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1. Introduction – semiconductor heterostructures
Revision of solid state physics:  Born-Oppenheimer approximation, Hartree-Fock method and 
one electron Hamiltonian, periodic potential, Bloch states, band structure, effective mass.

2. Nanotechnology 
Revision of solid state physics: tight-binding approximation,  Linear Combination of Atomic 
Orbitals (LCAO).
Nanotechnology. Semiconductor heterostructures. Technology of low dimensional structures. 
Bandgap engineering: straddling, staggered and broken gap. Valence band offset.

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Quantum well in heterostructures: 
finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)
Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin 
(WKB) method.
Band structure in 3D, 2D. Coulomb potential in 2D
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5. Quantum dots, Quantum wells in 1D, 2D and 3D
Quantum wells in 1D, 2D and 3D. Quantum wires and quantum dots. Bottom-up approach for 
low-dimensional systems and nanostructures. Energy gap as a function of the well width.

6. Optical transitions in nanostructures
Time-dependent perturbation theory, Fermi golden rule, interband and intraband transitions in 
semiconductor heterostructures

7. Work on the article about quantum dots
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. 
Discussion.

8. Carriers in heterostructures
Density of states of low dimensional systems. Doping of semiconductors. Heterojunction, p-n 
junction, metal-semiconductor junction, Schotky barrier 
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9. Tunneling transport
Continuity equation. Potential step. Tunneling through the barrier. Transfer matrix approach. 
Resonant tunneling. Quantum unit of conductance.

10. Quantized conductance 
Quantized conductance. Coulomb blockade, one-electron transistor. 

11. Work on the article about the tunneling or conductance
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. 
Discussion. 

12. Electric field in low-dimensional systems
Scalar and vector potentials. Carriers in electric field: scalar and vector potential in Schrodinger 
equation. Schrodinger equation with uniform electric field. Local density of states. Franz-
Kieldysh effect.
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13. Magnetic field in low-dimensional systems
Carriers in magnetic field. Schrodinger equation with uniform magnetic field – symmetric 
gauge, Landau gauge. Landau levels, degeneracy of Landau levels. 

14. Electric and magnetic fields in low-dimensional systems
Schrodinger equation with uniform electric and magnetic field. Hall effect. Shubnikov-de Haas 
effect. Quantum Hall effect. Fractional Quantum Hall Effect. Hofstadter butterfly. Fock-Darvin
spectra

15. Revision 
Revision and preparing for the exam. 



Summary of the exercises

2016-08-08 6

1. Introduction – semiconductor heterostructures
Schrodinger equation. Wave packet, Gaussian wavepacket .

2. Nanotechnology 
Tight-binding approximation: graphene bandctructure. 

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Finite square well with different 
effective masses in the well and barriers.

4. Quantum wells (2)
Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin 
(WKB) method.

5. Double quantum wells. Quantum dots.
Double quantum wells. Quantum dots (2D and 3D harmonic potential)
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6. Optical transitions in nanostructures
Interband and intraband transitions in semiconductor heterostructures. Continuity equation. 

7. Carriers in heterostructures (1)
Transfer matrix approach. Potential step.

8. Carriers in heterostructures (2)
Tunneling through the barrier.

9. Resonant tunneling
Resonant tunneling.

10. Quantized conductance 
Quantized conductance. Coulomb blockade. 

11. Local density of states 
Local density of states. 
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12. Electric field in low-dimensional systems
Carriers in electric field: scalar and vector potential in Schrodinger equation.

13. Magnetic field in low-dimensional systems
Schrodinger equation with uniform magnetic field – symmetric gauge, Landau gauge. Landau 
levels, degeneracy of Landau levels. 

14. Electric and magnetic fields in low-dimensional systems
Schrodinger equation with uniform electric and magnetic field. Conductivity and resistivity 
tensors

15. Hall effect. Fock-Darvin spectrum
Hall effect.  Fock-Darvin spectrum.
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Homeworks
Discussion of scientific papers
Tests to check the effective use of the skills acquired during the lecture
Exam: final test and oral exam



Pakiet falowy

2016-08-08 10



2016-08-08 11

The solution of the one-electron Schrödinger equation for a 
periodic potential has a form of modulated plane wave:

𝑢𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 + 𝑅

𝜑𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

We introduced coefficient 𝑛 for different solutions corresponding to the same 𝑘 (index).  𝑘-
vector is an element of the first Brillouin zone.

Bloch wave,
Bloch function

Bloch amplitude,
Bloch envelope

𝑢𝑛,𝑘 Ԧ𝑟 =

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑒
𝑖 Ԧ𝐺 Ԧ𝑟

Bloch theorem

Periodic potential
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𝐸 𝑘 ≈
1

𝑁
Φ𝑗,𝑘 Ԧ𝑟 𝐻 Φ𝑗,𝑘 Ԧ𝑟 =

=

𝑛,𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚 න𝜑𝑗
∗ Ԧ𝑟 − 𝑅𝑚 𝐸𝑗 + 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

When the atomic states 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 are spherically symmetric (𝑠-states), then overlap 

integrals depend only on the distance between atoms:

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 𝐵𝑗

𝑚

exp 𝑖𝑘 𝑅𝑛 − 𝑅𝑚

𝐴𝑗 = −න𝜑𝑗
∗ Ԧ𝑟 − 𝑅𝑛 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

𝐵𝑗 = −න𝜑𝑗
∗ Ԧ𝑟 − 𝑅𝑚 𝑉′ Ԧ𝑟 − 𝑅𝑛 𝜑𝑗 Ԧ𝑟 − 𝑅𝑛 𝑑𝑉

Restricted to only the nearest neighbours of  𝑅𝑛

Tight-Binding Approximation

Only diagonal terms 𝑅𝑛 = 𝑅𝑚 in 𝐸𝑗

Only the vicinity of 𝑅_𝑛
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For 𝑠𝑐 structure: 𝑅𝑛 − 𝑅𝑚 = ±𝑎, 0,0 ; 0, ±𝑎, 0 ; 0,0, ±𝑎 ;

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 2𝐵𝑗 cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎 + cos 𝑘𝑧𝑎
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For 𝑠𝑐 structure: 𝑅𝑛 − 𝑅𝑚 = ±𝑎, 0,0 ; 0, ±𝑎, 0 ; 0,0, ±𝑎 ;

𝐸𝑛 𝑘 ≈ 𝐸𝑗 − 𝐴𝑗 − 2𝐵𝑗 cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎 + cos 𝑘𝑧𝑎
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Tight-Binding Approximation
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Landolt-Boernstein

Expanding 𝐸𝑛 𝑘 = 𝐸𝑛 −
ℏ2𝑘2

2𝑚
around an extreme point, e.g. 𝑘 = 0:

close bands

k·p perturbation theory – effective mass
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𝜓 𝑥, 𝑡 =
2

𝐿
sin 𝑘𝑛𝑥 𝑒−𝑖𝜔𝑡

Inside the quantum well:

𝑘𝑛 =
𝑛𝜋

𝐿

𝜀𝑛 =
ℏ2𝑘𝑛

2

2𝑚
=
ℏ2𝑛2𝜋2

2𝑚𝐿2



Infinite square quantum well
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𝜓 𝑥, 𝑡 =
2

