 6 mm (2.5 times the thermal de Broglie wavelength) within the
condensate as a function of the excitation power (the threshold power was
P thr ¼ 4.5 kWcm22). The correlation exhibits a threshold-like behaviour: it
starts to build up from a noise-limited value of 5–8% to 46% at excitation
power twice the threshold power. The variation of the ground-state emission
intensity, normalized to the excitation power, is shown for comparison
(solid black circles). The solid blue line is a quadratic fit of the data
demonstrating the occurrence of particle–particle interaction below
threshold. Above threshold, the solid red line is an exponential fit
demonstrating the strong stimulation of the relaxation by the high
occupancy factor of the ground state. b, Typical interference fringes between
spots 1 and 2 as a function of the relative phase (horizontal axis), measured
below (open blue triangles) and above (open red circles) the nonlinear
threshold, with contrasts of 5% and 46%, respectively. c, Correlation
mapping below threshold using a linear colour scale. Each point (x, y) in the

map represents the correlation between points (x, y) and (2x, 2y) of the
condensate (see e for details). The correlation peak extends over 2.6mm
(full-width at half-maximum), thus providing a measurement of the de
Broglie wavelength. d, Same as c but for excitation above threshold. Some
islands with a high degree of correlation (up to 30%) are formed for
distances as long as 4.5 times the thermal de Broglie wavelength. These
islands correspond to the bright spots caused by the in-plane spatial disorder
experienced by the condensate (see Fig. 4f). e, Schematic description of the
experiment realized for correlation mapping in c and d. The first ‘smiley’
symbolizes the image originating from the first arm of the Michelson
interferometer. The second arm produces an identical but flipped image
with respect to a chosen point (here, the red nose). The resulting
interference pattern consists in the overlap of the two images, each point
corresponding to the interference between one point of the ‘smiley’ and
its symmetric with respect to the nose. All experiments were done using a
20-mm-diameter spot with a gaussian intensity profile.
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