Kwazicząstki– model standardowy kwaziwszechświata

Wydział Fizyki Uniwersytetu Warszawskiego Jacek.Szczytko@fuw.edu.pl Andrzej Gołębiewski, Anita Gardias, Jarosław Rybusiński

Studenckie Koło Nanotechnologii Nanorurki

Google: Jacek Szczytko

Matematyka i przyroda

Dialog z przyrodą musi być prowadzony w języku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. prof. **Michał Heller**

Hubble Ultra Deep Field 2014

Pierwiastki

Group	1	2]	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	1 H																2 He		
2	з Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
			1															I	

	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*Lanthanoids		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**Actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

2019-03-12

LHC

LHC CERN

CALCER ME.	aome raro	eses and the	r rroperu									
Cząst	Category	Particle Name	Symbol	Anti- particle	Mass (MeV/c ²)	B	L,	Lµ	L,	5	Lifetime(s)	Principal Decay Modes ^a
	Leptons	Electron	e*	e+	0,511	0	+1	0	0	0	Stable	
		Electron- neutrino	v,	$\overline{\nu}_{e}$	$<7~{\rm eV}/\epsilon^2$	0	+1	0	0	0	Suble	
		Muon	μ~	μ^+	105.7	0	0	+1	0	0	2.20×10^{-6}	$e^- \overline{\nu}_e \nu_\mu$
		Muon- neutrino	ν_{μ}	$\overline{ u}_{\mu}$	< 0.3	0	0	+1	0	0	Stable	
		Tau	τ-	τ^+	1.784	0	0	0	+1	0	$< 4 \times 10^{-13}$	$\mu^- \overline{\nu}_{\mu} \nu_{\tau}, e^- \overline{\nu}_e \nu_{\tau}$
		Tau- neutrino	v ₇	$\overline{\nu}_{\tau}$	< 30	0.	0	0	+1	0	Stable	Ť
	Hadrons											
	Mesons	Pion	π^+	π^{-}	139.6	0	0	0	0	0	2.60×10^{-8}	$\mu^+ \nu_{\mu}$
			π^0	Self	135.0	0	0	0	0	0	0.83×10^{-16}	2γ
		Kaon	K+	К-	493.7	0	0	0	0	+1	1.24×10^{-8}	$\mu^+ \nu_\mu, \pi^+ \pi^0$
	-0		K_s^{α}	\overline{K}_{s}^{0}	497.7	0	0	0	0	+1	0.89×10^{-10}	$\pi^{+}\pi^{-}, 2\pi^{0}$
105	200		K _L ⁰	\overline{K}_{L}^{0}	497.7	0	0	0	0	+1	5.2×10^{-8}	$\pi^{\pm} e^{\mp} \overline{\nu}_{e} 3\pi^{0}$
particies												$\pi^{\pm}\mu^{\mp}\overline{\nu}_{\mu}$
Part		Eta	η	Self	548.8	0	0	0	0	0	$< 10^{-18}$	$2\gamma, 3\pi^{0}$
			η^{2}	Self	958	Ø	0	0	0	0	2.2×10^{-21}	$\eta \pi^+ \pi^-$
	Baryons	Proton	Р	P	938.3	+1	0	0	0	0	Stable	
		Neutron	n	n	939.6	+1	0.	0	0	0	614	$pe^-\overline{\nu}_e$
		Lambda	Λ^0	Λ^0	1 115.6	+1	0	0	0	-1	2.6×10^{-10}	pπ ⁻ , nπ ⁰
		Sigma	Σ^+	$\overline{\Sigma}^{-}$	1.189.4	+1	Ð	0	Ö	-1	0.80×10^{-10}	$p\pi^{0}, n\pi^{+}$
			Σ^{0}	Σ^{0}	1.192.5	+1	0	θ	0	-1	6×10^{-20}	$\Lambda^0 \gamma$
			Σ^{-}	$\overline{\Sigma}^{+}$	1 197.3	+1	0	0	0	-1	1.5×10^{-10}	$n\pi^{-}$
		Delta	Δ^{++}	$\overline{\Delta}$	1 230	+1	0	0	0	0	6×10^{-24}	pπ ⁺
			Δ^+	$\overline{\Delta}$ -	1 231	+1	0	0	0	0	6×10^{-24}	$p\pi^0$, $n\pi^+$
			Δ^{0}	$\overline{\Delta}{}^{0}$	1 232	+1	0	0	0	0	6×10^{-24}	nπ ⁰ , pπ⁻
			Δ-	$\overline{\Delta}^+$	1 234	+1	0	0	0	0	6×10^{-24}	$n\pi^{-}$
		Xi	Ξ 0	20	1 315	+1	0	0	0	-2	2.9×10^{-10}	$\Lambda^0 \pi^0$
			Ξ-	₫+	1 321	+1	0	0	0	-2	1.64×10^{-10}	$\Lambda^0 \pi^-$
		Omega	Ω-	Ω^+	1 672	+1	0	0	0	-3	0.82×10^{-10}	$\Xi^{-}\pi^{0}, \Xi^{0}\pi^{-}, \Lambda^{0}K^{-}$