𝐿
sin 𝑘𝑛𝑥 𝑒−𝑖𝜔𝑡

Inside the quantum well:

𝜀𝑛 = 𝐸𝑐 +
ℏ2𝑘𝑛

2

2𝑚
= 𝐸𝑐 +

ℏ2𝑛2𝜋2

2𝑚0𝑚
∗𝐿2

𝑘𝑛 =
𝑛𝜋

𝐿

𝐸𝑐

𝜀1 = 𝐸𝑔 +
ℏ2𝜋2

2𝑚0𝑚
∗𝐿2

𝜀2 = 𝐸𝑐 +
2ℏ2𝜋2

𝑚0𝑚
∗𝐿2

𝜀3 = 𝐸𝑐 +
9ℏ2𝜋2

2𝑚0𝑚
∗𝐿2
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W jaki sposób możemy zmieniać strukturę pasmową heterostruktury:
• wybierając materiał
• kontrolując skład
• kontrolując naprężenie
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Finite potential well – square well
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Inside the well:

𝜓 𝑧, 𝑡 = 𝐶 ቊ
cos 𝑘𝑛𝑧

sin 𝑘𝑛𝑧
𝑒−𝑖𝜔𝑛𝑡

−
𝑎

2
< 𝑧 <

𝑎

2

The barrier:

𝜓 𝑧 = 𝐷 exp(±𝜅𝑛𝑧)

ℏ2𝜅2

2𝑚 𝑚𝐵
= 𝐸𝐵 − 𝐸𝑛 = 𝐵

𝑘𝑛 =
1

ℏ
2𝑚𝑚𝑊 𝐸𝑛 − 𝐸𝑊

𝜅𝑛 =
1

ℏ
2𝑚𝑚𝐵 𝐸𝐵 − 𝐸𝑛

−
ℏ2

2𝑚0𝑚𝑊

𝑑2

𝑑𝑧2
𝜓 𝑧 = 𝐸𝑛 − 𝐸𝑊 𝜓 𝑧

ቤ
1

𝑚𝐵

𝑑𝜓

𝑑𝑧
z=

a
2

= ቤ
1

𝑚𝑊

𝑑𝜓

𝑑𝑧
z=

a
2

Matching conditions:

𝐶𝑘

𝑚𝑊

−sin 𝑘𝑛
𝑎

2

cos 𝑘𝑛
𝑎

2

= −
𝐷𝜅

𝑚𝐵
exp 𝑘𝑛

𝑎

2



Finite potential well – square well
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THE DIFFERENT mass in the well and in the barrier:



Harmonic potential
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𝜀𝑛 = 𝑛 −
1

2
ℏ𝜔0𝑉 𝑧 =

1

2
𝐾𝑧2 =

1

2
𝑚𝜔0

2𝑧2−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
+ 𝑉(𝑧) 𝜓 𝑧 = 𝜀𝜓 𝑧



Quantum harmonic oscillator
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Nat. Phys. 8, 190, (2012)



Triangular well
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−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
+ 𝑒𝐹𝑧 𝜓 𝑧 = 𝜀𝜓 𝑧



WKB approximation
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𝐸
𝜓 𝑥

carrier energy

𝑉(𝑥)

𝑥

𝑥𝐿

𝜓 𝑥 ~
2

𝑘 𝑥
cos න

𝑥𝐿

𝑥

𝑘 𝑥′ 𝑑𝑥′ −
𝜋

4
, 𝑥 ≫ 𝑥𝐿

𝜓 𝑥 ~
1

𝜅 𝑥
exp −න

𝑥𝐿

𝑥

𝜅 𝑥′ 𝑑𝑥′ , 𝑥 ≪ 𝑥𝐿

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential



Coulomb potential in 2D
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Radial therm:

O! joj-joj-joj! (some substitutions, derivations nad equations):

Finally:

𝑅𝑦∗ =
𝑒2

4𝜋𝜀𝑟𝜀0

2
𝑚∗

2ℏ2
=
1

2

𝑒2

4𝜋𝜀0𝜀𝑟𝑎𝐵
∗ =

𝑚∗

𝑚0

𝑅𝑦

𝜀𝑟
2

𝐸𝑛 = −
𝑅𝑦∗

𝑛 −
1
2

2

𝑎𝐵
∗ = 𝜀𝑟

𝑚0

𝑚∗

For Hydrogen 𝑅𝑦 = 13.6 eV and 𝑎𝐵 = 0.053 nm

For GaAs semiconductor 𝑅𝑦∗ ≈ 5 meV and 𝑎𝐵
∗ ≈ 10 nm



Polaritons
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http://www.stanford.edu/group/yamamotogroup/research/EP/EP_main.html



Time-dependent Schrödinger equation:

Time-independent potential

𝜓 𝑥, 𝑡 = 𝐴𝜑(𝑥)𝑒−𝑖𝐸𝑡/ℏ𝐻0 = −
ℏ2

2𝑚

𝜕2

𝜕𝑥2
+𝑈(𝑥)

Time-independent potential 𝐻 = 𝐻0 + 𝑉(𝑡)

𝑉(𝑡) = ቊ𝑊 𝑡
0

dla 0 ≤ 𝑡 ≤ 𝜏
dla 𝑡 < 0 i 𝑡 > 𝜏

The simplest case:

t
0 t

𝑖ℏ
𝜕

𝜕𝑡
𝜓 = 𝐻0 + 𝑉(𝑡) 𝜓 𝑥, 𝑡 =

𝑛

𝐴𝑛(𝑡)𝜑𝑛(𝑥)𝑒
−𝑖𝐸𝑛𝑡/ℏ

By analogy
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Time-dependent perturbation theory



Summary –Fermi golden rule

𝑊 𝑡 = 𝑤±𝑒±𝑖𝜔𝑡

0 ≤ 𝑡 ≤ 𝜏

Transitions are possible only for states, for which

𝑃𝑛𝑚 =
𝓌𝑛𝑚

𝜏
=
2𝜋

ℏ
𝑛 𝑤± 𝑚

2

𝛿 𝐸𝑛 − 𝐸𝑚 ± ℏ𝜔

𝐸𝑚 = 𝐸𝑛 ± ℏ𝜔

The probability of transition per unit time:

𝑃𝑚𝑛 =
𝓌𝑚𝑛

𝜏
=
2𝜋

ℏ
𝑚 𝑊 𝑛 2𝛿 𝐸𝑚 − 𝐸𝑛

𝑊 𝑡 = 𝑊

0 ≤ 𝑡 ≤ 𝜏

Transitions are possible only for states, for which

𝐸𝑚 = 𝐸𝑛

The perturbation in a form of an electromagnetic wave:

𝐴𝑛𝑚 =
𝜔𝑛𝑚

3𝑒2

3𝜋𝜀0ℏ𝑐
3 𝑚 Ԧ𝑟 𝑛 2 =

4𝛼

3

𝜔𝑛𝑚
3

𝑐2
𝑚 Ԧ𝑟 𝑛 2

𝑃𝑛𝑚 = 𝐴𝑛𝑚𝛿 𝐸𝑛 − 𝐸𝑚 ± ℏ𝜔
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Selction rules in condensed matter
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Proof sketch
Bloch function of a carrier in the crystal:

Ψ Ԧ𝑟 =

𝑛,𝑘

𝑐𝑛,𝑘𝑢𝑛,𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

Ψc Ԧ𝑟 ≈

𝑘

𝑐1,𝑘𝑢Γ6,0 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟 = 𝑢Γ6,0 Ԧ𝑟 𝐹𝑒 Ԧ𝑟

For the electron:

For the hole:

Ψv Ԧ𝑟 ≈ 

𝐽𝑧=±3/2,±1/2,𝑘

𝑐𝐽𝑧,𝑘𝑢Γ8,𝐽𝑧 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟 = 

𝐽𝑧=±3/2,±1/2,𝑘

𝑢Γ8,𝐽𝑧 Ԧ𝑟 𝐹𝐽𝑧 Ԧ𝑟

Intersubband dipole optical transitions:

Ψc Ԧ𝑟 Ԧ𝑝 Ψv,𝐽𝑧 Ԧ𝑟 = 𝑢Γ6,0 Ԧ𝑟 𝑢Γ8,𝐽𝑧 Ԧ𝑟 𝐹𝑒 Ԧ𝑟 Ԧ𝑝 𝐹𝐽𝑧 Ԧ𝑟 + 𝑢Γ6,0 Ԧ𝑟 Ԧ𝑝 𝑢Γ8,𝐽𝑧 Ԧ𝑟 𝐹𝑒 Ԧ𝑟 𝐹𝐽𝑧 Ԧ𝑟



Opticial transitions
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𝐸𝑓 final energy

𝐸𝑖 initial energy

𝐸𝑓 = 𝐸𝑖 + ℏ𝑐𝑄 energy conservation rule

𝐾𝑓 = 𝐾𝑖 + 𝑄 momentum conservation rule

Photon momentum ℏ𝜔 = ℏ𝑐𝑄. For ℏ𝜔 = 1 eV we got 𝑄 ≈ 107𝑚−1. The size of the Brillouin

zone is about
𝜋

𝑎
≈

𝜋

0.5 𝑛𝑚
= 1010𝑚−1. Therefore 𝐾𝑓 = 𝐾𝑖 + 𝑄 ≈ 𝐾𝑖



Opticial transitions
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𝜀𝑒,𝑛𝑒 = 𝐸𝑐
𝐺𝑎𝐴𝑠 +

ℏ2𝜋2𝑛𝑒
2

2𝑚0𝑚𝑒𝑎
2

𝜀ℎ,𝑛ℎ = 𝐸𝑣
𝐺𝑎𝐴𝑠 −

ℏ2𝜋2𝑛ℎ
2

2𝑚0𝑚ℎ𝑎
2

ℏ𝜔𝑛 = 𝜀𝑒,𝑛𝑒 − 𝜀ℎ,𝑛ℎ = 𝐸𝑔
𝐺𝑎𝐴𝑠 +

ℏ2𝜋2𝑛2

2𝑚0𝑎
2

1

𝑚𝑒
+

1

𝑚ℎ
= 𝐸𝑔

𝐺𝑎𝐴𝑠 +
ℏ2𝜋2𝑛2

2𝑚0𝑚𝑒ℎ𝑎
2

1

𝑚𝑒ℎ
=

1

𝑚𝑒
+

1

𝑚ℎ
Optical effective mass



THE ARTICLE

2016-08-08 38



Low dimensional structures
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The particle moves in the well which potential depends on 𝒌, in fact 𝑘 = 𝒌

−
ℏ2

2𝑚0 𝑚𝑊

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝑊
+ 𝐸𝑊 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

−
ℏ2

2𝑚0 𝑚𝐵

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝐵
+ 𝐸𝐵 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

𝑉0 𝑘 = 𝐸𝐵 − 𝐸𝑊 +
ℏ2𝑘2

2𝑚0

1

𝑚𝐵
−

1

𝑚𝑊

The particle gains partially the effective mass of the barrier: 

𝐸𝑛 𝑘 = 𝜀𝑛(𝑘) +
ℏ2𝑘2

2𝑚0𝑚𝑊
≈ 𝜀𝑛(𝑘 = 0) +

ℏ2𝑘2

2𝑚0𝑚𝑒𝑓𝑓

𝑚𝑒𝑓𝑓 ≈ 𝑚𝑊𝑃𝑊 +𝑚𝐵𝑃𝐵

the probability of finding a particle

E.g. in GaAs-AlGaAs heterostructure
𝑚𝐵 > 𝑚𝑊 thus the well gets „shallow”

energy of the bound state depends on  𝑘



Low dimensional structures
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The particle moves in the well which potential depends on 𝒌, in fact 𝑘 = 𝒌

−
ℏ2

2𝑚0 𝑚𝑊

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝑊
+ 𝐸𝑊 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

−
ℏ2

2𝑚0 𝑚𝐵

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝐵
+ 𝐸𝐵 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

𝑉0 𝑘 = 𝐸𝐵 − 𝐸𝑊 +
ℏ2𝑘2

2𝑚0

1

𝑚𝐵
−

1

𝑚𝑊

The particle gains partially the effective mass of the barrier: 

𝐸𝑛 𝑘 = 𝜀𝑛(𝑘) +
ℏ2𝑘2

2𝑚0𝑚𝑊
≈ 𝜀𝑛(𝑘 = 0) +

ℏ2𝑘2

2𝑚0𝑚𝑒𝑓𝑓

𝑚𝑒𝑓𝑓 ≈ 𝑚𝑊𝑃𝑊 +𝑚𝐵𝑃𝐵

the probability of finding a particle

E.g. in GaAs-AlGaAs heterostructure
𝑚𝐵 > 𝑚𝑊 thus the well gets „shallow”

energy of the bound state depends on  𝑘



Quantum wire
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Marc Baldo MIT OpenCourseWare Publication May 2011

𝐸𝑛 𝑘𝑥, 𝑘𝑦 = 𝜀𝑚,𝑛 +
ℏ2𝑘𝑧

2

2𝑚

𝜓𝑘𝑥,𝑚,𝑛 𝑥, 𝑦, 𝑧 = 𝑢𝑚,𝑛 𝑥, 𝑦 exp 𝑖𝑘𝑧𝑧 = albo np. = 𝑢𝑛,𝑙(𝑟, 𝜃) exp 𝑖𝑘𝑧𝑧



Quantum wire
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Marc Baldo MIT OpenCourseWare Publication May 2011

𝐸𝑛 𝑘𝑥, 𝑘𝑦 = 𝜀𝑚,𝑛 +
ℏ2𝑘𝑧

2

2𝑚

𝜓𝑘𝑥,𝑚,𝑛 𝑥, 𝑦, 𝑧 = 𝑢𝑚,𝑛 𝑥, 𝑦 exp 𝑖𝑘𝑧𝑧 = albo np. = 𝑢𝑛,𝑙(𝑟, 𝜃) exp 𝑖𝑘𝑧𝑧

Square quantum well 2D 𝐿𝑥𝐿𝑦, infinite potential:

𝜓𝑘𝑥,𝑚,𝑛 𝑥, 𝑦, 𝑧 = 𝑢𝑚,𝑛 𝑥, 𝑦 exp 𝑖𝑘𝑧𝑧 = exp 𝑖𝑘𝑚𝑥 exp 𝑖𝑘𝑛𝑦 exp 𝑖𝑘𝑧𝑧

With boundary conditions 𝐿𝑥𝑘𝑚 = 𝑛𝑥𝜋 and 𝐿𝑦𝑘𝑛 = 𝑛𝑦𝜋 (dicrete spectrum)



Quantum wire
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Rectangular wire 𝑎 × 𝑏 – solutions like: 
𝜀𝑛𝑥,𝑛𝑦 =

ℏ2𝜋2

2𝑚

𝑛𝑥
2

𝐿𝑥
2 +

𝑛𝑦
2

𝐿𝑦
2

http://wn.com/2d_and_3d_standing_wave



Quantum wells 2D and 3D
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Cylindrical well
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Quantum wells 2D and 3D
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Harmonic potential 2D
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𝐸𝑛
𝑥 = ℏ𝜔0 𝑛𝑥 +

1

2
in the 𝑥-direction and the same in 𝑦

𝐸𝑛
𝑦
= ℏ𝜔0 𝑛𝑦 +

1

2

𝐸𝑛 = 𝐸𝑛
𝑥 + 𝐸𝑛

𝑦
= ℏ𝜔0 𝑁 + 1

Degeneracy? 𝑁 = 𝑛𝑥 + 𝑛𝑦



Harmonic potential 2D
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𝐸𝑛
𝑥 = ℏ𝜔0 𝑛𝑥 +

1

2

𝐸𝑛
𝑦
= ℏ𝜔0 𝑛𝑦 +

1

2

𝐸𝑛 = 𝐸𝑛
𝑥 + 𝐸𝑛

𝑦
= ℏ𝜔0 𝑁 + 1

𝑵 (𝒏𝒙, 𝒏𝒚)

0 (0,0)

1 (1,0) (0,1)

2 (2,0) (1,1) (0,2)

3 (3,0) (2,1) (1,2) (0,3)

𝑔𝑁 = 𝑁 + 1

𝑁 = 𝑛𝑥 + 𝑛𝑦

in the 𝑥-direction and the same in 𝑦

Degeneracy?



Density of states
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The density of states in 𝑘-space of 𝑛 dimension (and the unite volume)

kx

ky

Fermi sphere
T=0 K

𝜌𝑘
𝑛𝐷 = 2

1

2𝜋

𝑛

𝜌3𝐷 𝐸 𝑑𝐸 = 𝜌𝑘
3𝐷𝑑𝑘 = 2

1

2𝜋

3

4𝜋𝑘2𝑑𝑘

𝜌𝑐
3𝐷 𝐸 =

1

2𝜋2
2𝑚0𝑚𝑐

∗

ℏ2

3/2

𝐸 − 𝐸𝑐

𝜌𝑣
3𝐷 𝐸 =

1

2𝜋2
2𝑚0𝑚ℎ

∗

ℏ2

3/2

𝐸𝑣 − 𝐸

For a spherical and parabolic band:

3D case

Density of states Number of states per unit energy 𝜌𝑛𝐷(𝐸) depends on the dimension

2𝜋

𝐿𝑦 2𝜋

𝐿𝑥
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𝐸𝑛 𝑘𝑥, 𝑘𝑦 = 𝜀𝑛 +
ℏ2𝑘𝑥

2

2𝑚
+
ℏ2𝑘𝑦

2

2𝑚

𝜓𝑘𝑥,𝑘𝑦,𝑛 𝑥, 𝑦, 𝑧 = exp 𝑖𝑘𝑥𝑥 exp 𝑖𝑘𝑦𝑦 𝑢𝑛 𝑧 = 𝜓𝒌,𝑛 𝒓, 𝑧 = exp 𝑖𝒌 ∙ 𝒓 𝑢𝑛 𝑧

𝐸𝑛 𝒌 = 𝜀𝑛 +
ℏ2𝒌2

2𝑚

Density of states – 2D



1D density of states
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𝜌1𝐷 𝐸 𝑑𝐸 = 𝜌𝑘
1𝐷𝑑𝑘 = 2

1

2𝜋

1

2 𝑑𝑘

𝜌1𝐷 𝐸 𝑑𝐸 =
2

𝜋

𝑚0𝑚
∗

2ℏ2


𝑎𝑥,𝑎𝑦

𝜃 𝐸 − 𝐸𝑎𝑥,𝑎𝑦

𝐸 − 𝐸𝑎𝑥,𝑎𝑦

𝑑𝐸

for a spherical and parabolic band:

M
ar
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B
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d

o
M

IT
 O

p
en
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o

u
rs

eW
ar

e
P

u
b
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at

io
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 M
ay

 2
0

1
1

Density of states – 1D



The Fermi-Dirac distribution
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Occupation probability
2016-08-08 51

𝑓0 =
1

𝑒
𝐸−𝐸𝐹
𝑘𝐵𝑇 + 1

The probability that a state of the energy 𝐸 will be occupied
EF – chemical potential



Electrons statistics in crystals
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The case of a semiconductor, in which both the electron gas and hole gas are far from the 
degeneracy:

the probability of filling of the electronic states:

𝑓𝑒 ≈ 𝑒
−

𝐸𝐺
2𝑘𝐵𝑇

−
𝐸𝑒
𝑘𝐵𝑇

+
𝜉

𝑘𝐵𝑇

and of holes 𝑓ℎ = 1 − 𝑓𝑒

𝑓ℎ ≈ 𝑒
−

𝐸𝐺
2𝑘𝐵𝑇

−
𝐸ℎ
𝑘𝐵𝑇

−
𝜉

𝑘𝐵𝑇

න

0

∞

𝑥𝑒−𝑥 𝑑𝑥 =
𝜋

2

Thus:

𝑛 𝜉 = 2
𝑚𝑒
∗𝑘𝐵𝑇

2𝜋ℏ2

3/2

𝑒
−

𝐸𝐺
2𝑘𝐵𝑇 ⋅ 𝑒

𝜉
𝑘𝐵𝑇 = 𝑁𝑐 𝑇 𝑒

− 𝐸𝑐−𝜉
𝑘𝐵𝑇

𝑝 𝜉 = 2
𝑚ℎ
∗𝑘𝐵𝑇

2𝜋ℏ2

3/2

𝑒
−

𝐸𝐺
2𝑘𝐵𝑇 ⋅ 𝑒

−
𝜉

𝑘𝐵𝑇 = 𝑁𝑣 𝑇 𝑒
− 𝜉−𝐸𝑣
𝑘𝐵𝑇

𝐸 =
𝐸𝐺
2
+ 𝐸𝑒

𝐸 = −
𝐸𝐺
2
− 𝐸ℎ 𝐸ℎ

𝐸𝑒
𝐸𝑐

𝐸𝑣



The occupation of impurity levels

8/8/2016 53

The ratio of the probability of finding dopant / defect of 𝑛 + 1 electrons and of 𝑛 electrons: 

𝑝𝑛+1
𝑝𝑛

=
𝑁𝑛+1/𝑁𝑡𝑜𝑡𝑎𝑙
𝑁𝑛/𝑁𝑡𝑜𝑡𝑎𝑙

=
σ𝑗:𝑛𝑗=𝑛+1

𝑒−𝛽 𝐸𝑗− 𝑛+1 𝜉

σ𝑘;𝑛𝑘=𝑛
𝑒−𝛽 𝐸𝑘−𝑛𝜉

=
𝑔𝑛+1
𝑔𝑛

⋅ 𝑒−𝛽 𝐸𝑛+1−𝐸𝑛 −𝜉

σ𝑛𝑁𝑛 = 𝑁 – impurity (dopants) concentration

𝐸𝑛+1 i 𝐸𝑛 – the lowest of all subsystem energies 𝐸𝑗
with 𝑛 + 1 and 𝑛 electrons respectively

Successive impurity energy levels are filled with the 
increase of the Fermi level.

