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Dictionary

D =¢E

£o vacuum permittivity, permittivity of free space (przenikalnosc¢ elektryczna prézni)
&, relative permittivity (wzgledna przenikalnos¢ elektryczna)
€ = gy&, permittivity (przenikalnos¢ elektryczna)

—

B = uH
1o vacuum permeability, permeability of free space (przenikalnos¢ magnetyczna)
to = 4m-1077H/m
U, relative permeability (wzgledna przenikalnos¢ magnetyczna)
U = Uol, permeability (przenikalno$¢ magnetyczna)

magnetic susceptibility y,,, = u, — 1

electric field E and the magnetic field B
displacement field D and the magnetizing field H
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Scalar and vector fields

Maxwell’s equations in matter

L, 0B
VXE = ot Material equations (linear)
VXH=Jg + L
Jsw ™ 5t B =poH + M = po(1 + xm)H = uH = ppoH
Vl—j — — - - - - -
~ Psw D=¢eE+P=¢ey(1+y,)E =¢€E = ¢ey&,E
VB = ~
jsw =0
The equations written in the form of a 1 1 2 2
. 2 _ _ _
scalar ¢ and vector A potentials: vt = = =3
— — Ho€o Urér Hré&y T
B=VXA
., 0B 0A
Then \7><E=—E=——(|7><A) :>l7><E+ (|7><A) =0 >V x|E+— - ) =0
If the rotation of the gradient is zero, then: —Vp = E + B_A thus |F = —pp — O_A
9, dt
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Scalar and vector fields

Maxwell’s equations in matter

= - _ A
dt
Example: Q= —E7 + Cy A=—Et+ Cy
Not only constants C, and C, we can add for the scalar and vector potentials:
dx

Q= p-— A-A+vy eg: x = tE7t
We call it the gauge

- ]
Landau gauge: field B = (0,0,B,) = B, = % — 2—";‘ Ay = B,x lub Ay = —B,y

(unfortunately distinguishes direction)
Coulomb gauge: VA =0 field B = (0,0,B,) = A= %BZ(—y, x,0) = %ﬁ X 7

(unfortunately complicates calculations)

Lorentz gauge: VA + aa—(f =0
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Scalar and vector fields |

Schrodinger equation in the E and B fields:

B=VxA4 E=—-V _a_A
dt

{% [p— g AG, 0] +qpG D) + UG, t)}t,b(f, t) = ih%t/)(?, t)

/ The sum: kinetic momentum

Canonical momentum p

. . . h 5.
Continuity equation J@#@t) = _q (P*TY — Yry*) — 4 |P|2A(# t)
2im m
or else:

o sloposion) fmsinon) |

m
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Scalar and vector fields

—s—=—+ eFZ] Y(z) = e(2)

(eFZ)zr/3
£, = Cp,

2m

40 50

z/nm

RAGURE 4.86. Triangular potential well V(z) = ¢ Fz, showing the energy levels and wave functions,
The scales are for electrons in GaAs and a field of SMV m~L.
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Triangular well

2 g2
[—h—d— + eFZ] Y(z) = eP(z)

2m dz?
Transformation: 1.00 'ﬂ'“_;x')' [N AN B N B I B '!f' i
B ; / |
d2 m 0.75 | Biw = /
dz2 —¥(2) = HZ (eFz — &)Y (2) g J,’ :
0.50 | ~ i
nz \1/3 - n N / }\ .
Substituting: zo = (2 F) 025 [ha— AN AR Mx f\n‘ 1\ \ / \ 1
1/3 YA AN /.' VL [ j ]
(th) _ zZ  _ £ N IR AR NAREATAT /
eF 7 =— & = — 0.00 I 1 | \ AW | 1 h H | \ ]
&g = Zg = ’ — ’ — RHAWVVEAVVERN {' I'l o 'u' \ / .
%o %o SRVIAVIRV//RY AR Vo ]
i ] 1'| I | | \ !
d2 2m —0.25 WU Y \ViVi V\ j ]
— i - v \ / _
a2V = g (eFz = eh(2) o0 | W,
The equation reduces to Stokes or Airy equation: o _XS ’ ’

d2
—5f(2) = 2£(2)

Its two independent solutions the Airy functions Ai(z) and Bi(z). The solutions of the
equation are the zeros of a function Ai(z) (after some rearrangements).
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Scalar and vector fields

hZ 2 .
[_ amazz T t)] Y(2) = ep(z) selecting the gauging qo (7, t) = eFz

The stationary solutions as an Airy function:

