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Summary of the lecture

1. Introduction — semiconductor heterostructures (revison of solid state physics )
2. Nanotechnology
3. Quantum wells (1)
4, Quantum wells (2)
5. Quantum dots, Quantum wells in 1D, 2D and 3D
6. Optical transitions in nanostructures
7. Work on the article about quantum dots
[TEST]
8. Carriers in heterostructures
9. Tunneling transport
10. Quantized conductance
11. Work on the article about the tunneling or conductance
12. Electric field in low-dimensional systems
13. Magnetic field in low-dimensional systems
14. Electric and magnetic fields in low-dimensional systems
15. Revision

[Final TEST]
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Summary of the lecture

1. Introduction — semiconductor heterostructures
Revision of solid state physics: Born-Oppenheimer approximation, Hartree-Fock method and
one electron Hamiltonian, periodic potential, Bloch states, band structure, effective mass.

2. Nanotechnology

Revision of solid state physics: tight-binding approximation, Linear Combination of Atomic
Orbitals (LCAO).

Nanotechnology. Semiconductor heterostructures. Technology of low dimensional structures.
Bandgap engineering: straddling, staggered and broken gap. Valence band offset.

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Quantum well in heterostructures:
finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)

Harmonic potential (parabolic well). Triangular potential. Wentzel — Krammers — Brillouin
(WKB) method.

Band structure in 3D, 2D. Coulomb potential in 2D
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Summary of the lecture

5. Quantum dots, Quantum wells in 1D, 2D and 3D
Quantum wells in 1D, 2D and 3D. Quantum wires and quantum dots. Bottom-up approach for
low-dimensional systems and nanostructures. Energy gap as a function of the well width.

6. Optical transitions in nanostructures
Time-dependent perturbation theory, Fermi golden rule, interband and intraband transitions in

semiconductor heterostructures

7. Work on the article about quantum dots
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions.

Discussion.
8. Carriers in heterostructures

Density of states of low dimensional systems. Doping of semiconductors. Heterojunction, p-n
junction, metal-semiconductor junction, Schotky barrier
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Summary of the lecture

9. Tunneling transport
Continuity equation. Potential step. Tunneling through the barrier. Transfer matrix approach.
Resonant tunneling. Quantum unit of conductance.

10. Quantized conductance
Quantized conductance. Coulomb blockade, one-electron transistor.

11. Work on the article about the tunneling or conductance
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions.
Discussion.

12. Electric field in low-dimensional systems

Scalar and vector potentials. Carriers in electric field: scalar and vector potential in Schrodinger
equation. Schrodinger equation with uniform electric field. Local density of states. Franz-
Kieldysh effect.
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Summary of the lecture

13. Magnetic field in low-dimensional systems
Carriers in magnetic field. Schrodinger equation with uniform magnetic field — symmetric
gauge, Landau gauge. Landau levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systems

Schrodinger equation with uniform electric and magnetic field. Hall effect. Shubnikov-de Haas
effect. Quantum Hall effect. Fractional Quantum Hall Effect. Hofstadter butterfly. Fock-Darvin
spectra

15. Revision
Revision and preparing for the exam.

2017-06-05 6



Summary of the exercises

1. Introduction — semiconductor heterostructures
Schrodinger equation. Wave packet, Gaussian wavepacket .

2. Nanotechnology
Tight-binding approximation: graphene bandctructure.

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Finite square well with different
effective masses in the well and barriers.

4. Quantum wells (2)
Harmonic potential (parabolic well). Triangular potential. Wentzel — Krammers — Brillouin

(WKB) method.

5. Double quantum wells. Quantum dots.
Double quantum wells. Quantum dots (2D and 3D harmonic potential)
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Summary of the exercises

6. Optical transitions in nanostructures
Interband and intraband transitions in semiconductor heterostructures. Continuity equation.

7. Carriers in heterostructures (1)
Transfer matrix approach. Potential step.

8. Carriers in heterostructures (2)
Tunneling through the barrier.

9. Resonant tunneling
Resonant tunneling.

10. Quantized conductance
Quantized conductance. Coulomb blockade.

11. Local density of states
Local density of states.
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Summary of the exercises

12. Electric field in low-dimensional systems
Carriers in electric field: scalar and vector potential in Schrodinger equation.