𝐸𝑛+1/𝑛 – so-called energy level of the impurity/ 
defect „numbered” by charge states 𝑛 + 1 and 𝑛

𝑔𝑛+1, 𝑔𝑛 – so-called degeneration of states of 
subsystem of 𝑛 + 1 and 𝑛 electrons



Dopants, impurities and defects

x

The carrier concentration in extrinsic
semiconductor (niesamoistny)
Consider a semiconductor, in which:
NA – concentration of acceptors
ND – concentration of donors
pA – concentration of neutral acceptors
nD – concentration of neutral donors
nc – concentration of electrons in conduction
band
pv – concentration of holes in valence band

From the charge neutrality of the crystal:

nc +(NA - pA)= pv + (ND - nD)
nc + nD = (ND - NA)+ pv + pA

2016-08-08 54

Doping

Eg/2

-Eg/2

0

ED

EA

EF

El
e
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n
en

e
rg

y conduction band

vallence band

donor level

acceptor level



Dopants, impurities and defects

x
2016-08-08 55

Eg/2

-Eg/2

0

ED

EA

EF

El
e

ct
ro

n
en

e
rg

y conduction band

vallence band

donor level

acceptor level

Equation of Charge Neutrality

𝑒
−

𝐸𝑔
2𝑘𝐵𝑇

𝑒
−

𝐸𝐷
2𝑘𝐵𝑇



The construction of energy band diagrams
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Złącze metal-metal

Electrical properties of materials Solymar, Walsh (6.11)
Pg. 143

Suppose, that 𝜙2 − 𝜙1 ≈ 1 𝑒𝑉
Estimate the number of electrons that 
pass from one metal to another to 
create equilibrium potential difference. 
Assume that the distance between the 
metals is 5 × 10−10𝑚.

Electric field: 𝐸 =
Δ𝜙

𝑑
= 2 × 109

𝑉

𝑚

The surface charge: 𝜎 = 𝜀0𝐸

The concentration: 𝑛2𝐷 =
𝜎

𝑒
= 1.12 × 1013𝑐𝑚−2

The concnetration in metal
𝑛3𝐷 = 5 × 1022𝑐𝑚−3

𝑛2𝐷 = 1.5 × 1015𝑐𝑚−2

Within the width of 1 lattice parameter ~1% of charge



The doping of semiconductors
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𝑥𝑝

𝑥𝑛

+

−

𝑁𝐷𝑁𝐴

𝐸

𝑥𝑛𝑥𝑝

𝐸𝑚𝑎𝑥 = −
1

𝜖
𝑄

𝑝 𝑛

Poisson equation:
𝑑2𝑈

𝑑𝑥2
= −

1

𝜖
𝜌𝑠 =

1

𝜖
𝑒𝑁𝐴

𝛻𝐷 = 𝜌𝑠 - net charge density

From the Maxwell equations:

𝐸 = −𝛻𝜙 = −𝛻𝑈

𝛻𝐷 = 𝜀0𝜀 𝛻𝐸 = −𝜀0𝜀 𝛻
2𝜙 ≝ −𝜖Δ𝑈 = 𝜌𝑠

Thus the electric field in the range 𝑥𝑝, 0 :

𝐸 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐴 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐴 𝑥 − 𝑥𝑝

Similarly for 0, 𝑥𝑛 :

𝐸 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐷 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐷 𝑥 − 𝑥𝑛

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

Net charge densities



The doping of semiconductors
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𝑥𝑝

𝑥𝑛

+

−

𝑁𝐷𝑁𝐴

𝐸

𝑥𝑛𝑥𝑝

𝐸𝑚𝑎𝑥 = −
1

𝜖
𝑄

𝑥𝑝 𝑥𝑛

𝑒

2𝜀
𝑁𝐴𝑥𝑃

2

𝑈𝑈0 =
𝑒

2𝜀
𝑁𝐴𝑥𝑃

2 + 𝑁𝐷𝑥𝑛
2

The total width of the depletion region 𝑤

𝑤 = 𝑥𝑛 − 𝑥𝑝 =
2𝜀𝑈0

𝑒 𝑁𝐴 + 𝑁𝐷

𝑁𝐴
𝑁𝐷

+
𝑁𝐷
𝑁𝐴

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

If, say, 𝑁𝐴 ≫ 𝑁𝐷 (𝑝-type doping) 
then:

𝑤 =
2𝜀𝑈0

𝑒𝑁𝐷
i     𝑥𝑛 > 𝑥𝑝

if the 𝑝-region is more highly doped, practically all of the
potential drop is in the 𝑛-region. The less donors are the 
wider this region is. 
(for 𝑁𝐴 ≪ 𝑁𝐷 is vice-versa!)

𝑝 𝑛

E.g. 𝑁𝐷 = 1015cm-3 for typical 𝑈0 = 0.3 V 
We have 𝑤 ≈ 180 nm. If the change from acceptor 
impurities to donor impurities is gradual, then 𝑤 ≈ 1 𝜇m

Net charge densitiesDepletion regions



Heterojunction
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𝑥𝑝 𝑥𝑛

𝑒

2𝜀
𝑁𝐴𝑥𝑃

2

𝑈𝑈0 =
𝑒

2𝜀
𝑁𝐴𝑥𝑃

2 + 𝑁𝐷𝑥𝑛
2

𝑥𝑝 𝑥𝑛

𝑒𝑈0 (𝑒 < 0)

𝐸𝑔

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

TUTAJ 20151126



The construction of energy band diagrams
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Restore ത𝐸𝑐
𝐴 on side 𝐸𝑐

𝐴 and ത𝐸𝑣
𝐴 on side 𝐸𝑣

𝐴, including discontinuities at the junction.