(1 € . [(eFz—¢
o Y(z, &) = Ai (Z_O(Z_B_F)>_Al<—€0 )

05 e 0.5
(a) t {(b) 1/3
(eFh)?
0.4 'l'l‘ , l'l"" "" "’.A_ . 0.4 g = eFZO = o
0.3 | 103
N |
HHHLA. 1oy nz \"3
0.1} | | 4 0.1
! Vi(z) = eFz |
WANSY e 1y
Wy
0.1 S - — .01
50 0 50 1000 2 g 6
—00 z/nm n\tNE,z=0)

FIGURE 6.1. (a) Potential energy e [z, three wave functions, and energies for electrons in GaAs

in a uniform electric field of 5MV m~!. (b) Local density of states at = == (. showing how the
features correspond to the wave functions.
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Scalar and vector fields

hZ d2 R
[— 1,2 + qo(7, t)] Y(z) = ep(z) selecting the gauging qo(7',t) = eFz

The stationary solutions as an Airy function:

And where is the motion of the electron in the field???

+ oo )
The wave function:

05 S 5 * solution: standing waves-

(a) ‘ .
; like!
0.4 v‘!‘i ' ‘1‘1!1‘ "" "’.L * the function tunnels in the

!
|
|
)

3 | ;

0.1y E Viz) =eFz
NiViWA I |
Wy

barier z > — ,
eF
* for the increasing potential
it decays more quickly,
* oscillates for z < i faster if

& . .
zZ—— - (—o0), it means it

increases the kinetic energy
6  * Adding a constant to the

_0‘1 , . 11 N L Cd . N . i
50 0 50 1000 2

(F) — .
—o0 | z/nm nip (E,2 = 0) potential CHANGES wave
FIGURE 6.1. (a) Potential energy e Fz, three wave functions, and energies for electrons in GaAs functions!
in a uniform electric field of 5MV m~!. (b) Local density of states at = == (. showing how the

features correspond to the wave functions.
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Local density of states

The density of states (in general) can be defined as:

N(E) = Z 5(E — &)

After integration

N'P(E) = ) 6(E —e() = JE,(k) 5k — k') 2 dk = % %m
k

N2 (E) = ) 6(E — &) = j E,tk) 5k — k) 2k dke = —
k

N3P (E) = Z 5(E — e(k)) = j E,ik) 5(k — k') 4mk? dk = i

k
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Local density of states

The density of states (in general) can be defined as:

N(E) = Z 5(E — &)

Local denisty of states:

N(E) = ) |9e@IPS(E — )

. °° eFz — ¢ 2 ’2m eFz — ¢
For instance: NlD(E, Z)NJ Ai? ( )5(5' —&)de ~ — Y ( )
—00 €o h €o €o
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Local density of states

The density of states (in general) can be defined as:

Z 5(E — &)

N(E) = ) |9e@IPS(E — )

N(E)

Local denisty of states:

— 00

: ® eFz — ¢ 2 [2m eFz —¢
Forinstance: NP(E, Z)NJ Ai? (—> S(E —¢&)de ~ - e_AiZ (—>
0

6 T T !. 006 T T T i
' {c) 3D |
] .
%
34 1 0.04| .
7]
|
Q
2
e 2 1 0.02
&
Q
!
0 ! | 1 0'00 L J
01 0 01 02 01 0 01 02 01 0 01 02

E/eV

FIGURE 6.2. Local densily of states #'F (£, 2) for electrons in GaAs in an electric field of

SMV m~! as a function of local kinetic energy. £ = £ — ¢ £z, The thin curves are the results for
2017-06-05 : . AARTY ‘ . 12
frec electrons. The units of n(E, 23 are eV ™ 'nm ™ in d dimensions,



Local density of states

The density of states (in general) can be defined as:

E _
N3P(E, z)~ %JZmeo j_ooAi2 M) nh3‘/ meo|[Ai' (s)]? — s[A4i(s)]?]

€o
eFz —E
S =
€0
, . 3 2 2m  (eFz—¢
For instance: , — |6(E—¢)de~ = |—Ai
h €o €o
0.06 — ]
{c) 3D
1 0.04| .
10.02
1
L | 1 0'00 L 1
01 0 01 02 01 0 01 02 -01 0 01 02

E/eV

FIGURE 6.2. Local densily of states #'F (£, 2) for electrons in GaAs in an electric field of
-1 : ~al kinetic S R L etves are the reslis {or
2017-06-05 SMVm™" asa functl(.)n of local k.metu, enflrgy. f,-. E ‘u’ z. hi"he thin curves are the results tor 13
ftec electrons. The units of #(E, 23 are eV~ 'nm ™ in d dimensions.



