POLARYTONY EKSCYTONOWE W MIKROWNĘKACH PÓŁPRZEWODNIKOWYCH

dr B. Piętka, Zakład Fizyki Ciała Stałego, Wydział Fizyk w ramach wykładu Wybrane Aspekty Nanotechnologii dla IN 2015

OUTLINE

KONDENSAT BOSEGO - EINSTEINA

co to jest **? POLARYTON ?**

NADCIEKŁOŚĆ I WIRY KWANTOWE

dodatek: OBRAZOWANIE MECHANIKI KWANTOWEJ - FUNKCJE FALOWE STANÓW ZWIĄZANYCH

OUTLINE

KONDENSAT BOSEGO - EINSTEINA

co to jest ? POLARYTON ?

NADCIEKŁOŚĆ I WIRY KWANTOWE

dodatek: OBRAZOWANIE MECHANIKI KWANTOWEJ - FUNKCJE FALOWE STANÓW ZWIĄZANYCH

POLARYTONY EKSCYTONOWE W MIKROWNĘKACH PÓŁPRZEWODNIKOWYCH

SHORT HISTORY OF STRONG COUPLING IN SEMICONDUCTORS

1951 **Huang** : oddziaływanie fali e-m z drganiami optycznymi sieci (równia Maxwella + klasyczne drgania sieci)

1950 Fano - podejście kwantowe

1958 Piekar & Hopfield

oddziaływanie ekscytonów z promieniowaniem e-m (podejście kwantowe) –

X

WLO

ωτο

Polarytony - sprzężone mody fotonu i wzbudzeń elementarnych rozprzestrzeniające się w ośrodku z zależnym od częstości zespolonym tensorem funkcji dielektrycznej polarytony fononowe polarytony ekscytonowe polarytony magnonowe polarytony plazmowe

przegląd za W.Wardzyński IFPAN 5

SPRZĘŻENIE POMIĘDZY FOTONAMI I EKSCYTONAMI

EKSCYTON W STUDNI KWANTOWEJ

FOTON W MIKROWNĘCE

 $k = (k_x, k_y, k_z)$ DYSPERSJA POLARYTONÓW

dyspersja ekscy ton
$$\frac{2\pi}{L_c}$$
 studni kwant $\sqrt{\varepsilon^2 + q^2} \approx a + \frac{\varepsilon^2}{2a}$
 $E_X(k) = E_g - E_b + \frac{\hbar^2 k^2}{2m_X}$
dysp $E(\vec{k}) = \frac{\hbar c}{n} |\vec{k}| = \frac{\hbar c}{n} \sqrt{\left(\frac{2\pi}{L_c}\right)^2 + \frac{2\pi}{c}} + \frac{\hbar c}{n} \sqrt{\left(\frac{2\pi}{L_c}\right)^2 + \frac{2\pi}{c}} + \frac{\hbar c}{n} \sqrt{\frac{2\pi}{L_c}} + \frac{2\pi}{c} + \frac{2\pi}{c$

$$E\left(\vec{k}\right) \approx \frac{\hbar c}{n} \left[\frac{2\pi}{L_c} + \frac{k_{II}^2 L_c}{4\pi}\right] = E_0 + \frac{\hbar^2 k_{II}^2}{2m_{ph}^*}$$

wnioski:

foton o masie efektywnej !!!

$$m_C^* = \frac{\hbar k_z n}{c} = \frac{\hbar n^2}{c\lambda_0}$$

2a

image after: M. S. Skolnick et al. Semicond. Sci. Technol. 13, 645 (1998)

POLARYTONY W MIKROWNĘCE

POLARYTONY W MIKROWNĘCE

CONDENSED STATE OF POLARITONS

KONDENSAT VS OBRAZ INTERFERENCYJNY

Experimental realization:

Mirror arm real space

Retroreflector arm real space

Interferogram

20µm

Disorder in sample Different positions will give different interferograms

INTERFENCJA !!!