⁴ Notations in this column such as $p\pi \rightarrow n + \pi^0$ mean two possible decay modes. In this case, the two possible decays are $\Lambda^0 \rightarrow p + \pi^+$ and $\Lambda^0 \rightarrow n + \pi^0$.

Cząstki elementarne - kwarki

The Nobel Prize in Physics 1969 Murray Gell-Mann

The Nobel Prize in Physics 1969

Murray Gell-Mann

The Nobel Prize in Physics 1969 was awarded to Murray Gell-Mann *"for his contributions and discoveries concerning the classification of elementary particles and their interactions"*.

Zweig, G	eorge
To the O	
DO W S	Artykuł

WIKIPEDIA Wolna encyklopedia

Strona główna

Najlepsze artykuły

Częste pytania (FAQ)

Wspomóż Wikipedie

Portal wikipedystów

Losuj artykuł Kategorie artykułów

Dla czytelników

O Wikipedii

Zołoś bład

Dla wikipedystów

Ogłoszenia Zasady

Pomoc

Narzedzia

Pierwsze kroki

Ostatnie zmiany

Kontakt

Nie jesteś zalogowany Dyskusja Edycje Utwórz konto Zaloguj się
 Artykuł Dyskusja Czytaj Edytuj Historia i autorzy Przeszukaj Wikipedię Q

George Zweig [edytuj]

George Zweig (ur. w roku 1937 w Moskwie, w rodzinie żydowskiej) - fizyk, był początkowo uczniem Richarda Feynmana, lecz z czasem poświęcił się neurobiologii. W roku 1959 ukończył Uniwersytet Michigan, a w roku 1964 Politechnikę Kalifornijską. Wiele lat spędził jako pracownik naukowy prowadząc badania naukowe w amerykańskim Narodowym Laboratorium Los Alamos i Politechnice w Massachusetts. Od roku 2004 zajął się pracą w przemyśle finansowym. George Zweig

W roku 1964 Zweig, będąc studentem ostatniego roku Politechniki Kalifornijskiej, (niezależnie od M. Gell-Manna) wysunął hipotezę istnienia kwarków. Zweig początkowo nazywał je "asami", posługując się analogią do czterech asów w tali kart, gdyż podejrzewał on, iż kwarków jest cztery.

$$E(\vec{v}) = \frac{mv^2}{2}$$

 $E(\vec{p}) = \frac{p^2}{2m}$

Trochę historii

XX w: materia ma (również) charakter falowy

Fale materii – De Broglie 1924 (Nobel 1929), doświadczenia G.P. Thomsona L.H. Germera i C.J Davissona (Nobel 1937) $\lambda = h / p$ $p = h / \lambda$

klasycznie

kwantowo

2019-03-12

Trochę historii

XX w: materia ma (również) charakter falowy

Fale materii – De Broglie 1924 (Nobel 1929), doświadczenia G.P. Thomsona L.H. Germera i C.J Davissona (Nobel 1937)

 $\lambda = h / p$

Single-electron events build up over a 20 minute exposure to form an interference pattern in this double-slit experiment by Akira Tonomura and coworkers. (a) 8 electrons; (b) 270 electrons; (c) 2000 electrons; (d) 60,000. A video of this experiment will soon be available on the web (www.hqrd.hitachi.co.jp/e m/doubleslit.html).

Fala materii (de Broigle'a) $\vec{p} = \hbar \vec{k}$

$$\vec{p} = m\vec{v} = \hbar\vec{k}$$

Oddzialywania wielociałowe

Many-body interactions

Oddzialywania wielociałowe

Struktura elektronowa ciała stałego

Fig. 2.3 Development of the diamond band gap

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics

Teoria pasmowa ciał stałych.

$$E(\vec{p}) = \frac{mv^2}{2} = \frac{\vec{p}^2}{2m} = \frac{\hbar^2 \vec{k}^2}{2m^*}$$

Na, K, Co, Al – elektrony

Zn, Cu, Au - ???

Pasmo prawie całkowicie zapełnione elektronami.