13. Magnetic field in low-dimensional systems
Schrodinger equation with uniform magnetic field — symmetric gauge, Landau gauge. Landau
levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systems
Schrodinger equation with uniform electric and magnetic field. Conductivity and resistivity

tensors

15. Hall effect. Fock-Darvin spectrum
Hall effect. Fock-Darvin spectrum.
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Assessment criteria:

Homeworks
Discussion of scientific papers

Tests to check the effective use of the skills acquired during the lecture
Exam: final test and oral exam

"He SMALLER 1T ALL GETS, THe:
BGGER WE GET."
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NANO era
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NANO era
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NANO era
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The uncertainty principle

Peak position of
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The band theory of solids.
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Band theory of solids

CH, CsHyz C17H36
Fig. 2.3 Development of the diamond band gap

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics
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Theoretical description of condensed matter

Born — Oppenheimer approximation

Max Born Jacob R. Oppenheimer

(1882-1970) (1904-1967)
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Theoretical description of condensed matter

Born — Oppenheimer approximation

Full non-relativistic Hamiltonian of the system of nuclei and electrons:
H(# R)¥(#R) = E¥(#,R)

H(#R)
__h_ZZVZ_ hz 2_ z ZNe
 2m i ZMN 47T€O |7 — RNl
Z ZNZKe Z
47‘[80 |RN _RKl 47th _ |7"z f] =

i<j
=T, + TN +V(#R) + V,(® + G(R)

Electron and nuclear (ions) subsystems coordinates are intermixed, separation of electronic and
nuclear variables is impossible

Assumption: motion of atomic nuclei and electrons in a molecule can be separated
Born-Oppenheimer adiabatic approximation
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Theoretical description of condensed matter
LCAO method

The solution of the equation of electron states requires numerical methods

H. (7 R)WY(# R) = [T, + V(# R) + V,|¥.(# R) = E&(R) W& (# R)

One of methods: LCAO-MO with Hartree-Fock approximation — self-consistent field method
(iterative method), n-electron wave function as Slater determinant, trivially satisfies the
antisymmetric property of the exact solution:

¢fp(?1»51) ‘pr(Fz»Sz) fpigp(?n;sn)
S5 5 o 1 P(7,,s P (7, s . @P(#,s
Lpé(l(rlrrZ)TB) "'51152153)---) = T — P2 (1’ 1) P2 (2’ 2) P2 (TU 2)
1/n! . . L
o, (Fs1) @y (7, 57) P (2
n 1 °1 n 2,92 e Qp (rn’gn)

Each of the single-electron spin-orbital ¢, (#,, s,) must be different — two spin-orbital can for
instance share the same orbital function, but then theirs spins are different

PSP (7, 5) = PSP () [(1)] or ¢;7 (%) [(1)]

6/5/2017
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Theoretical description of condensed matter

Hartree approximation (one-electron)

lpécl(f)lrfzjs; ) = @1(1) - 0(7R) - 93(73) - (7))
We assume that an average potential from other ions and electrons acts on each electron:

2
p. - - - N > > N
i i

Thus

2m
If every potential is the same V(7)) = V(%) ~ -+ = V(%) = V(#) we get Z E; = E;;

One-electron Schrodinger equation: L

p?
<— + V(ﬂ) ;1) = E;p;(7)

2m

p.z
<—l +V; (ﬁ')) @;(7) = E;p;i(17)

This time i is the set of quantum numbers of one-electron quantum states @; (#;) of energies E;.
One-electron states are subject to the Pauli exclusion principle.

A significant change in the number of electrons in a given band, leads to the change of V(7)
and of the one —particle spectra! (for instance energy gap renormalization )
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Periodic potential

Bloch theorem

Assumptions:
Motionless atoms, crystal (periodic) lattice . O
One-electron Hartree approximation

- > - - - - - \)
‘Pz,{l(rl,rz,rg, ) =@ (1) - 3(13) - s (1) .

or Hartree-Fock approximation (Slater determinant).

e

Self-consistent field method — the multi-electron issue is D ’
reduced to the solution of one-electron problem in a potential .
of all other electrons and atoms

2
p - - -
(—2 + V(r)) On (7)) = Enon(n) ,One-electron” Schrédinger equation

Effective potential, periodic potential of the crystal lattice, the same for all electrons.