& WIRY KWANTOWE !!!

Interferogram

+ nadciekłość

ROZDZIELCZOŚĆ FAZOWA DLA ATOMOWYCH KONDENSATÓW

Observation of vortices in BEC Inouye *et al*, PRL **87**, 080402 (2001)

Czy są inne rodzaje makroskopowych wirów kwantowych ? INSPIRED BY NATURE

naturalne wiry kwantowe

WIRY KWANTOWE

WIRY W PŁYNACH KLASYCZNYCH - KILKA PRZYKLADÓW

image source:<u>http://
www.youtube.com/watch?
v=qpDKRrS9aqE</u>

$$\vec{\omega} = \frac{1}{2}\vec{\nabla} \times \vec{v} \neq 0$$

w obszarze wiru:

WIRY KWANTOWE

pole bezwirowe

w obszarze wiru:

$$\vec{\omega} = \vec{\nabla} \times \vec{v} = \frac{\hbar}{m} \vec{\nabla} \times \vec{\nabla} \phi = 0$$

$$\vec{\omega} = \vec{\nabla} \times \vec{v} = \frac{\hbar}{m} \vec{\nabla} \times \vec{\nabla} \phi = \hat{z} \frac{h}{m} l \cdot \delta^2(\rho)$$
$$\phi = (x, y)$$

WIRY W STANIE NADCIEKŁYM - DEFEKTY

reakcja układu na zaburzenie

WIRY SĄ STANEM WZBUDZONYM UKŁADU (TU: BĘDĄCEGO W STANIE NADCIEKŁYM !) mają wnętrze z zerową gęstością cząstek kwantowe wiry mają skwantowaną fazę wokół centrum wiru

$$\psi = \sqrt{N}e^{i\phi}$$

$$\Delta \phi = 2\pi \cdot l$$

$$\vec{v} = \frac{\hbar}{m} \vec{\nabla} \phi$$
 prędkość cieczy nadciekłej jest
proporcjonalna do gradientu fazy

Krążenie
$$\Gamma = \oint_{C} \vec{v} \cdot d\vec{l}$$

 $\Gamma = \frac{\hbar}{m} \oint_{C} \vec{\nabla} \phi \cdot d\vec{l} = \frac{\hbar}{m} \Delta \phi = \frac{\hbar}{m} 2\pi \cdot l = \frac{h}{m} l$

WIRY W STANIE NADCIEKŁYM - METODY OBSERWACJI

WŁASNOŚCI MIERZALNE EKSPERYMENTALNIE

We wnętrzu wiru nie ma cząstek (gęstość w centrum wiru jest zero)

FAZA: całkowite wielokrotności 2 π dookoła centrum wiru

ZASADA DOŚWIADCZALNA DETEKCJI FAZY

dyslok.acja typu Y

source: E. L. Bolda et al. Phys. Rev. Lett. 81, 5477 (1998)

UKŁAD EKSPERYMENTALNY

!!! AMPLITUDE & PHASE !!!

INTERFEROGRAM OD KUCHNI

I. mierzymy interferogram2. numerycznie liczymy FFT (fast fourier transform)3. otrzymujemy amplitudę i fazę

HYDRODYNAMIKA NADCIEKŁYCH POLARYTONÓW

CELE:

- ! DYNAMIKA NUKLEACJI WIRÓW!
- ROZDZIELCZOŚĆ PRZESTRZENNA
- ! Rozdzielczość fazowa !

Eksperyment w wydaniu klasycznym.