The current and charge density
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Current density: 𝐽 Ԧ𝑟, 𝑡 = 𝐽 Ԧ𝑟 =
ℏ 𝑞

2 𝑖 𝑚
Ψ∗𝛻Ψ −Ψ𝛻Ψ∗

Ψ 𝑥, 𝑡 = 𝐴+𝑒
𝑖𝑘𝑥 + 𝐴−𝑒

−𝑖𝑘𝑥 𝑒−𝑖𝜔𝑡

𝐽 Ԧ𝑟 =
ℏ 𝑞 𝑘

𝑚
𝐴+

2 − 𝐴−
2

In the case of de Broigle wave:

In the case of the evanescent (decaying) wave: Ψ 𝑥, 𝑡 = 𝐵+𝑒
𝜅𝑥 + 𝐵−𝑒

𝜅𝑥 𝑒−𝑖𝜔𝑡

𝐽 Ԧ𝑟 =
ℏ 𝑞 𝜅

𝑖 𝑚
𝐵+𝐵−

∗ − 𝐵+
∗𝐵− =

2 ℏ 𝑞 𝜅

𝑚
Im 𝐵+𝐵−

∗

Only the superpositoion of + i –
amplitudes gives real current!

The calssical wave:

each wave carry current



Tunnelling
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𝐴 𝑒𝑖𝑘1𝑧

𝐵 𝑒−𝑖𝑘1𝑧

𝐶 𝑒𝑖𝑘2𝑧

𝐷 𝑒−𝑖𝑘2𝑧
b

ar
ri

e
r

𝑇 21 (0) =
1/𝑡∗ −𝑟∗/𝑡∗

−𝑟/𝑡 1/𝑡

𝐶
𝐷

= 𝑇 21 𝐴
𝐵

=
𝑇11 𝑇12
𝑇12
∗ 𝑇11

∗
𝐴
𝐵

𝑟 = −
𝑇12
∗

𝑇11
∗ 𝑡 = −

1

𝑇11
∗

𝑇 21 𝑑 = 𝑒−𝑖𝑘2𝑑 0
0 𝑒𝑖𝑘2𝑑

𝑇 21 0 𝑒𝑖𝑘1𝑑 0
0 𝑒𝑖𝑘1𝑑

= 𝐴2
−1 𝑑 𝑇 0 𝐴1(𝑑)

The other direction:
𝐵
𝐴

= 𝑇 12 𝐷
𝐶

𝑇 12 (0) =
1/𝑡∗ 𝑟/𝑡
𝑟∗/𝑡∗ 1/𝑡

region 1 region 2
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Examples:

𝑇 =
4𝑘1𝑘2
𝑘1 + 𝑘2

2

𝑅 =
𝑘1 − 𝑘2
𝑘1 + 𝑘2

2

𝑇 + 𝑅 = 1
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Przykłady:

𝑇 =
4𝑘1

2𝑘2
2

4𝑘1
2𝑘2

2 + 𝑘1
2 − 𝑘2

2 2 sin2 𝑘2𝑎
=

= 1 +
𝑉0
2

4𝐸 𝐸 − 𝑉0
sin2 𝑘2𝑎

−1

𝑇 =
4𝑘1

2𝜅2
2

4𝑘1
2𝜅2

2 + 𝑘1
2 + 𝜅2

2 2 sinh2 𝑘2𝑎
=

= 1 +
𝑉0
2

4𝐸 𝑉0 − 𝐸
sinh2 𝜅2𝑎

−1

𝐸 > 𝑉0

𝐸 < 𝑉0

Anti-well energy levels!
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𝑡 =
𝑡𝐿𝑡𝑅

1 − 𝑟𝐿𝑟𝑅 exp 2𝑖𝑘𝑎

𝑇 = 𝑡 2 =
𝑇𝐿𝑇𝑅

1 − 𝑅𝐿𝑅𝑅
2
+ 4 𝑅𝐿𝑅𝑅 sin

2 1
2𝜙

𝜙 = 2𝑘𝑎 + 𝜌𝐿 + 𝜌𝑅

𝑇𝑝𝑘 =
𝑇𝐿𝑇𝑅

1 − 𝑅𝐿𝑅𝑅
2 ≈

4𝑇𝐿𝑇𝑅
𝑇𝐿 + 𝑇𝑅

2
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𝑇 = 𝑡 2 =
𝑇𝐿𝑇𝑅

1 − 𝑅𝐿𝑅𝑅
2
+ 4 𝑅𝐿𝑅𝑅 sin

2 1
2𝜙

𝑇𝑝𝑘 =
𝑇𝐿𝑇𝑅

1 − 𝑅𝐿𝑅𝑅
2 ≈

4𝑇𝐿𝑇𝑅
𝑇𝐿 + 𝑇𝑅

2
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𝑇 ≈
𝑇𝑝𝑘

1 +
𝛿𝜙
1
2
𝜙0

2 𝑇𝑝𝑘 =
𝑇𝐿𝑇𝑅

1 − 𝑅𝐿𝑅𝑅
2 ≈

4𝑇𝐿𝑇𝑅
𝑇𝐿 + 𝑇𝑅

2profil Lorentza

𝜙0 = 𝑇𝐿 + 𝑇𝑅
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𝑓 𝐸, 𝜇𝐿 − 𝑓 𝐸, 𝜇𝑅 ≈

≈ 𝑒𝑈
𝜕𝑓 𝐸, 𝜇

𝜕𝜇
= −𝑒𝑈

𝜕𝑓 𝐸, 𝜇

𝜕𝐸

𝜇𝑅

𝜇𝑅

𝜇𝑅

𝜇𝐿

𝜇𝐿

𝜇𝐿

𝐸𝐿

𝐸𝐿

𝐸𝐿

𝐸𝑅

𝐸𝑅

𝐸𝑅

𝑒𝑈

𝑒𝑈

𝐼 =
2𝑒2𝑈

ℎ
න
𝐸𝐿

∞𝜕𝑓 𝐸, 𝜇

𝜕𝐸
𝑇 𝐸 𝑑𝐸

For metals 𝜇𝐿 = 𝜇 +
1

2
𝑒𝑈 i 𝜇𝑅 = 𝜇 −

1

2
𝑒𝑈 :

𝑒2

ℎ
= 38,7 𝜇𝑆

ℎ

𝑒2
= 25,8 𝑘Ω

𝐺 =
𝑑𝐼

𝑑𝑈
=
2𝑒2

ℎ
න
𝐸𝐿

∞𝜕𝑓 𝐸, 𝜇

𝜕𝐸
𝑇 𝐸 𝑑𝐸 ≈

2𝑒2

ℎ
𝑇 𝜇

Resistance is finite even for the ideal conductor!