V(@) = V(7 +R)

6/5/2017 28




Periodic potential _

Bloch theorem

Crystal lattice:
R = nlc_il + nzaz + ngag,

TliEZ

For periodic functions with the lattice period R
f@&=rF+ ﬁ) a good base in the Fourier series
expansion are functions g(#) = exp(iG#) which depend

on the reciprocal lattice vectors:
a
G = mld}; + mza; + m3a§,

> %
aa; = 27T6ij

exp[iﬁ(? + }_f)] =

miEZ

J O &

L 2N AN
Q O O O

@ 0 O
O 9
D

e
e
e

= exp[iG7] - exp[iGR| = exp|iG#] exp[2m (nymy + nymy + ngmy)] = exp(iG7)

therefore g(#) = g(# + ﬁ) and finally we get:

2017-06-05

V() = z Vz exp(iﬁ?)
G
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Periodic potential

Bloch theorem
Periodic potenetial we can expand as a Fourier series:

D O @) @)
V(r) = z Vz exp(i@)f’) . . .
G

) ' ) @
The wavefunction can be represented as a sum of plane . . .

waves of different wavelengths satisfying periodic boundary |

conditions : .O .Q .O
o) = Y Cyexp(iki) O O O O
2.5 oo 0

Schrodinger equation:

ﬁz
(— + V(ﬂ) o) = E ¢(¥)

e

2m

h2k2
2m

Ci exp(ik7) + ) C; Vg expli(k + G)7] = B ) ¢ exp(ik7)

k k.G k
This is an equation for E and C3; for all vectors k,7 and G. . o
See also: Ibach, Luth ,,Solid State Physics

30
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Periodic potential .

Bloch theorem

N o0 .
Z nk Cs exp(lkr) + Z C3 Ve exp[ (k + G)r] Ez C3 exp(l . .
k k.G ) )
h I k,G theref . . . .
The sum is over all k, G ,therefore: () () ()
Z Cz Vz expli(k+G)?] = .. k+G > k.. U. O. \). o
q oo e
= 2 Crp_g Ve eXp[ikT_‘)]
k,G

We get Schrédinger equation in a form:

(ZE )
— E C~ z C~ eVe
Z exp(ik7) || 5
k
That must be met for each vector 7.
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Periodic potential

Bloch theorem

N % O al al av
Zexpom[( )T V@ @ @
k G

for each vector 7. .O | .0 .O

Thus, for each vector k we got equation for coefficients C; O Q Q
oo o
h2k2 QO al al
(e -£)ci+ Y ciato =0 o o

In this equation for C7; also coefficients shifted by G like C%—G}' CTc—c?z' CE_(;Bappear

e

(but others do not, even when we started for any E!).

This equation couples those expansion coefficients ¢ (7) = 27 Gy, exp(iﬁ?), whose k - values
differ from one another by a reciprocal lattice vector G. .
’M C,
Cr,
Try to plot the mattrix of this equation Ckn

32
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Periodic potential

Bloch theorem

h2k?
——E CE+ZCE_5%=O

We do not need to solve these equations for all vectors G — .\) .\) .\) .\)

we can find a solution in one unit cell of the reciprocal lattice

and copy it N times (N — number of unit cells)! . .\) .\)
Thus we can find eigenvalues E - E7 — E(E)) corresponding o Q
to the wave-function ¢, () represented as a superposition of . . .

plane waves whose wave vectors k differ only by reciprocal
lattice vectors G.

Wave vector k is a good quantum number according to which the energy eigenvalues and
quantum states may be indexed. Thus the function ¢ (7) is the superposition of ¢ (#) of

energies E(E)

o) = z Cy exp(iﬁ?) = .. = Z @z (1)
k

Tc) Brillouin
zone

(later on we introduce coefficient n for different solutions of E+ corresponding to the same E)



Periodic potential

Bloch theorem

Wave-function which is the solution of the Schrodinger
equation <p%(F) is represented as a superposition of plane

waves whose wave vectors k differ only by reciprocal lattice
vectors G and it has energies £ = E(k) :

0@ = ) Cy_gexpli(k - G)F]
G

Each vector E — 5 can enumerate states; it is convenient to
choose the shortest vector (which belongs to the first
Brillouin zone).