Ten sam eksperyment w wydaniu kwantowym :

WIRY W PŁYNACH KLASYCZNYCH

PRZEPŁYW LAMINARNY

WIRY STACJONARNE

ŚCIEŻKA WIRÓW BENARD-VON Karmana

WIRY RUCHOME

PRZEPŁYW CAŁKOWICIE TURBULENTNY

$R_e =$	Fluid_Velocity · Obstacle_diameter	predkosc · promien
	Kinematic_vis cos ity	lepkosc

Określa granicę niestabilności między przepływem laminarnym i różnymi typami przepływu turbulentnego

NADCIEKŁOŚĆ

THE MOST SPECTACULAR **FXAMPLES** ⁴He below λ point atomic BECs superfluid polaritons

Fluid_Velocity · *Obstacle_diameter* (I EDVOĆO viscosity

SUPERFLUID

dla

stan nadciekły

konsekwencja stanu kondensatu Bosego - Einsteina w systemie oddziałującym dobrze określona faza zadana funkcją falową

$$\psi = \sqrt{N}e^{i\theta}$$

"Gigantyczna fala materii"

ZDEFINIOWANE DLA PRĘDKOŚCI MNIEJSZYCH OD PRĘDKOŚCI DŹWIĘKU

kryterium nadciekłości Landaua

fale czerenkova - uderzeniowa fala dźwiękowa

RÓŻNE ZACHOWANIA SIĘ PŁYNU W ZALEŻNOŚCI OD PRĘDKOŚCI

TURBULENCJE W STANACH NADCIEKŁYCH - duże zainteresowanie środowiska naukowego ! THEORETICAL WORK

w kondensatach atomowych

Vortex shedding and drag in a BEC Pojawianie się wirów i siły nośnej w kondensacie Bosego - Einsteina Winiecki *et al*, J. Phys. B **33**, 4069 (2000)

Frisch *et al*, PRL **69**, 1644 (1992) pojawianie się wirów z powodu tarcia

Bénard- Von Kármán street in a BEC Ścieżka wirów von Karmana w kondensacie Bosego - Einsteina Sasaki *et al*, PRL **104**, 150404 (2010)

SIECI WIRÓW

rotujące asymetryczne pułapki lub/i wirujący potencjał

- \odot^4 He poniżej punktu λ
 - 1950s Hall and Vinen

E. J. Yarmchuk, PRL 43, 1979

Vortex Lattices in Bose-Einstein Condensates Abo-Shaeer et al., Science 292, 476 (2001)

KREACJA WIRÓW W ATOMOWYM BEC

Vortex nucleation in a stirred BEC Raman *et al*, PRL **87**, 210402 (2001)

E.A.L. Henn et al., J Low Temp Phys 158, 435 (2010)

Observation of vortex dipoles in BEC, Neely et al, PRL 104, 160401 (2010)

WAŻNE - REALIZACJA EKSPERYMENTALNA !

prędkość dźwięku

stała oddziaływań

zmienia energię polarytonów : im więcej polarytonów tym ich energia jest większa

PUBLISHED ONLINE: 20 SEPTEMBER 2009 | DOI: 10.1038/NPHYS1364

A.Amo, et al. Nature 457, 291 (2009)

Superfluidity of polaritons in semiconductor microcavities

Alberto Amo¹*, Jérôme Lefrère¹, Simon Pigeon², Claire Adrados¹, Cristiano Ciuti², Iacopo Carusotto³, Romuald Houdré⁴, Elisabeth Giacobino¹ and Alberto Bramati¹*

prędkość dźwięku

doświadczenie

teoria

MAŁE PRĘDKOŚCI DLA DUŻYCH GĘSTOŚCI I MAŁYCH PRĘDKOŚCI

superfluid

V

opór aerodynamiczny

pojawianie się par wirów

V

Cs

polariton flow

supersonic

linear

REŻIM PRĘDKOŚCI DLA OBSERWACJI PAR WIRÓW DLA DUŻYCH GĘSTOŚCI

(duża prędkość dźwięku)

superfluid

opór aerodynamiczny

pojawianie się par wirów

supersonic

linear

polariton flow

 $v = 1.13 \frac{\mu m}{m}$ DS

REŻIM PRĘDKOŚCI DLA OBSERWACJI PAR WIRÓW DLA DUŻYCH GĘSTOŚCI

FIZYCZNE PODSTAWY NADCIEKŁOŚCI POLARYTONÓW

Theory + experiments: Amo *et al,* Nature Phys. **5**, 805 (2009)

