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Summary of the lecture
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1. Introduction – semiconductor heterostructures (revison of solid state physics )
2. Nanotechnology 
3. Quantum wells (1)
4. Quantum wells (2)
5. Quantum dots, Quantum wells in 1D, 2D and 3D
6. Optical transitions in nanostructures
7. Work on the article about quantum dots

[TEST]
8. Carriers in heterostructures
9. Tunneling transport
10. Quantized conductance 
11. Work on the article about the tunneling or conductance
12. Electric field in low-dimensional systems
13. Magnetic field in low-dimensional systems
14. Electric and magnetic fields in low-dimensional systems
15. Revision

[Final TEST]
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1. Introduction – semiconductor heterostructures
Revision of solid state physics:  Born-Oppenheimer approximation, Hartree-Fock method and 
one electron Hamiltonian, periodic potential, Bloch states, band structure, effective mass.

2. Nanotechnology 
Revision of solid state physics: tight-binding approximation,  Linear Combination of Atomic 
Orbitals (LCAO).
Nanotechnology. Semiconductor heterostructures. Technology of low dimensional structures. 
Bandgap engineering: straddling, staggered and broken gap. Valence band offset.

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Quantum well in heterostructures: 
finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)
Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin 
(WKB) method.
Band structure in 3D, 2D. Coulomb potential in 2D
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5. Quantum dots, Quantum wells in 1D, 2D and 3D
Quantum wells in 1D, 2D and 3D. Quantum wires and quantum dots. Bottom-up approach for 
low-dimensional systems and nanostructures. Energy gap as a function of the well width.

6. Optical transitions in nanostructures
Time-dependent perturbation theory, Fermi golden rule, interband and intraband transitions in 
semiconductor heterostructures

7. Work on the article about quantum dots
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. 
Discussion.

8. Carriers in heterostructures
Density of states of low dimensional systems. Doping of semiconductors. Heterojunction, p-n 
junction, metal-semiconductor junction, Schotky barrier 
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9. Tunneling transport
Continuity equation. Potential step. Tunneling through the barrier. Transfer matrix approach. 
Resonant tunneling. Quantum unit of conductance.

10. Quantized conductance 
Quantized conductance. Coulomb blockade, one-electron transistor. 

11. Work on the article about the tunneling or conductance
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. 
Discussion. 

12. Electric field in low-dimensional systems
Scalar and vector potentials. Carriers in electric field: scalar and vector potential in Schrodinger 
equation. Schrodinger equation with uniform electric field. Local density of states. Franz-
Kieldysh effect.
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13. Magnetic field in low-dimensional systems
Carriers in magnetic field. Schrodinger equation with uniform magnetic field – symmetric 
gauge, Landau gauge. Landau levels, degeneracy of Landau levels. 

14. Electric and magnetic fields in low-dimensional systems
Schrodinger equation with uniform electric and magnetic field. Hall effect. Shubnikov-de Haas 
effect. Quantum Hall effect. Fractional Quantum Hall Effect. Hofstadter butterfly. Fock-Darvin
spectra

15. Revision 
Revision and preparing for the exam. 
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1. Introduction – semiconductor heterostructures
Schrodinger equation. Wave packet, Gaussian wavepacket .

2. Nanotechnology 
Tight-binding approximation: graphene bandctructure. 

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Finite square well with different 
effective masses in the well and barriers.

4. Quantum wells (2)
Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin 
(WKB) method.

5. Double quantum wells. Quantum dots.
Double quantum wells. Quantum dots (2D and 3D harmonic potential)
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6. Optical transitions in nanostructures
Interband and intraband transitions in semiconductor heterostructures. Continuity equation. 

7. Carriers in heterostructures (1)
Transfer matrix approach. Potential step.

8. Carriers in heterostructures (2)
Tunneling through the barrier.

9. Resonant tunneling
Resonant tunneling.

10. Quantized conductance 
Quantized conductance. Coulomb blockade. 

11. Local density of states 
Local density of states. 
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12. Electric field in low-dimensional systems
Carriers in electric field: scalar and vector potential in Schrodinger equation.

13. Magnetic field in low-dimensional systems
Schrodinger equation with uniform magnetic field – symmetric gauge, Landau gauge. Landau 
levels, degeneracy of Landau levels. 