The function uz (7) is a Fourier series over reciprocal lattice points 5, and thus has the

periodicity of the lattice.
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Periodic potential A

Bloch theorem 0 (F) = u; (Pel®

h {J}I Uy {.I-':]

Bloch waves whose wave
vectors differ by a reciprocal

lattice vector are IDENTICAL! W

/AN M
(/

o) =, (z)eh” W) =uy (x)e*

~
—
—
]
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Periodic potential

Bloch theorem

Dn% (7_”)) = U,z (7_”)) elkT )

O 20 20 @0
o ® O

e

Bloch wave, Bloch amplitude,
Bloch function Bloch envelope

@ @ @
The solution of the one-electron Schrodinger equation for a . . .
periodic potential has a form of modulated plane wave: ) .Q .\) .Q

2, 71 () = 2, (7 + )

We introduced coefficient n for different solutions corresponding to the same k (index). k-
vector is an element of the first Brillouin zone.

un,E(F) = Z CE_G*eiGr
G

2017-06-05 36




Periodic potential

Brillouin zones
R = nyd; + nyd, + nsds, n; € Z 2-D square lattice

-

G = mya; + myd, + msas, m; € Z

C_i;kC_l)] = 27T5ij

Q @ L O 0 o O O O O O Q|10 1V
o O O O o O % Q @ Q| |0 ©
© O T O O o O ‘ O © © O |e@| O O
©c O O O O o O O O O © O[O0 ]|]0 O
©c O O O O O @ » © O O Q|| 0

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php
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Periodic potential

Brillouin zones
R = nyd; + nyd, + nsds, n; € Z 2-D square lattice

-

G = mya; + myd, + msas, m; € Z

C_i;kC_l)] = 27T5ij

¥ O
N o d
®
\)\
O

y
o

Fan
3/

o\€>\

3/
O A4

WoN

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php
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Periodic potential

Brillouin zones
R = nid; + n,a; + nsds, n; € Z 2-D square lattice

-

G = mya; + myd, + msas, m; € Z

c_ifc_i] = Zﬂ(yij

é www.doitpoms.ac.uk

i wwwl.dnit 5.ac.uk

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php
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Periodic potential

Brillouin zones

- - -
R =mnqd; + npa; + nzds, n € 7 2-D hexagonal lattice
= -
G = myd; + myd; + msds, m; € Z
2% =
a;a; = 27T5ij
® @ @
@
@ @
0 N .doit's.ac.uk‘ cc)\d ) doit'ls.ac.u

2017-06-05
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Periodic potential

Brillouin zones
I_é = nlal + nzc_iz + Tlgc_l)3, n; € Z

-

G = mya; + myd, + msas, m; € Z

c_ifc_i] = 27'[(3}]'

www.doitpoms.ac.uk
g vw.cot

cc)(d 9 oit'ls.ac.u

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/zone_construction.php
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Periodic potential

Brillouin zones

R = nlal + nzc_iz + Tlgc_l)3, n; € Z
G = mya; + myd, + msas, m; € Z Ikz
Brillouin zone in 1D
Kx
——— pll =ra 1-1,1
Fia T _'
- 0 »
Brillouin zone in 2D, oblique lattice. r -
Py kx
" Ky 9\
0 'y

11,1

K, Brillouin zone for face centered cubic (fcc) lattice.
The limiting zone walls comes from reciprocal lattice
points (2,0,0) square and (1,1,1) hexagonal.
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Periodic potential

Brillouin zones

R = nlC_l)l + nzc_iz + Tl3C_l)3, n; € Z
G = myd; + myd; + msds, m; € Z 9
lA H
bcce lattice %
?<>
rg% ______ S L
‘i‘

heksagonal lattice

Ibach, Luth
2017-06-05




Potencjat periodyczny

Fig. 2.2. (a) The crystal structure of diamond and zinc-blende (ZnS). (b) the fcc lattice
showing a set of primitive lattice vectors. (¢) The reciprocal lattice of the fcc lattice shown
with the first Brillouin zone. Special high-symmetry points are denoted by I'. X, and L.