Theory: Carusotto & Ciuti, PRL **93**, 166401 (2004) Theory + experiments: Amo *et al*, Nature Phys. **5**, 805 (2009)

Theory: Carusotto & Ciuti, PRL **93**, 166401 (2004) Theory + experiments: Amo *et al*, Nature Phys. **5**, 805 (2009)

Theory: Carusotto & Ciuti, PRL **93**, 166401 (2004) Theory + experiments: Amo *et al*, Nature Phys. **5**, 805 (2009)

Theory + experiments: Amo et al, Nature Phys. 5, 805 (2009)

TAKE HOME MESSAGES

Przełomowe odkrycia w fizyce polarytonów: KONDENSACJA BOSEGO - EINSTEINA NADCIEKŁOŚĆ WIRY KWANTOWE PÓŁ-WIRY KWANTOWE SOLITONY STANY ZLOKALIZOWANE

Duże możliwości fizyki polarytonów z punktu widzenia badań tych stanów kwantowych:

temperatury kriogeniczne lub nawet pokojowa wzbudzanie optyczne bezpośredni dostęp do fazy i gęstości polarytonów !!! obrazowanie przestrzenne i pędowe

Zastosowania : POLARYTONIKA - optoelektronika oparta na urządzeniach w których wykorzystuje się własności polarytonów

KONDENSAT w ciele stałym? tak!!!

J. Kasprzak, et. al Nature 443, 409 (2006)

WIR, PÓŁ-WIR!

K.G.Lagoudakis, et al. Nature Phys. 4, 706 (2008) K.G.Lagoudakis, et al. Science 326, 974 (2009)

rotacja fazy o 2π dookoła środka wiru

interferencja kondensatu polarytonów w detekcji rozdzielonych polaryzacji: σ + : dyslokacja typu fork-like σ - : nie ma dyslokacji

SPÓJNOŚĆ DALEKIEGO

nature

dynamika budowania koherencji fazy w przestrzeni

G. Nardin, B. Pietka et al. PRL 103, 256402 (2009)

NADCIEKŁOŚĆ POLARYTONÓW tak!!!

nature physics

PUBLISHED ONLINE: 20 SEPTEMBER 2009 | DOI: 10.1038/NPHYS1364

Superfluidity of polaritons in semiconductor microcavities

Alberto Amo¹*, Jérôme Lefrère¹, Simon Pigeon², Claire Adrados¹, Cristiano Ciuti², Iacopo Carusotto³, Romuald Houdré⁴, Elisabeth Giacobino¹ and Alberto Bramati¹*

TURBULENCJE KWANTOWE

nature physics

PUBLISHED ONLINE: 3 APRIL 2011 | DOI: 10.1038/NPHYS1959

Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid

Gaël Nardin*, Gabriele Grosso, Yoan Léger, Barbara Piẹtka[†], François Morier-Genoud and Benoît Deveaud-Plédran

« POLARITRONIC » DEVICES

Spontaneous formation and optical manipulation LETTERS UBLISHED ONLINE: 29 AUGUST 2010 | DOI: 10.1038/NPHYS1750 of extended polariton condensates

LP

4 - 4

 $P = 1.5 P_{\text{th}}$

0

 $k_v (\mu m^{-1})$

a

 $P = 1.5 P_{\rm th}$

0

 $k_v \,(\mu m^{-1})$

1,584

Energy (meV) 1'280

1,576

-4

E. Wertz¹, L. Ferrier¹, D. D. Solnyshkov², R. Johne², D. Sanvitto³, A. Lemaître¹, I. Sagnes¹, ×20 R. Grousson⁴, A. V. Kavokin⁵, P. Senellart¹, G. Malpuech² and J. Bloch^{1*} 1,590 -Energy (meV) 0.01 1,580 $P = 2.5 P_{th}$ Pump 100 µm 50 -100 -50 0 100 Y (μm) b С zaobserwowano 0.5 0 2 2 0 Δ propagację LP polarytonów na LP odległościach do 200 mikrometrów