Local density of states

The density of states (in general) can be defined as:

E _
N3P (5,2~ ey j A2 <@> de =~ [Zmeg [0/ (s))2 — s[4i()]?]
0 T

Franz-Keldysh effect - in the electric field optical transitions occur at lower energies - the energy
gap is ,blurred”, the wavefunctions are ,leaking" into the band gap:

? valence
band

conduction
band

4
FIGURE 6.3. The Franz—-Keldysh effect on interband absorption. The states shown in the valence

and conduction bands are separated by AE < £, but overlap because of the tail that tunnels into
the band gap.

E (z)
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Scalar and vector fields

hZ d2
[‘ amazz 1P a] Y(2) = eyp(z)  We choose a gauge g (7, t) = eFz

1 5 2 d
- q G 01 + 400 + UG Ol G D = h (0
We choose a gauge ¢ (7,t) = 0, but then A# t) = —Et
{ ! [A Et]Z} (7, t) = ih d (7,t) No stationary states
Zmp ¢ v _ldtlpr' Y

The potential is not position-depended — solution of exp(i EF)

Sign —, because g = —e

Y (7 t) = exp(i EF) T(I_é, t)

1 e 1. e R el o d
%[p—eEt] Y (7 1) —%[hk—eEt] Y (7, 0) —%[k—gEt] Y (7, 6) = th— (7, 0)
1 2B exp( i) T(R 1) = i exp(e K7) T(E, )
2m h ' dt '
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Scalar and vector fields

) e o i (FhP e ? )\
wﬁ(r,t)—exp(L kr)T(k,t)—exp(L kr)exp(—gf %lk—%Et] dt)_

=exp< [kr——j [k——Et] dtD

The particle accelerates with time with a momentum hk — eF?t', corresponding to a constant

force —eE. The momentum of the particle increases. On the other hand, we would expect that
this change in momentum can be observed in the change of spatial part of the wavefunction

exp(i I_c?) (changes the wavelength, or changes the wave vector E) — which does not occure.

It is also difficult to define the density of states.

The current density is OK - constant in space and increases with time (constant acceleration)

J@t) = % [w* (ﬁ — qn’j(r’ ) w) + (ﬁ —a AT tp) ‘P] = —% (hk — eEt)

m

d o
[k——Et exp(i k7) T(K, t) = ih—exp(i k) T(k, ¢)
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Local density of states

The density of states (in general) can be defined as:

N(E) = Z 5(E — &)

After integration

N'P(E) = ) 6(E —e() = JE,(k) 5k — k') 2 dk = % %m
k

N2 (E) = ) 6(E — &) = j E,tk) 5k — k) 2k dke = —
k

N3P (E) = Z 5(E — e(k)) = j E,ik) 5(k — k') 4mk? dk = i

k
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Homogenous magnetic field

The Landau gauge solution

{% [p— q A, t)]2 +qo@t) + UG, t)}t/)(f’, t) = ih%tp(ﬁ t)
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Homogenous magnetic field

The Landau gauge solution

{% [ — q 4G D] +qo @ 0) + UG, t)}zp(?, t) = ih%l[)(ﬁ t)

04y, A, (unfortunately distinguishes

Landau gauge: magnetic field B = (0,0,B,) = B, = ox oy direction)
A= [0, B,x, 0] czyli A, = B,x = Bx q=—e We assume that in a plane xy
/ there is no other potential
1 Gk 9 ’ GE
2 . 2 - _ -
{% [—h EP) + (—lh@ + eBx) —h 3,2 + U(z)}t,b(r) = EY(7)
h? ieh 0 (eBx)?
Which gives: ——VF? — B U r) = EY(r
ich gives [ . -~ X 3y + o + U(2) | () Y(7)
The evidence of the Lorentz force Parabolic potential!
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Homogenous magnetic field

Time-reversal invariance, T-symmetry (symetria wzgledem odwrocenia czasu): if the solution of
the Schrodinger equation is the function W(t), then W*(—t) must be also the solution — only
for a real Hamiltonian. For the magnetic field, we have to reverse also the direction of the

magnetic field: W(, §) > P (—t, —§); we reverse the sign of kinetic momentum
[p—q 4G, 0)].