Yu, Cardona Fundametals of semiconductors

2017-06-05
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Fermi surfaces of metals

Na

Fig.13 Fermu surface of aluminum

QLT Fig.10 Fermi surface of sodium.

Cu

Fig.12 Ferm surface of calcium

Fig. 11 In the three noble metals the free electron sphere bulges out 1 the [111]
directions to make contact with the hexagonal zone faces.

http://physics.unl.edu/tsymbal/teaching/SSP-927/Section%2010_Metals-Electron_dynamics_and_Fermi_surfaces.pdf
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Periodic potential

Bloch theorem o I‘i".
gt s A aaay

Generally non- Periodic function, so- Yo (1) /MM
periodic function called Bloch factor
Example: electron in a constant potential 1 i(T) Wm

hz
H = ~om A+TV
. K ek /\/\/
substituting ¢ () = 1e'*"
21,2
The solution is E = h"k Ly
2m
The momentum operator p = —iAV actingon ¢+ (7)

P,z (1) = hk @ - (7). The solutions of the Schrédinger equation with a constant potential
are eigenfunctions of the momentum operator. The momentum is well defined, the eigenvalue
of the momentum operator is p = hk (this defines the sense of k-vector).
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Periodic potential

Bloch theorem

o NNV

Electron motion in a periodic potential.

V() = ) Vg exp(iG7) W) /MM
G

The solution is:

. 1, Wmm
7 = u, () e
Thus:
exp(ikr) /\/\/

4,57 = D Cp_gei®
:

Applying p = —ihV we get pyY(r) = —ih(i Kk + Vunﬁ)eiw + hEt/)('F).
Momentum of the Bloch function is not well defined!

hk is so-called quasi-momentum or crystal momentum.
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Periodic potential

Bloch theorem

Przyktad:
Electron motion in a periodic potential.

V() = z Vs exp(iG7)
G

The solution is:
2@ = u, 2 () e
Thus:
4,57 = D Cp_gei®

ry

G
If our crystal has a finite size set of vectors k is finite (though enormous!). for instance, we can

assume periodic boundary conditions and then:

- 2t 4m 6w 21TN;
ki=0t—,+—,£—, ..., &
Ly = L L L;

2017-06-05




Periodic potential

Bloch theorem
Bloch functions whose wave vectors differ by a reciprocal lattice vector, are the same!

T OEREAC G = hgs + kg + 173

Proof:
Vprse (@ =u 7,6 ei(k+G)T — 2 C(k+G — 5’)6_1'6,? pl(k+O)T — ..
Gr 7 2N —ic"7 ik N
— z C(k -G )e iG"'7 ()T — wnﬁ )
G_)II
What about energies? ,
p - - > -
(ﬁ + V(T)) Yz = E(n k) 1,z
0

Ypisc@® = E(k +G) ¥,7,6@

~
5=
+
<<
N\
N
N—————
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Periodic potential

Bloch theorem
Bloch functions whose wave vectors differ by a reciprocal lattice vector, are the same!

T OERTEAC G = hgs + kg + 173

Proof:
Vprse (@ =u 7,6 ei(k+G)T — 2 C(k+G — (_?)’)e“'élf pl(k+O)T — ..
Gr 7 2N —ic"7 ik N
— z C(k -G )e iG"'7 ()T — wnﬁ )
5”
What about energies? ,
p - - > -
(ﬁ + V(T)) Yz = E(n k) 1,z
0

=2

p R N — > =

(H + V(T')> l/Jn,E_,_g(T) = E(Tl, k + G) l/)njc)+5(r)
0

= E(n,E) = E(n,E+5)

Energy eigenvalues are a periodic function of k (wave vectors of Bloch function).