14. Electric and magnetic fields in low-dimensional systems
Schrodinger equation with uniform electric and magnetic field. Conductivity and resistivity 
tensors

15. Hall effect. Fock-Darvin spectrum
Hall effect.  Fock-Darvin spectrum.
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Homeworks
Discussion of scientific papers
Tests to check the effective use of the skills acquired during the lecture
Exam: final test and oral exam
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Epoka NANO
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Motoryzacja (Hummer H2 sport utility truck) Budownictwo
Samoczyszczący się beton

Sport

Ubrania (Nano-Tex)
Kosmetyki

www.sts.utexas.edu/projects/nanomodules/ 

AGD
Samoczyszcząca się lodówka Samsung 

Nano SilverSeal 

iPod Nano

Elektronika
Wyświetlacze OLED

NANO era
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http://www.haruyama.co.jp/

Antiviral Business Suits Fight H1N1 Swine Flu 
With Science & Style

The $585 suits that went on sale today 
(October 8, 2009) are treated with Titanium 
Dioxide, a chemical compound commonly used 
in cosmetics and toothpaste. According to 
company spokes-person Junko Hirohata, TiO2 
has photocatalytic properties, meaning that it 
when exposed to light it breaks down organic 
materials.

NANO era
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NANO era
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Chemistry Biology

Physics

NANO



NANO era
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NANO

Material Engineering Electronics

Medycine

Medical diagnostics

Pharmacy

Fundamental research

Technologia chemiczna

Energetics

Chemistry Biology

Physics



The uncertainty principle
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The band theory of solids.
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Band theory of solids
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W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics



Theoretical description of condensed matter

Born – Oppenheimer approximation

Max Born

(1882-1970)

Jacob R. Oppenheimer

(1904-1967)
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Theoretical description of condensed matter

Full non-relativistic Hamiltonian of the system of nuclei and electrons:

𝐻 Ԧ𝑟, 𝑅 Ψ Ԧ𝑟, 𝑅 = 𝐸Ψ Ԧ𝑟, 𝑅

𝐻 Ԧ𝑟, 𝑅

= −
ℏ2

2𝑚
෍

𝑖

𝛻𝑖
2 − ෍

𝑁

ℏ2

2𝑀𝑁
𝛻𝑁
2 − −

1

4𝜋𝜀0
෍

𝑁,𝑖

𝑍𝑁𝑒
2

Ԧ𝑟𝑖 − 𝑅𝑁
+

+
1

4𝜋𝜀0
෍

𝑁<𝐾

𝑍𝑁𝑍𝐾𝑒
2

𝑅𝑁 − 𝑅𝐾
+

1

4𝜋𝜀0
෍

𝑖<𝑗

𝑒2

Ԧ𝑟𝑖 − Ԧ𝑟𝑗
=

= ෠𝑇𝑒 + ෠𝑇𝑁 + 𝑉 Ԧ𝑟, 𝑅 + 𝑉𝑒 Ԧ𝑟 + 𝐺 𝑅

Electron and nuclear (ions) subsystems coordinates are intermixed, separation of electronic and 
nuclear variables is impossible

Assumption: motion of atomic nuclei and electrons in a molecule can be separated
Born-Oppenheimer adiabatic approximation
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Born – Oppenheimer approximation



LCAO method
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The solution of the equation of electron states requires numerical methods

𝐻𝑒𝑙 Ԧ𝑟, 𝑅 Ψ𝑒𝑙
𝑘 Ԧ𝑟, 𝑅 = ෠𝑇𝑒 + 𝑉 Ԧ𝑟, 𝑅 + 𝑉𝑒 Ԧ𝑟 Ψ𝑒𝑙

𝑘 Ԧ𝑟, 𝑅 = 𝐸𝑒𝑙
𝑘 𝑅 Ψ𝑒𝑙

𝑘 Ԧ𝑟, 𝑅

One of methods: LCAO-MO with Hartree-Fock approximation – self-consistent field method 
(iterative method), 𝑛-electron wave function  as Slater determinant, trivially satisfies the 
antisymmetric property of the exact solution: 

Ψ𝑒𝑙
𝑘 Ԧ𝑟1, Ԧ𝑟2, Ԧ𝑟3, … 𝑠1, 𝑠2, 𝑠3, … =

1

𝑛!

𝜑1
𝑠𝑝

Ԧ𝑟1, 𝑠1 𝜑1
𝑠𝑝

Ԧ𝑟2, 𝑠2

𝜑2
𝑠𝑝

Ԧ𝑟1, 𝑠1 𝜑2
𝑠𝑝

Ԧ𝑟2, 𝑠2

… 𝜑1
𝑠𝑝

Ԧ𝑟𝑛, 𝑠𝑛

… 𝜑2
𝑠𝑝

Ԧ𝑟𝑛, 𝑠2
… …

𝜑𝑛
𝑠𝑝

Ԧ𝑟1, 𝑠1 𝜑𝑛
𝑠𝑝

Ԧ𝑟2, 𝑠2
…

… 𝜑𝑛
𝑠𝑝

Ԧ𝑟𝑛, 𝑠𝑛

Each of the single-electron spin-orbital 𝜑𝑛
𝑠𝑝

Ԧ𝑟𝑛, 𝑠𝑛 must be different – two spin-orbital can for 
instance share the same orbital function, but then theirs spins are different