Quantized conductance (S – Simens)
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𝐸𝑛 =
3

2
𝜋 𝑛 −

1

4

2/3
𝑒𝐹ℏ 2

2𝑚

1/3

http://www.phys.unsw.edu.au/QED/research/2D_scattering.htm

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential
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𝑒2

ℎ
= 38,7 𝜇𝑆𝐺 =

𝑑𝐼

𝑑𝑈
=
2𝑒2

ℎ
න
𝐸𝐿

∞𝜕𝑓 𝐸, 𝜇

𝜕𝐸
𝑇 𝐸 𝑑𝐸 ≈

2𝑒2

ℎ
𝑇 𝜇 = 𝐺0𝑇 𝜇

𝐺 = 𝐺0

𝑛

𝑇𝑛 𝜇

B. J. van Wees et al. Quantized conductance of point contacts in a two-dimensional electron gas 
Phys. Rev. Lett. 60, 848–850 (1988) 
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B. J. van Wees et al. Quantum ballistic and adiabatic 
electron transport studied with quantum point 
contacts Phys. Rev. B 43, 12431–12453 (1991)

𝐺 =
2𝑒2

ℎ
𝑇 𝜇 = 𝐺0𝑇 𝜇
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R.M. Westervelt, M. A. Topinka et al. 
Physica E 24 (2004) 63–69 
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𝐺 =
2𝑒2

ℎ
𝑇 𝜇 = 𝐺0𝑇 𝜇

M. A. Topinka et al. 
Nature 410, 183 (2001)

Experiment

Modeling
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𝑉𝑏 = 0
𝑉𝑔 = 0

𝑉𝑏 = 𝑉1
𝑉𝑔 = 0

𝐼

𝑉𝑏

𝑉𝑏 = 𝑉2 < 𝑉1
𝑉𝑔 ≠ 0

𝑉𝑏 = 0
𝑉𝑔 ≠ 0

𝑉1𝑉2

Dot behaves like a small capacitor of energy 𝐸𝑐~
1

2

𝑒2

𝐶
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Clive Emary
Theory of Nanostructures nanoskript.pdf
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Maxwell’s equations in matter

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

𝛻 × 𝐻 = Ԧ𝑗𝑠𝑤 +
𝜕𝐷

𝜕𝑡

𝛻𝐷 = 𝜌𝑠𝑤

𝛻𝐵 = 0

𝐵 = 𝜇0𝐻 +𝑀 = 𝜇0 1 + 𝜒𝑚 𝐻 = 𝜇𝐻 = 𝜇𝑟𝜇0𝐻

Ԧ𝑗𝑠𝑤 = ො𝜎𝐸

𝐷 = 𝜀0𝐸 + 𝑃 = 𝜀0 1 + 𝜒𝑒 𝐸 = 𝜀𝐸 = 𝜀0𝜀𝑟𝐸

𝑣2 =
1

𝜇0𝜀0

1

𝜇𝑟𝜀𝑟
=

𝑐2

𝜇𝑟𝜀𝑟
=
𝑐2

𝑛2

Material equations (linear)

The equations written in the form of a 
scalar 𝜑 and vector 𝐴 potentials: 

𝐵 = 𝛻 × 𝐴

Then 𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
= −

𝜕

𝜕𝑡
𝛻 × 𝐴 ⇒ 𝛻 × 𝐸 +

𝜕

𝜕𝑡
𝛻 × 𝐴 = 0 ⇒ 𝛻 × 𝐸 +

𝜕 Ԧ𝐴

𝜕𝑡
= 0

If the rotation of the gradient is zero, then: −𝛻𝜑 = 𝐸 +
𝜕 Ԧ𝐴

𝜕𝑡
thus 𝐸 = −𝛻𝜑 −

𝜕 Ԧ𝐴

𝜕𝑡
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Example:

𝐵 = 𝛻 × 𝐴

We call it the gauge

Landau gauge: field 𝐵 = 0,0, 𝐵𝑧 ⇒ 𝐵𝑧 =
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦

𝐸 = −𝛻𝜑 −
𝜕 Ԧ𝐴

𝜕𝑡

𝜑 = −𝐸 Ԧ𝑟 + 𝐶𝜑 Ԧ𝐴 = −𝐸𝑡 + 𝐶𝐴

Ԧ𝐴 → Ԧ𝐴 + 𝛻𝜒𝜑 → 𝜑 −
𝑑𝜒

𝑑𝑡

Not only constants 𝐶𝜑 and 𝐶𝐴 we can add for the scalar and vector potentials:

eg.: 𝜒 = ±𝐸 Ԧ𝑟𝑡

𝐴𝑦 = 𝐵𝑧𝑥 lub   𝐴𝑥 = −𝐵𝑧𝑦

Coulomb gauge:  𝛻 Ԧ𝐴 = 0 field 𝐵 = 0,0, 𝐵𝑧 ⇒ Ԧ𝐴 =
1

2
𝐵𝑧 −𝑦, 𝑥, 0 =

1

2
𝐵 × Ԧ𝑟

(unfortunately distinguishes direction)

(unfortunately complicates calculations)

Lorentz gauge: 𝛻 Ԧ𝐴 +
𝜕𝜑

𝜕𝑡
= 0

Maxwell’s equations in matter
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Franz-Keldysh effect - in the electric field optical transitions occur at lower energies - the energy 
gap is „blurred”, the wavefunctions are „leaking" into the band gap:

The density of states (in general) can be defined as:

𝑁3𝐷 𝐸, 𝑧 ~
𝑚

𝜋ℏ3
2𝑚𝜀0න

−∞

𝐸

𝐴𝑖2
𝑒𝐹𝑧 − 𝜀

𝜀0
𝑑𝜀 =

𝑚

𝜋ℏ3
2𝑚𝜀0 𝐴𝑖′ 𝑠 2 − 𝑠 𝐴𝑖 𝑠 2
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−
ℏ2

2𝑚
𝛻2 −

𝑖𝑒ℏ

𝑚
𝐵𝑥

𝜕

𝜕𝑦
+

𝑒𝐵𝑥 2

2𝑚
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

Vector potential does not depend on 𝑦, we can assume the function of the form: 

𝜓 Ԧ𝑟 = 𝑤 𝑧 𝑢 𝑥 exp 𝑖𝑘𝑦𝑦

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+
1

2
𝑚 𝜔𝑐

2 𝑥 +
ℏ𝑘𝑦

𝑒𝐵

2

𝑢 𝑥 = 𝜀𝑢 𝑥 𝜔𝑐 =
𝑒𝐵

𝑚
𝑅𝑐 =

𝑣

𝜔𝑐
=

2𝑚𝐸

𝑒𝐵

Cyclotron radius (gyroradius)Cyclotron frequency

The parabolic potential of the form of 𝑥𝑘 = −ℏ𝑘𝑦/𝑒𝐵

𝑘𝑦 wave vector. What interesting in 𝜀 THERE IS NO 𝑘𝑦. 
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𝜎 = 𝑛𝑒𝜇

1

1 + 𝑠2
−𝑠

1 + 𝑠2
0

𝑠

1 + 𝑠2
1

1 + 𝑠2
0

0 0 1

𝑠 =
𝑒𝐵𝜏

𝑚∗
= 𝜔𝑐𝜏

𝜇 =
𝑒𝜏

𝑚∗

𝜌 = 𝜎−1 =
1

𝑛𝑒𝜇

1 𝑠 0
−𝑠 1 0
0 0 1

The full coductivity tensor

The full resistivity tensor

𝐸 = 𝜌Ԧ𝑗 =

𝑗𝑥
𝑛𝑒𝜇

−
𝑗𝑥𝐵

𝑛𝑒
0

𝑈𝑥𝑦 = 𝐸𝑦𝑤 =
𝐼𝑥
𝑤𝑑

𝐵

𝑛𝑒
𝑤 =

𝐼𝑥
𝑑𝑛𝑒

𝐵 = 𝑅𝐻
𝐼𝑥𝐵

𝑑

𝑑

𝑅𝐻 =
1

𝑛𝑒

𝑎

Hall constant
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The Landau gauge solution