Imaginary value - lack of time reversal Thde potedntlal '? z—;ﬂlrectlc?nblls

symmetry in epe.n ejnt of other varia e.f,
(factorization) — thus we consider
2D + z problem

h? ieh 0 (eBx)? /

Which gives: |-—V? ——B U r) = EY(7
ich giv [ . - xay + o + U(2) | () Y (7r)
The evidence of the Lorentz force Parabolic potential!

Vector potential does not depend on y, we can assume the function of the form:

Y(#) = w2)ulx) exp(ik“y)



Homogenous magnetic field

2 ; 2
[—h—vz leh g 0 g BT, U(z)]t/)(F) = Ep(#)

2m m dy 2m
Vector potential does not depend on y, we can assume the function of the form:

Y(#) = w(2)u(x) exp(ikyy)

h? d? 1 hky\* eB v V2mE
4= 2 Y — — = _ —
[ gz T3 mwe (x + eB) u(x) = eu(x) W, c =%~ [eB|

[\

Cyclotron frequency | | Cyclotron radius (gyroradius)

k, wave vector. What interesting in € THERE IS NO k,,.

The parabolic potential of the form of x;, = —hk,, /eB
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Homogenous magnetic field

2 ; 2
[—h—vz leh g 0 g BT, U(z)]t/)(F) = Ep(#)

2m m dy 2m
Vector potential does not depend on y, we can assume the function of the form:

Y(#) = w(2)u(x) exp(ikyy)

h? d* 1 hk,, eB v V2mE
2 _ _
[_%W +E m wé (x +—> u(x) = su(x) W, = |— .= o — 2B
Magnetic length: does not depend on mass m, but ONLY on magnetic
ma |eB field B!

The typical value for B =1.0Tis [z = 26 nm.

Solutions &, = (n — 1) hw. (does not depend on k).

_ 2
Gnx(x,y) < Hy_q (x ; xk) exp[ b - le ) exp(ikyy)
B

n =1, 2,3 ... they are subsequent Landau levels.
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Homogenous magnetic field

The 2D case: .
Solutions &, = (n — —) hw, + E, (does not depend on k,,; Ey- is any 2D energy).

x—xk> (x—x)

n=123..

Bric (x,y) & Hy,_ 1( exp |— exp(ikyy)

lp

Wave functions are the functions of the oscillator (along x, of the order of Iz /v/2) and travelling
waves (along y) — weird, right? Why?

The energy does not depend on k vector — states of different k have the same energy, so they
are degenerated (therefore any combination of them does not change the energy).

The density of states is reduced from the constant % to a series of discrete values §

given by the equation of ¢, - they are called Landau levels.

Full energy (including binding potential in z direction): E,
1
E=Ez+enk=EZ+<n—§>hwc E,

n=123..
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Homogenous magnetic field

The 2D case:

Solutions &, = (n — %) hw, + E, (does not depend on k,,; Ey- is any 2D energy).

X~ Xk (x — xz)° . _
¢nk(x; )’) X Hn—l ( ) exp [— > exp(lkyy) n 1,2,3..

(b) Two Dimensions
E

l

3ha,

2ha,

X Landau level

fiw, ‘_/

o

2017-06-05
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Homogenous magnetic field

The 2D case: .
Solutions &, = (n — E) hw, + E, (does not depend on k,,; Ey- is any 2D energy).

X —X (x — x)? . _
¢nk(x; )’) X Hn—l ( lB k) exp [— lek exp(lkyy) n 1; 2, 3...
B

@4 g~ : : (b)
“=§3§ |« [ *

Rl ¥=%2 I+ +

E: ”-{EE S ¥

£

m.

“NAW47Z2 1\

= s:;

0 A 2o, g O hw, 2w, E

C C

0

X
£
DO
3
e

t

o
[}

AGURE 6.7. Density of states in a magnetic field, neglecting spin splitting. (a) The states in each
range Ao, are squeezed into a 8-function Landau level. (b) Landau levels have a non-zero width T
w a more realistic picture and overlap if fw, < T. (c) The levels become distinct when fiw, > T
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Homogenous magnetic field

The 3D case (no U(z) potential)

Solution: 1 A2k 2
Enk =|n—=)hw. + n =1,2,3 ... are subsequent Landau levels.
2 2m*
Elk] E DOS reminds 1D because it is possible
A A to move only in the direction z

v -

kz D[E]

http://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/mag/
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Homogenous magnetic field

The solution in the symmetric gauge:

{% [ — q 4G D] +qo @ 0) + UG, t)}zp(?, t) = ih%l[)(ﬁ t)

The symmetric gauge: field B = (0,0,B,) = Ag = %Br, A =0A4,=0

h? 62+16+1 ik iheBa_I_eszrz_l_U() (r.6.2) = E(r.6.2)
2m|(0r?  ror r?06°2 m 06 8m z)(P(r,0,z) = EP(r,0,z

This time a rotation angle @ is the invariant, which can be associated with angular momentum
and the function in the form of exp(ilf)

ew=(n+3l+3lll-)ho, n=123. [=0+14+243.,

2 2
P (r,0) o< exp(ilf) exp [ lzl r'”L(”D <2l2>

The symmetrical potential also has its
drawbacks - where is the origin of ALL
cyclotron orbits?

What are the solutions with negative sign?

Associate Laguerre polynomial

2017-06-05
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Homogenous magnetic field

In a magnetic field, we cannot forget about spin!

. h : :
Electron spin: ugp = % (Bohr magneton = magnitude of the magnetic moment of the electron
0

on the orbit of the total angular momentum 1h)

—

H' = uzBg$

[

In general g-factor may be the tensor

In the case of free electron g = 2,0023 ..., but in the solid state it may have very different
values (eg. g = —0.44 in GaAs and g = +0.4 in Al, ;Ga, ;As).
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Homogenous magnetic field

We return to the Landau gauge:

Solutions &, = (n — %) hw. + E, (does not depend on k,,; E- is any 2D energy).

x—x G-x)? _
¢nk(x; )’) X Hn—l ( lB k) exp [— lek exp(lkyy) n=123..
B

Question: for a given n (i.e. Landau level) how many different states ¢, (x, y) of the same
energy there are —i.e. what is the degeneration of the Landau levels?

Let's calculate how many different functions of quantum numbers k,, (only k,, counts, because

in Landau gauge x depends only on k,,) — similar considerations can be worked out in an
arbitrary gauge.

2017-06-05
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Homogenous magnetic field

We return to the Landau gauge:

Solutions &, = (n — %) hw. + E, (does not depend on k,,; E- is any 2D energy).

x—x G-x)? _
¢nk(x; 3’) X Hn—l ( lB k) exp [— lek exp(lkyy) n=123..
B

Question: for a given n (i.e. Landau level) how many different states ¢, (x, y) of the same
energy there are —i.e. what is the degeneration of the Landau levels?

Let's calculate how many different functions of quantum numbers k,, (only k,, counts, because
in Landau gauge x depends only on k,,) — similar considerations can be worked out in an
arbitrary gauge.

What is the number of states per one level? The sample S = Ly X Ly, in the Landau gauge for y
coordnate we have plane wave condition k = (27T/Ly)ny (where n,, is an integer number).

How many states of different n,, there are?

: o : hk
For x coordinate the wavefunction is centered in x; = —— = —(27Tfmy/eBLy).

If n,, is too large then xj can be outside the sample — no harmonic force, no harmonic solution.

2017-06-05
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Landau levels

The solution of the Schrodinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = L, X L,, in the Landau gauge for y

coordnate we have plane wave condition k = (Zn/Ly)ny (where n,, is an integer number).

: . . hk
For x coordinate the wavefunction is centered in x;, = — 5 —(anmy/eBLy).

The condition for xj, to be in the sample (rather than outside):

27‘[fmy . eB
eBL, <0 czyli 0 <ny <—=LyLy =npS (the absolute value)

—L, <

There is no factor 2 associated with the degeneracy of the
spin (because spin in the magnetic field is not degenerated)

: : eB . :
The dimension of ng = — s "amount" per unit area

_eB  The degeneration of Landau levels — is the number of allowed states for each of
Np = h  the Landau level per unit area — it increases with increasing field B

2017-06-05
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Landau levels

The solution of the Schrodinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = L, X L,, in the Landau gauge for y

coordnate we have plane wave condition k = (Zn/Ly)ny (where n,, is an integer number).

: . . hk
For x coordinate the wavefunction is centered in x;, = — 5 —(anmy/eBLy).