𝜑𝑛
𝑠𝑝

Ԧ𝑟𝑛, 𝑠𝑛 = 𝜑𝑛
𝑠𝑝

Ԧ𝑟𝑛
0
1

or 𝜑𝑛
𝑠𝑝

Ԧ𝑟𝑛
1
0

Theoretical description of condensed matter



Theoretical description of condensed matter
Hartree approximation (one-electron)

Ψ𝑒𝑙
𝑘 Ԧ𝑟1, Ԧ𝑟2, Ԧ𝑟3, … = 𝜑1 Ԧ𝑟1 ⋅ 𝜑2 Ԧ𝑟2 ⋅ 𝜑3 Ԧ𝑟3 ⋅ … ⋅ 𝜑𝑛 Ԧ𝑟𝑛

We assume that an average potential from other ions and electrons acts on each electron:

෍

𝑖

𝑝𝑖
2

2𝑚
+෍

𝑖

𝑉𝑖 Ԧ𝑟𝑖 Ψ𝑒𝑙
𝑘 Ԧ𝑟1, Ԧ𝑟2, Ԧ𝑟3, … = 𝐸𝑡𝑜𝑡

𝑘 Ψ𝑒𝑙
𝑘 Ԧ𝑟1, Ԧ𝑟2, Ԧ𝑟3, …

Thus

𝑝𝑖
2

2𝑚
+ 𝑉𝑖 Ԧ𝑟𝑖 𝜑𝑖 Ԧ𝑟𝑖 = 𝐸𝑖𝜑𝑖 Ԧ𝑟𝑖

If every potential is the same 𝑉1 Ԧ𝑟1 ≈ 𝑉2 Ԧ𝑟2 ≈ ⋯ ≈ 𝑉𝑛 Ԧ𝑟𝑛 ≈ 𝑉 Ԧ𝑟 we get
One-electron Schrödinger equation: 

𝑝2

2𝑚
+ 𝑉 Ԧ𝑟 𝜑𝑖 Ԧ𝑟𝑖 = 𝐸𝑖𝜑𝑖 Ԧ𝑟𝑖

This time 𝑖 is the set of quantum numbers of one-electron quantum states 𝜑𝑖 Ԧ𝑟𝑖 of energies 𝐸𝑖 . 
One-electron states are subject to the Pauli exclusion principle. 
A significant change in the number of electrons in a given band, leads to the change of  𝑉 Ԧ𝑟
and of the one –particle spectra! (for instance energy gap renormalization ) 

෍

𝑖

𝐸𝑖 = 𝐸𝑡𝑜𝑡

2017-06-05 27



6/5/2017 28

Bloch theorem
Assumptions:
Motionless atoms, crystal (periodic) lattice .
One-electron Hartree approximation

„One-electron” Schrödinger equation

Effective potential, periodic potential of the crystal lattice, the same for all electrons.

Self-consistent field method – the multi-electron issue is 
reduced to the solution of one-electron problem in a potential 
of all other electrons and atoms

or Hartree-Fock approximation (Slater determinant).

Ψ𝑒𝑙
𝑘 Ԧ𝑟1, Ԧ𝑟2, Ԧ𝑟3, … = 𝜑1 Ԧ𝑟1 ⋅ 𝜑2 Ԧ𝑟2 ⋅ 𝜑3 Ԧ𝑟3 ⋅ … ⋅ 𝜑𝑛 Ԧ𝑟𝑛

𝑝2

2𝑚
+ 𝑉 Ԧ𝑟 𝜑𝑛 Ԧ𝑟𝑛 = 𝐸𝑛𝜑𝑛 Ԧ𝑟𝑛

𝑉 Ԧ𝑟 = 𝑉 Ԧ𝑟 + 𝑅

Periodic potential
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Crystal lattice:

𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ

For periodic  functions with the lattice period 𝑅

𝑓 Ԧ𝑟 = 𝑓 Ԧ𝑟 + 𝑅 a good base in the Fourier series 

expansion are functions 𝑔 Ԧ𝑟 = exp 𝑖 Ԧ𝐺 Ԧ𝑟 which depend 

on the reciprocal lattice vectors:
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

exp 𝑖 Ԧ𝐺 Ԧ𝑟 + 𝑅 =

= exp 𝑖 Ԧ𝐺 Ԧ𝑟 ⋅ exp 𝑖 Ԧ𝐺𝑅 = exp 𝑖 Ԧ𝐺 Ԧ𝑟 exp 2𝜋 𝑛1𝑚1 + 𝑛2𝑚2 + 𝑛3𝑚3 =exp 𝑖 Ԧ𝐺 Ԧ𝑟

therefore 𝑔 Ԧ𝑟 = 𝑔 Ԧ𝑟 + 𝑅 and finally we get:

𝑉 Ԧ𝑟 =෍

Ԧ𝐺

𝑉Ԧ𝐺 exp 𝑖 Ԧ𝐺 Ԧ𝑟

Ԧ𝑎𝑖 Ԧ𝑎𝑗
∗ = 2𝜋𝛿𝑖𝑗

Bloch theorem

Periodic potential
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Periodic potenetial we can expand as a Fourier series:

𝑉 Ԧ𝑟 =෍

Ԧ𝐺

𝑉Ԧ𝐺 exp 𝑖 Ԧ𝐺 Ԧ𝑟

The wavefunction can be represented as a sum of plane 
waves of different wavelengths satisfying periodic boundary 
conditions :

𝜑 Ԧ𝑟 =෍

𝑘

𝐶𝑘 exp 𝑖𝑘 Ԧ𝑟

Schrödinger equation: 

Ƹ𝑝2

2𝑚
+ 𝑉 Ԧ𝑟 𝜑 Ԧ𝑟 = 𝐸 𝜑 Ԧ𝑟

෍

𝑘

ℏ2𝑘2

2𝑚
𝐶𝑘 exp 𝑖𝑘 Ԧ𝑟 +෍

𝑘, Ԧ𝐺

𝐶𝑘 𝑉Ԧ𝐺 exp 𝑖 𝑘 + Ԧ𝐺 Ԧ𝑟 = 𝐸෍

𝑘

𝐶𝑘 exp 𝑖𝑘 Ԧ𝑟

This is an equation for 𝐸 and 𝐶𝑘 for all vectors 𝑘, Ԧ𝑟 and Ԧ𝐺. 

Bloch theorem

Periodic potential

See also: Ibach, Luth „Solid State Physics”
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෍

𝑘

ℏ2𝑘2

2𝑚
𝐶𝑘 exp 𝑖𝑘 Ԧ𝑟 +෍

𝑘, Ԧ𝐺

𝐶𝑘 𝑉Ԧ𝐺 exp 𝑖 𝑘 + Ԧ𝐺 Ԧ𝑟 = 𝐸෍

𝑘

𝐶𝑘 exp 𝑖𝑘 Ԧ𝑟

We get Schrödinger equation in a form:

෍

𝑘

exp 𝑖𝑘 Ԧ𝑟
ℏ2𝑘2

2𝑚
− 𝐸 𝐶𝑘 +෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑉Ԧ𝐺 = 0

That must be met for each vector Ԧ𝑟.

The sum is over all 𝑘, Ԧ𝐺 ,therefore:

෍

𝑘, Ԧ𝐺

𝐶𝑘 𝑉Ԧ𝐺 exp 𝑖 𝑘 + Ԧ𝐺 Ԧ𝑟 = … 𝑘 + Ԧ𝐺 → 𝑘…

=෍

𝑘, Ԧ𝐺

𝐶𝑘− Ԧ𝐺 𝑉Ԧ𝐺 exp 𝑖𝑘 Ԧ𝑟

Bloch theorem

Periodic potential
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෍

𝑘

exp 𝑖𝑘 Ԧ𝑟
ℏ2𝑘2

2𝑚
− 𝐸 𝐶𝑘 +෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑉Ԧ𝐺 = 0

for each vector Ԧ𝑟.

Thus, for each vector 𝑘 we got equation for coefficients 𝐶𝑘
and 𝐸:

ℏ2𝑘2

2𝑚
− 𝐸 𝐶𝑘 +෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑉Ԧ𝐺 = 0

In this equation for 𝐶𝑘 also coefficients shifted by Ԧ𝐺 like 𝐶𝑘− Ԧ𝐺1
, 𝐶𝑘− Ԧ𝐺2

, 𝐶𝑘− Ԧ𝐺3
appear 

(but others do not, even when we started for any 𝑘!).

This equation couples those expansion coefficients  𝜑 Ԧ𝑟 = σ
𝑘
𝐶𝑘 exp 𝑖𝑘 Ԧ𝑟 , whose 𝑘 - values 

differ from one another by a reciprocal lattice vector Ԧ𝐺.
𝐶𝑘1
𝐶𝑘2
𝐶𝑘2
…
𝐶𝑘𝑛Try to plot the mattrix of this equation

Bloch theorem

Periodic potential
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ℏ2𝑘2

2𝑚
− 𝐸 𝐶𝑘 +෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑉Ԧ𝐺 = 0

We do not need to solve these equations for all vectors Ԧ𝐺 –
we can find a solution in one unit cell of the reciprocal lattice  
and copy it 𝑁 times (𝑁 – number of unit cells)! 