 $P = 1.5 P_{\rm th}$

0

 $k_v (\mu m^{-1})$

4

4 - 4

nature physics

KONDENSAT POLARYTONÓW W POSTACI SOLITONÓW W PERIODYCZNYCH STRUKTURACH 1D

JASNE I CIEMNE SOLITONY

M. Sich et al., *Nature Photonics* **6**, 50 (2012) G. Grosso, et al., *Phys. Rev. B* 86, 020509(R) (2011)

THEORETICAL PROPOSALS – NEAR FUTURE REALITY

Polariton logic gates polarization controlled

T. Ostatnicky et al., PRB 81, 125319 2010

POLARITON « NEURONS » – OPTICAL CIRCUITS

Konstantinos Logoudakis Gaël Nardin Gabriele Grosso Taofiq Paraiso Yoan Léger Francois Morier - Genoud prof. Benoît Deveaud-Plédran

IPEQ, Ecole Polytechnique Fédérale de Lausanne (EPFL) Switzerland

Jacek Kasprzak Maxime Richard

CNRS, Institut Luis Neel, Grenoble, France

POLARYTONOWE "KROPKI KWANTOWE"

CZYLI JAK ZOBRAZOWAĆ FUNKCJĘ FALOWĄ STANÓW ZLOKALIZOWANYCH

6nm high mesa, Ø 3µm Top DBR 21 pairs λ cavity $\lambda + \Delta \lambda$ 8 nm **Bottom DBR** QW 22 pairs GaAs AIAs In_{0.04}Ga_{0.96}As

LATERAL CONFINEMENT

Local circular variations of the cavity length provide traps for the photonic component of the polaritons
Diameter of the traps : 3.5, 9 and 19 µm

• $\Omega_{0D} = 3.35 \text{meV}$

LATERAL CONFINEMENT

6nm high mesa, Ø 3µm

8 nm QW

UKŁAD EKSPERYMENTALNY - taki jak do PL

WIDMA PL Z POLARYTONOWEJ KROPKI KWANTOWEJ

CZĄSTKA W PUDLE

G. Nardin, et al. EPFL, Switzerland

 $m_{eff} \sim 0.7 \text{ meV} \cdot \text{ps}^2 \cdot \mu \text{m}^{-2}$ $m_{eff} \sim 10^{-4} \text{ m}_0$

UKŁAD EKSPERYMENTALNY (taki jak do PL)

energy.

3D VIEW OF THE PL

All confined and delocalized states visible in a single view !

Absence of PL from the trap at the energy of the 2D lower polariton !

G. Nardin, et al. EPFL, Switzerland

 \bigcirc

O

PRZEKRÓJ PRZEZ STANY ZWIĄZANE - 9µm PUDŁO

Symmetry can be broken by laser (with resonant excitation)

G. Nardin, et al. EPFL, Switzerland

UKŁAD EKSPERYMENTALNY

!!! AMPLITUDE & PHASE !!!

AMPLITUDE & PHASE OF CONFINED STATES

a resonant excitation

Experiment: Interferogram Amplitude Phase a) b) c) c) 5 µm d) e) f)

g) h) i)

G. Nardin, et al. EPFL, Switzerland

9µm mesa in magnetic field

9µm mesa in magnetic field

PODSUMOWANIE FIZYKI POLARYTONOWYCH KROPEK KWANTOWYCH:

PEŁNA WIZUALIZACJA FUNKCJI FALOWEJ

MOŻLIWA MODYFIKACJA I BEZPOŚREDNI WPŁYW NA STANY ZWIĄZANE