The condition for xj, to be in the sample (rather than outside):

Znhny

_ eB
¢BL, <0 czyli 0<n, <—1LyLy=ngs =

h

—L, <

h
flux &, = 5= 4135667516 x 107> Wb  [Wb]=[T m?]
The magnetic flux quantum (pol. flukson) (In a superconductor h/2e, so this is not a ,quantum”)

® = BS the total magnetic flux in the sample S = L, X L,

0 < nydy < d

The amount of allowed states is related to the amount of magnetic flux quanta passing through
the sample!
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Local density of states

The density of states (in general) can be defined as:

N(E) = Z 5(E — &)

After integration

N'P(E) = ) 6(E —e() = JE,(k) 5k — k') 2 dk = % %m
k

N2 (E) = ) 6(E — &) = j E,tk) 5k — k) 2k dke = —
k

N3P (E) = Z 5(E — e(k)) = j E,ik) 5(k — k') 4mk? dk = i

k
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Landau levels

N?P(E) = —2 Broadening of levels due to the scattering T’ = #/7;

T; this is single-particle

(c) 4 (or quantum) lifetime —
this is NOT the same time,

n which we discussed with

ho, Drude model (transport

ol lifetime)

ho, 2heo, g O  he, 2f, FE

o4 C

AGURE 6.7. Density of states in a magnetic field, neglecting spin splitting. (a) The states in cach
range ke, are squeezed into a §-function Landau level. (b) Landau levels have a non-zero width T
i a more realistic picture and overlap if fiw, < T. (c) The levels become distinct when /i, > T

2eB  2mw, m

Counting 2 spins: 2n, = = Aw
7 h  2mh  mwh? ¢
Each of the states on the Landau level occupies an area % = 2ml L / ho ,L
B™ Imw, ~ |leB|

2017-06-05
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Landau levels

_eB  The degeneration of Landau levels — is the number of allowed states for each of

Mp = "h the Landau level per unit area — it increases with increasing field B

The carrier concentration in 2D: n,p —on how many Landau levels these carriers can be hold?

Filling factor v (wspodfczynnik wypetnienia) — usually this is not an integer

V= = = 2nlgn,p (taking into account the spin degeneracy)

Increasing the magnetic field we are successively filling the Landau levels. You can completely
fill n-th level (v = n) and then B,, = hn,p/en, until we reach n = 1, i.e. all electrons are at the
same Landau level (ie. the quantum limit).

For v < 1 nteresting things happens (which'll be right back!)

2017-06-05
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Landau levels

_eB  The degeneration of Landau levels — is the number of allowed states for each of
Mp = h  the Landau level per unit area — it increases with increasing field B

The carrier concentration in 2D: n,p —on how many Landau levels these carriers can be hold?

Filling factor v (wspodfczynnik wypetnienia) — usually this is not an integer

V= =3 B - 2nlgnyp (taking into account the spin degeneracy)

(a) 4 (b) 4 (c) 4

EP o4

FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, shawing
how the Fermi level moves (o maintain a constant density of electrons. The fields are in the ratio

2:3:4andgivev:4,%.and2.
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Landau levels

The Fermi level lies between Landau levels -
there is no DOS, change of Er does not change
DOS —incompressible states (stany niescisliwe)

The Fermi level lies inside the Landau level —

large DOS, change of E strongly affects the DOS
— compressible states (stany Scisliwe)

(a) 4 (b) 4 (c) 4

n(k)

EP E EF E

FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, shawing

how the Fermi level moves (o maintain a constant density of electrons. The fields are in the ratio
2:3:4and givev =4, %.and 2.
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Landau levels

The Fermi level in the magnetic field: V= = oB = B = 2mlgnyp

20

0 4 8 12
B/T

FIGURE 6.9. Variation of the Fermi level as a function of magnetic field for a two-dimensional

clectron gas in GaAs with Eg = 10 meV before the field was applicd. Spin splitting is neglecied,
The fan of thin lines shows the Landan levels, while the discontinuous thick line 1s Efp.
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Landau levels

The Fermi level in the magnetic field: V= = = 2mlgnyp

Fig. 16. Landau level fan diagram for the magnetic
2DEG sample described in Fig. 15. Solid (dashed)
lines correspond to spin-down (spin-up) states. The
dark solid line shows the variation of the Fermi
energy with magnetic field. Parameters used in this
calculation are: E.=7 meV at B=0, and T=360 mK. The
spin-splitting parameters used are obtained by fitting
the magneto-optical data in Fig. 3: T,=2.1 Kand a
saturation conduction band spin splitting of 12.9
meV.
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Spin dynamics and quantum transport in magnetic semiconductor quantum structures
D.D Awschalom, N. Samarth, Journal of Magnetism and Magnetic Materials 200 (1999) 130-147
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