Thus we can find eigenvalues 𝐸 → 𝐸𝑘 → 𝐸 𝑘 corresponding 

to the wave-function 𝜑𝑘 Ԧ𝑟 represented as a superposition of 

plane waves whose wave vectors 𝑘 differ only by reciprocal 

lattice vectors Ԧ𝐺.

Wave vector 𝑘 is a good quantum number  according to which the energy eigenvalues and 
quantum states may be indexed. Thus the function 𝜑 Ԧ𝑟 is the superposition of  𝜑𝑘 Ԧ𝑟 of 

energies 𝐸 𝑘

𝜑 Ԧ𝑟 =෍

𝑘

𝐶𝑘 exp 𝑖𝑘 Ԧ𝑟 = ⋯ = ෍

𝑘 𝐵𝑟𝑖𝑙𝑙𝑜𝑢𝑖𝑛
𝑧𝑜𝑛𝑒

𝜑𝑘 Ԧ𝑟

(later on we introduce coefficient 𝑛 for different solutions of 𝐸𝑘 corresponding to the same 𝑘)

Bloch theorem

Periodic potential
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Wave-function which is the solution of the Schrodinger 
equation 𝜑𝑘 Ԧ𝑟 is represented as a superposition of plane 

waves whose wave vectors 𝑘 differ only by reciprocal lattice 

vectors Ԧ𝐺 and it has energies 𝐸𝑘 = 𝐸 𝑘 :

𝜑𝑘 Ԧ𝑟 =෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺 exp 𝑖 𝑘 − Ԧ𝐺 Ԧ𝑟

Each vector 𝑘 − Ԧ𝐺 can enumerate states; it is convenient to 
choose the shortest vector (which belongs to the first 
Brillouin zone).

𝜑𝑘 Ԧ𝑟 =෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺 𝑒
𝑖 𝑘− Ԧ𝐺 Ԧ𝑟 =෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺 𝑒
−𝑖 Ԧ𝐺 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟 =:𝑢𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

The function 𝑢𝑘 Ԧ𝑟 is a Fourier series over reciprocal lattice points Ԧ𝐺, and thus has the 

periodicity of the lattice.

Bloch theorem

Periodic potential
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Bloch theorem

Periodic potential

𝑘1 − 𝑘2 = Ԧ𝐺

𝜑𝑘 Ԧ𝑟 = 𝑢𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

Bloch waves whose wave 
vectors differ by a reciprocal 
lattice vector are IDENTICAL!



2017-06-05 36

The solution of the one-electron Schrödinger equation for a 
periodic potential has a form of modulated plane wave:

𝑢𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 + 𝑅

𝜑𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

We introduced coefficient 𝑛 for different solutions corresponding to the same 𝑘 (index).  𝑘-
vector is an element of the first Brillouin zone.

Bloch wave,
Bloch function

Bloch amplitude,
Bloch envelope

𝑢𝑛,𝑘 Ԧ𝑟 =෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑒
𝑖 Ԧ𝐺 Ԧ𝑟

Bloch theorem

Periodic potential
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Brillouin zones

Periodic potential

𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

Ԧ𝑎𝑖
∗ Ԧ𝑎𝑗 = 2𝜋𝛿𝑖𝑗

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php

2-D square lattice
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𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

Ԧ𝑎𝑖
∗ Ԧ𝑎𝑗 = 2𝜋𝛿𝑖𝑗

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php

Brillouin zones

Periodic potential

2-D square lattice
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𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

Ԧ𝑎𝑖
∗ Ԧ𝑎𝑗 = 2𝜋𝛿𝑖𝑗

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php

Brillouin zones

Periodic potential

2-D square lattice
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𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

Ԧ𝑎𝑖
∗ Ԧ𝑎𝑗 = 2𝜋𝛿𝑖𝑗

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php

Brillouin zones

Periodic potential

2-D hexagonal lattice
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𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

Ԧ𝑎𝑖
∗ Ԧ𝑎𝑗 = 2𝜋𝛿𝑖𝑗

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php

Brillouin zones

Periodic potential



http://oen.dydaktyka.agh.edu.pl/dydaktyka/fizyka/c_teoria_pasmowa/2.php

Brillouin zone for face centered cubic (fcc) lattice. 
The limiting zone walls comes from reciprocal lattice
points (2,0,0) square and (1,1,1) hexagonal.