Układ wielociałowy:

Tworzymy kwazi-cząstki, które nie oddziaływują (albo przynajmniej niezbyt silnie), np. "swobodne elektrony" – to samo dla fononów, polaronów, plazmonów, ekscytonów, trionów, bieekscytonów....

Stwóraca kwazicząstek (Ty!)

Kwazi-cząstki (model standardowy)

Kwazi-cząstki (model standardowy)

Kwazi-cząstki (model standardowy)

Foton E = hvFonon $E = \hbar \omega$

Bozony

Magnon $E = \hbar \omega$

Kwazi-cząstki (model standardowy)

Fonon $E = \hbar \omega$

Magnon $E = \hbar \omega$

Cząstki elementarne

3D

Cząstki elementarne

3D

0.0-1000 <i>m</i> ₀	0.0-1 <i>m</i> ₀	0.1-1000 <i>m</i> ₀	0
-1 ½ e	1 1/2 <i>lh</i>	¹ 3/2 hh	ο γ 1
electron	light hole	heavy hole	photon

FIRST:

Coulomb potential in 3D in the semiconductor of dielectric constant ε_r , effective mass m^* :

quantum dot

Potencjał harmoniczny 2D

Zależność od mocy pobudzania widm fotoluminescencji otrzymanych w temperaturze bliskiej temperatury ciekłego helu (ok. 5 K) dla licznego (wielomilionowego) zbioru kropek kwantowych InAs/GaAs.

Potencjał harmoniczny 2D

Stany ubrane (ang. dressed states)

Cząstki elementarne

The polariton laboratory

Dr Barbara Piętka

Mateusz Król

Rafał Mirek

Fotoluminescencja polaritonów ekscytonowych

Ekscytony polaritonowe

W. Pacuski, R. Mirek et al.

Stany podwójnie ubrane (doubly dressed states)

2019-03-12

https://www.hzdr.de/db/Cms?pOid=23930&pNid=479

Experiment B. Piętka J. Szczytko (WF UW) D. Stephan M. Teich et al. (HZDR)

Theory M. Matuszewski, N. Bobrovska (IF PAN)

84

Cząstki złożone

3D

$\begin{array}{c c} 0.0-1000m_{0} & & 0.0-1m_{0} \\ \hline & -1 & & & 1 \\ \hline & \gamma_{2} & e & & 1 \\ electron & & light hole \end{array}$	0.1-1000 <i>m</i> 0 1 3/2 <i>hh</i> heavy hole	ο ο γ 1 photon
--	---	-------------------------

photon ⁰ ħω phonon ⁰ ħΩ magnon

- Monopole magnetyczne
- spinon, orbiton, holon
- skyrmiony
- majorama fermions
- ...

The pyrochlore and diamond lattices. The magnetic moments in spin ice reside on the sites of the pyrochlore lattice, which consists of cornersharing tetrahedra. These are at the same time the midpoints of the bonds of the diamond lattice (black) formed by the centres of the tetrahedra. The ratio of the lattice constant of the diamond and pyrochlore lattices is $a_d/a = \sqrt{3/2}$ The Ising axes are the local [111] directions, which point along the respective diamond lattice bonds.

A single spin flip produces defects on two neighboring tetrahedra. (C) The defects can move apart. They interact like oppositely charged magnetic monopoles connected by a trail of flipped spins (a Dirac string). The pink arrows indicate spins, the blue spheres indicate monopoles, and the red spheres indicate antimonopoles.

Magnetic monopoles in spin ice

The measured heat capacity per mole of Dy2Ti2O7 at zero field (open squares) is compared with a Debye-Hückel theory for the monopoles (blue line) and the best fit to a single-tetrahedron (Bethe lattice) approximation (red line).

D. J. P. Morris et al. SCIENCE VOL 326, 411 (2009)

Dirac string

http://physicsworld.com/cws/article/news/2009/sep/03/magnetic-monopoles-spotted-in-spin-ices

Zastosowania kwazicząstek

Zastosowania kwazicząstek

"Physics is like sex: sure, it may give some practical results, but that's not why we do it." Richard Feynman

Zamiast podsumowania

Stwórz sobie kwazi-cząstkę!

PODZIĘKOWANIA:

Andrzej Gołębiewski, Anita Gardias, Jarosław Rybusiński

Laboratorium magnetometrii SQUID

Andrzej Twardowski Andrzej Majhofer Anita Gardias Jarosław Rybusiński Maciej Marchwiany (Monte Carlo)

Studenci!

Marcin Witkowski

Piotr Łaski

Marcin Bartmański

Konrad Norowski

Arek Gempka

Dziekuję za uwagę