1

2𝑚
Ƹ𝑝 − 𝑞 Ԧ𝐴 Ԧ𝑟, 𝑡

2
+ 𝑞𝜑 Ԧ𝑟, 𝑡 + 𝑈 Ԧ𝑟, 𝑡 𝜓 Ԧ𝑟, 𝑡 = 𝑖ℏ

𝑑

𝑑𝑡
𝜓 Ԧ𝑟, 𝑡

Landau gauge: magnetic field 𝐵 = 0,0, 𝐵𝑧 ⇒ 𝐵𝑧 =
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦

Ԧ𝐴 = 0, 𝐵𝑧𝑥, 0 czyli 𝐴𝑦 = 𝐵𝑧𝑥 ≝ 𝐵𝑥

(unfortunately distinguishes
direction)

1

2𝑚
−ℏ2

𝜕2

𝜕𝑥2
+ −𝑖ℏ

𝜕

𝜕𝑦
+ 𝑒𝐵𝑥

2

− ℏ2
𝜕2

𝜕𝑧2
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

−
ℏ2

2𝑚
𝛻2 −

𝑖𝑒ℏ

𝑚
𝐵𝑥

𝜕

𝜕𝑦
+

𝑒𝐵𝑥 2

2𝑚
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟Which gives:

The evidence of the Lorentz force Parabolic potential!

We assume that in a plane 𝑥𝑦
there is no other potential

𝑞 = −𝑒
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Solutions 𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 + 𝐸𝑛 (does not depend on 𝑘𝑦; 𝐸𝑛- is any 2D energy).

𝜙𝑛𝑘 𝑥, 𝑦 ∝ 𝐻𝑛−1
𝑥 − 𝑥𝑘
𝑙𝐵

exp −
𝑥 − 𝑥𝑘

2

2𝑙𝐵
2 exp 𝑖𝑘𝑦𝑦

Wave functions are the functions of the oscillator (along 𝑥, of the order of 𝑙𝐵/ 2) and travelling 
waves (along 𝑦) – weird, right? Why?

The energy does not depend on 𝑘 vector – states of different 𝑘 have the same energy, so they 
are degenerated (therefore any combination of them does not change the energy).

The density of states is reduced from the constant
𝑚

𝜋ℏ2
to a series of discrete values 𝛿

given by the equation of 𝜀𝑛𝑘 - they are called Landau levels.

Full energy (including binding potential in 𝑧 direction): 

𝑛 = 1, 2, 3…

𝐵

𝐸

𝐸1

𝐸2

𝐸 = 𝐸𝑧 + 𝜀𝑛𝑘 = 𝐸𝑧 + 𝑛 −
1

2
ℏ𝜔𝑐

𝑛 = 1, 2, 3…

The 2D case:
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𝑛 = 1, 2, 3…

Solutions 𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 + 𝐸𝑛 (does not depend on 𝑘𝑦; 𝐸𝑛- is any 2D energy).

𝜙𝑛𝑘 𝑥, 𝑦 ∝ 𝐻𝑛−1
𝑥 − 𝑥𝑘
𝑙𝐵

exp −
𝑥 − 𝑥𝑘

2

2𝑙𝐵
2 exp 𝑖𝑘𝑦𝑦

The 2D case:
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The solution of the Schrödinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = 𝐿𝑥 × 𝐿𝑦, in the Landau gauge for 𝑦

coordnate we have plane wave condition 𝑘 = 2𝜋/𝐿𝑦 𝑛𝑦 (where 𝑛𝑦 is an integer number). 

For 𝑥 coordinate the wavefunction is centered in 𝑥𝑘 = −
ℏ𝑘

𝑒𝐵
= − 2𝜋ℏ𝑛𝑦/𝑒𝐵𝐿𝑦 .

The condition for 𝑥𝑘 to be in the sample (rather than outside):

−𝐿𝑥 <
2𝜋ℏ𝑛𝑦

𝑒𝐵𝐿𝑦
< 0 czyli

Φ0 =
ℎ

𝑒
= 4.135667516 × 10−15 Wb

The magnetic flux quantum (pol. flukson) (In a superconductor ℎ/2𝑒, so this is not a „quantum”)

Φ = 𝐵𝑆 the total magnetic flux in the sample S = 𝐿𝑥 × 𝐿𝑦

[Wb]=[T m2]

0 < 𝑛𝑦Φ0 < Φ

The amount of allowed states is related to the amount of magnetic flux quanta passing through 
the sample!  

flux

0 < 𝑛𝑦 <
𝑒𝐵

ℎ
𝐿𝑥𝐿𝑦 = 𝑛𝐵𝑆 =

𝑒

ℎ
𝐵𝑆 =

Φ

Φ0
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The Fermi level lies between Landau levels -
there is no DOS, change of 𝐸𝐹 does not change
DOS –incompressible states (stany nieściśliwe)

The Fermi level lies inside the Landau level –
large DOS, change of 𝐸𝐹 strongly affects the DOS 
– compressible states (stany ściśliwe)



Landau levels
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𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷The Fermi level in the magnetic field:
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Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.

http://groups.physics.umn.edu/zudovlab/content/sdho.htm

Oscillations depend on the ratio of the Fermi energy 
𝐸𝐹 to the cyclotron frequency ℏ𝜔𝑐 = 𝑒𝐵/𝑚∗. 
Oscillations are periodic in 1/𝐵. 

𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷

From SdH we can determine the effective mass 𝑚∗

and quantum time 𝜏𝑞. The amplitude of oscillation is 

given by
Δ𝜌𝑆𝑑𝐻 = 4𝜌0𝛿 cos 4𝜋𝜈

𝜉 𝑇

sinh 𝜉 𝑇
exp −

𝜋

𝜔𝑐𝜏𝑞

𝜉 𝑇 = 2𝜋2𝑘𝑇/ℏ𝜔𝑐

Temperature dependence gives 𝑚∗, damping 𝜏𝑞.
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Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.
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Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized
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𝐸𝑛𝑙 = 2𝑛 + 𝑙 − 1 ℏ𝜔0
2 +

1

2
ℏ𝜔𝑐

2

+
1

2
ℏ𝜔𝑐 𝑙

𝑛 = 1, 2, 3… 𝑙 = 0,±1,±2,±3…
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The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in two-
dimensional periodic potential under the influence of a perpendicular magnetic field. The 
horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the 
periodic potential. The flux is a dimensionless number when measured in quantum flux units 
(will call it a). It is an example of a fractal energy spectrum. When the flux parameter a is 
rational and equal to p/q with p and q relatively prime, the spectrum consists of q non-
overlapping energy bands, and therefore q+1 energy gaps (gaps number 0 and q are the regions 
below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set. 
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈

ℎ
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Yu, Cardona

Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈∗
ℎ

𝑒2

Fractional Quantum Hall Effect (FQHE) – for 2D gas 𝜈 ≤ 1: if the Fermi level is located in 
localized states the Hall resistance (opór hallowski) is quantized