Brillouin zone in 1D

Brillouin zone in 2D, oblique lattice. 
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𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

Brillouin zones

Periodic potential



Ibach, Luth
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bcc lattice

heksagonal lattice

𝑅 = 𝑛1 Ԧ𝑎1 + 𝑛2 Ԧ𝑎2 + 𝑛3 Ԧ𝑎3, 𝑛𝑖 ∈ ℤ
Ԧ𝐺 = 𝑚1 Ԧ𝑎1

∗ +𝑚2 Ԧ𝑎2
∗ +𝑚3 Ԧ𝑎3

∗ , 𝑚𝑖 ∈ ℤ

Brillouin zones

Periodic potential



Potencjał periodyczny 
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Yu, Cardona Fundametals of semiconductors



Fermi surfaces of metals
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http://physics.unl.edu/tsymbal/teaching/SSP-927/Section%2010_Metals-Electron_dynamics_and_Fermi_surfaces.pdf



Bloch function has a form:

Periodic function, so-
called Bloch factor

Generally non-
periodic function

Example: electron in a constant potential

substituting 𝜑𝑛,𝑘 Ԧ𝑟 = 1 𝑒𝑖𝑘 Ԧ𝑟

The solution is

The momentum operator Ƹ𝑝 = −𝑖ℏ𝛻 acting on 𝜑𝑛,𝑘 Ԧ𝑟

Ƹ𝑝𝜑𝑛,𝑘 Ԧ𝑟 = ℏ𝑘 𝜑𝑛,𝑘 Ԧ𝑟 . The solutions of the Schrödinger equation with a constant potential 

are eigenfunctions of the momentum operator. The momentum is well defined, the eigenvalue 

of the momentum operator is Ƹ𝑝 = ℏ𝑘 (this defines the sense of 𝑘-vector).

2017-06-05 46

𝐻 = −
ℏ2

2𝑚
Δ + 𝑉

𝜑𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

𝐸 =
ℏ2𝑘2

2𝑚
+ 𝑉

Bloch theorem

Periodic potential



Przykład:
Electron motion in a periodic potential.

Thus:

The solution is:

Applying Ƹ𝑝 = −𝑖ℏ𝛻 we get Ƹ𝑝𝜓 Ԧ𝑟 = −𝑖ℏ 𝑖 𝑘 + 𝛻𝑢𝑛,𝑘 𝑒𝑖𝑘 Ԧ𝑟 ≠ ℏ𝑘𝜓 Ԧ𝑟 .

Momentum of the Bloch function is not well defined! 

ℏ𝑘 is so-called quasi-momentum or crystal momentum.
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𝑉 Ԧ𝑟 =෍

Ԧ𝐺

𝑉Ԧ𝐺 exp 𝑖 Ԧ𝐺 Ԧ𝑟

𝜓𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

𝑢𝑛,𝑘 Ԧ𝑟 =෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑒
𝑖 Ԧ𝐺 Ԧ𝑟

Bloch theorem

Periodic potential



Przykład:
Electron motion in a periodic potential.

Thus:

The solution is:
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𝑉 Ԧ𝑟 =෍

Ԧ𝐺

𝑉Ԧ𝐺 exp 𝑖 Ԧ𝐺 Ԧ𝑟

𝜓𝑛,𝑘 Ԧ𝑟 = 𝑢𝑛,𝑘 Ԧ𝑟 𝑒𝑖𝑘 Ԧ𝑟

𝑢𝑛,𝑘 Ԧ𝑟 =෍

Ԧ𝐺

𝐶𝑘− Ԧ𝐺𝑒
𝑖 Ԧ𝐺 Ԧ𝑟

Bloch theorem

Periodic potential

LxLy

Lz

If our crystal has a finite size set of vectors 𝑘 is finite (though enormous!). for instance, we can 
assume periodic boundary conditions and then:

𝑘𝑖 = 0,±
2𝜋

𝐿𝑖
, ±

4𝜋

𝐿𝑖
, ±

6𝜋

𝐿𝑖
, … , ±

2𝜋𝑛𝑖
𝐿𝑖



Bloch functions whose wave vectors differ by a reciprocal lattice vector, are the same!

Proof:

What about energies?
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Bloch theorem

Periodic potential

𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 = 𝜓𝑛,𝑘 Ԧ𝑟 Ԧ𝐺 = ℎ Ԧ𝑔1 + 𝑘 Ԧ𝑔2 + 𝑙 Ԧ𝑔3

𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 = 𝑢𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 𝑒𝑖(𝑘+ Ԧ𝐺) Ԧ𝑟 =෍

Ԧ𝐺′

𝐶 𝑘 + Ԧ𝐺 − Ԧ𝐺′ 𝑒−𝑖 Ԧ𝐺
′ Ԧ𝑟 𝑒𝑖(𝑘+ Ԧ𝐺) Ԧ𝑟 = ⋯

=෍

Ԧ𝐺′′

𝐶 𝑘 − Ԧ𝐺′′ 𝑒−𝑖 Ԧ𝐺
′′ Ԧ𝑟 𝑒𝑖(𝑘) Ԧ𝑟 = 𝜓𝑛,𝑘 Ԧ𝑟

Ԧ𝑝2

2𝑚0
+ 𝑉 Ԧ𝑟 𝜓𝑛,𝑘 Ԧ𝑟 = 𝐸 𝑛, 𝑘 𝜓𝑛,𝑘 Ԧ𝑟

Ԧ𝑝2

2𝑚0
+ 𝑉 Ԧ𝑟 𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 = 𝐸 𝑛, 𝑘 + Ԧ𝐺 𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟



Bloch functions whose wave vectors differ by a reciprocal lattice vector, are the same!

Proof:

What about energies?
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Bloch theorem

Periodic potential

Ԧ𝑝2

2𝑚0
+ 𝑉 Ԧ𝑟 𝜓𝑛,𝑘 Ԧ𝑟 = 𝐸 𝑛, 𝑘 𝜓𝑛,𝑘 Ԧ𝑟

Ԧ𝑝2

2𝑚0
+ 𝑉 Ԧ𝑟 𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 = 𝐸 𝑛, 𝑘 + Ԧ𝐺 𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟

𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 = 𝑢𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 𝑒𝑖(𝑘+ Ԧ𝐺) Ԧ𝑟 =෍

Ԧ𝐺′

𝐶 𝑘 + Ԧ𝐺 − Ԧ𝐺′ 𝑒−𝑖 Ԧ𝐺
′ Ԧ𝑟 𝑒𝑖(𝑘+ Ԧ𝐺) Ԧ𝑟 = ⋯

=෍

Ԧ𝐺′′

𝐶 𝑘 − Ԧ𝐺′′ 𝑒−𝑖 Ԧ𝐺
′′ Ԧ𝑟 𝑒𝑖(𝑘) Ԧ𝑟 = 𝜓𝑛,𝑘 Ԧ𝑟

𝜓𝑛,𝑘+ Ԧ𝐺 Ԧ𝑟 = 𝜓𝑛,𝑘 Ԧ𝑟 Ԧ𝐺 = ℎ Ԧ𝑔1 + 𝑘 Ԧ𝑔2 + 𝑙 Ԧ𝑔3

⇒ 𝐸 𝑛, 𝑘 = 𝐸 𝑛, 𝑘 + Ԧ𝐺

Energy eigenvalues are a periodic function of 𝑘 (wave vectors of Bloch function).



Energy of the plane wave in empty space as the function of wave vector:

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 =
ℏ2𝑘2

2𝑚

−
8𝜋

𝑎

8𝜋

𝑎
−
6𝜋

𝑎

6𝜋

𝑎
−
4𝜋

𝑎

4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎
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Energy of the plane wave in empty space as the function of wave vector:

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 =
ℏ2𝑘2

2𝑚
= 𝐸 𝑛, 𝑘 + Ԧ𝐺 =

ℏ2 𝑘 + Ԧ𝐺
2

2𝑚

−
8𝜋

𝑎

8𝜋

𝑎
−
6𝜋

𝑎

6𝜋

𝑎
−
4𝜋

𝑎

4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎

522017-06-05



Energy of the plane wave in empty space as the function of wave vector:

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 =
ℏ2𝑘2

2𝑚
= 𝐸 𝑛, 𝑘 + Ԧ𝐺 =

ℏ2 𝑘 + Ԧ𝐺
2

2𝑚

−
8𝜋

𝑎

8𝜋

𝑎
−
6𝜋

𝑎

6𝜋

𝑎
−
4𝜋

𝑎

4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎

532017-06-05



Energy of the plane wave in empty space as the function of wave vector:

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 =
ℏ2𝑘2

2𝑚
= 𝐸 𝑛, 𝑘 + Ԧ𝐺 =

ℏ2 𝑘 + Ԧ𝐺
2

2𝑚

−
8𝜋

𝑎

8𝜋

𝑎
−
6𝜋

𝑎

6𝜋

𝑎
−
4𝜋

𝑎

4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎
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Energy of the plane wave in empty space as the function of wave vector:

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 =
ℏ2𝑘2

2𝑚
= 𝐸 𝑛, 𝑘 + Ԧ𝐺 =

ℏ2 𝑘 + Ԧ𝐺
2

2𝑚

−
8𝜋

𝑎

8𝜋

𝑎
−
6𝜋

𝑎

6𝜋

𝑎
−
4𝜋

𝑎

4𝜋

𝑎
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−
2𝜋

𝑎

2𝜋

𝑎



Energy of the plane wave in empty space as the function of wave vector:

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 =
ℏ2𝑘2

2𝑚
= 𝐸 𝑛, 𝑘 + Ԧ𝐺 =

ℏ2 𝑘 + Ԧ𝐺
2

2𝑚

562017-06-05

Reduced Brilloin zone.
On the border of the Brillouin zone
energies are degenerated



The band structure of nearly free-electron cubic lattice

[hkl]=

000, 

100,100, 200, 200,

kx

– –

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 = 𝐸 𝑛, 𝑘 + Ԧ𝐺 =
ℏ2 𝑘 + Ԧ𝐺

2

2𝑚

Ԧ𝐺 = ℎ Ԧ𝑔1 + 𝑘 Ԧ𝑔2 + 𝑙 Ԧ𝑔3

𝑔𝑖 =
2𝜋

𝑎𝑖

𝜋

𝑎𝑥
−
𝜋

𝑎𝑥
572017-06-05



The band structure of nearly free-electron cubic lattice

kx

– –

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 = 𝐸 𝑛, 𝑘 + Ԧ𝐺 =
ℏ2 𝑘 + Ԧ𝐺

2

2𝑚

Ԧ𝐺 = ℎ Ԧ𝑔1 + 𝑘 Ԧ𝑔2 + 𝑙 Ԧ𝑔3

𝑔𝑖 =
2𝜋

𝑎𝑖

𝜋

𝑎𝑥
−
𝜋

𝑎𝑥

[hkl]=

000, 

100,100, 200, 200,

010,010,001,001,

582017-06-05



The band structure of nearly free-electron cubic lattice

kx

– –

The nearly free-electron approximation

Periodic potential

𝐸 𝑛, 𝑘 = 𝐸 𝑛, 𝑘 + Ԧ𝐺 =
ℏ2 𝑘 + Ԧ𝐺

2

2𝑚

Ԧ𝐺 = ℎ Ԧ𝑔1 + 𝑘 Ԧ𝑔2 + 𝑙 Ԧ𝑔3

𝑔𝑖 =
2𝜋

𝑎𝑖

𝜋

𝑎𝑥
−
𝜋

𝑎𝑥

[hkl]=

000, 

100,100, 200, 200,

010,010,001,001,

110,101,110,101,101,110,101,110
– –– –– – – –
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kx

The appropriate expresions for a perturbation calculation of 
the influence of a small potential

„small potetntial”

Small potential inluence on the borders of the Brilloun zone:

hkl = 000, 100,100, 200, 200,
– –

(1D)

kx

The nearly free-electron approximation

Periodic potential

𝑉 𝑥 = 𝑉0 cos
2𝜋

𝑎
𝑥

𝑉 𝑥 = 𝑉0 cos
2𝜋

𝑎
𝑥 =

𝑉0
2

𝑒𝑖
2𝜋
𝑎 𝑥 + 𝑒−𝑖

2𝜋
𝑎 𝑥

𝜋

𝑎𝑥
−
𝜋

𝑎𝑥

𝜋

𝑎𝑥
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kx

k

ax

probability density

probability density

The nearly free-electron approximation

Periodic potential

Plane waves of the same 𝑘-vector 𝜋

𝑎𝑥

612017-06-05

𝜆 =
2𝜋

𝑘



kx

k

ax

The nearly free-electron approximation

Periodic potential

Plane waves of the same 𝑘-vector 𝜋

𝑎𝑥

probability density

probability density
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kx

k

ax

The nearly free-electron approximation

Periodic potential

Plane waves of the same 𝑘-vector 𝜋

𝑎𝑥

probability density

probability density
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xa


kx

k

ax
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8𝜋

𝑎
−
𝜋

𝑎

6𝜋

𝑎

𝜋

𝑎

4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎

The nearly free-electron approximation

Periodic potential

band

band

band
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The electronic band structure

• It is convenient to present the energies only in the 1st Brillouin zone.
• The electron state in the solid state is given by the wave vector of the 1st Brillouin zone, band 
number and a spin.



Ƹ𝑝𝜓 Ԧ𝑟 = −𝑖ℏ 𝑖 𝑘 + 𝛻𝑢𝑛,𝑘 𝑒𝑖𝑘 Ԧ𝑟 ≠ ℏ𝑘𝜓 Ԧ𝑟 .

ℏ𝑘 is so-called quasi-momentum or  crystal momentum.

If we consider interactions with other quasi-particles (electrons,  phonons, magnons etc.) 
existing in the crystal and real particles penetrating through the crystal (e.g. photons, neutron) 
the momentum conservation law must be replaced by the quasi-momentum conservation law :

෍

𝑖

ℏ𝑘𝑖 +෍

𝑖

Ԧ𝑝𝑖 =෍

𝑖

ℏ𝑘𝑖′ +෍

𝑖

Ԧ𝑝𝑖
′ + ℏ Ԧ𝐺

The energy conservation is always the same:

෍

𝑖

𝐸𝑖 =෍

𝑖

𝐸𝑖′
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Bloch theorem

Periodic potential