2017-06-05




Periodic potential

The nearly free-electron approximation

Energy of the plane wave in empty space as the function of wave vector:

A2k >
2m

E(n, I_c)) =

81 o6m 41T
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Periodic potential

The nearly free-electron approximation

Energy of the plane wave in empty space as the function of wave vector:

- — >\ 2
o, h?%k? ~ .. hi(k+G
E(n k) = Y =E(nk+G)= (Zm )
8 _on 8n
B a a a
| | —
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Periodic potential

The nearly free-electron approximation

Energy of the plane wave in empty space as the function of wave vector:

R2(k+6)’
2m

h2k2
2m

E(n,E)= =E(n,§+5)=

LALSENENINENENEN G
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Periodic potential

The nearly free-electron approximation

Energy of the plane wave in empty space as the function of wave vector:

R2(k+6)’
2m

h2k2
2m

E(n,E)= =E(n,§+5)=

LALSENENINENENEN G
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Periodic potential

The nearly free-electron approximation

Energy of the plane wave in empty space as the function of wave vector:

h2k2
2m

E(n, I_é) =
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Periodic potential

The nearly free-electron approximation

Energy of the plane wave in empty space as the function of wave vector:

R2(k+6)’
2m

A2k 2

E(n, I_é) = o

=E(n,§+5) =

Reduced Brilloin zone.
On the border of the Brillouin zone
energies are degenerated
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Periodic potential A

The nearly free-electron approximation /
B2k +6)
2m

—-—— - —

E(n,l_c)) =E(n,E+C?) =

5 == hgl +kg>2 +l§3

The band structure of nearly free-electron cubic lattice

[hkl]=
000,
100,100, 200, 200, R
> T kX
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Periodic potential A

The nearly free-electron approximation /
B2k +6)
2m

>

E(n,l_c)) =E(n,E+C?) =

5 == hgl +kg>2 +l§3

The band structure of nearly free-electron cubic lattice

[hkl]=
000,
100,100, 200, 200, X
] ] ] ] ) ) 1 kX
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Periodic potential .

—-—— - —

The nearly free-electron approximation /
B2k +6)
2m

E(n,l_c)) =E(n,E+5) =

5 == hgl +kg2 +l§3

The band structure of nearly free-electron cubic lattice

[hkl]=

000,
100,100, 200, 200, >
110,101,110,101,101,110101 110, = Ky
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Periodic potential

The nearly free-electron approximation

The appropriate expresions for a perturbation calculation of
the influence of a small potential

V(x) =V, cos (%T x) (1D)

/

»small potetntial”

Small potential inluence on the borders of the Brilloun zone:

21 Vi 2T _i2l
V(x) = Vocos<zx) =?O (elax+e a*

A

>

14 T X

K
Ky -
hkl = 000, 100,100, 200, 200,

a ( "
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Periodic potential _

. A
The nearly free-electron approximation

s X
w+ — [elfr'xl.-"._ +e IE'II.-"._) ~ COSTT— .

a

I 72 —1 » & X
w o~ (e G¥7 e 'E‘T’f‘) ~ SINT— .
a

Plane waves of the same k-vector

9 3
9 I
9 J
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Periodic potential

. A
The nearly free-electron approximation

|
|
|
X |
|G x /2 —iGx/2 K
w+w[e‘ x/ + et II)MCDSHE, (_:
|
i G x/2 —iGx/2 .o X '
~ (€' —e ~ SIN7T— .
w_ ~ ) . |
>
Plane waves of the same k-vector ! K K,
ax
. : __ 2 X
probability density = Wiy ~ COS Ea :
X

o - 2
probability density ‘— -y~ s
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Periodic potential

. A
The nearly free-electron approximation

I
[
[
I
X K :
I
[
[

W, ~ [eiﬁ'xl.-"l _+_e—iﬁ'xl.-"2) .y CDSEE , &
W~ {eiﬁ':rﬂ o e—iﬁ'xﬂ) — SiI’lTEi
- a
>
Plane waves of the same k-vector ! K K,
ax
. : ok 2%
probability density ‘— Wiy ~ COS ?IE :
X

o - 2
probability density ‘— -y~ s

9 9 9 Q 9 9 9 9 9 9 9 9
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Periodic potential _

The nearly free-electron approximationT |

|
. .
O

>

Tk

Y _
=

2m ' w

a a
a

9 I I I

9 9 I 9 I 9 I 9
DO OOOOOOOE

Tr
cL
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The electronic band structure

* It is convenient to present the energies only in the 1st Brillouin zone.
* The electron state in the solid state is given by the wave vector of the 1st Brillouin zone, band
AE

number and a spin.
Allowed

band U U U
Forbidden band
band

Forbidden band
Allowed
band
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Periodic potential

Bloch theorem
pY(@) = —ih(i k + Vu,;)e™ + kY (P).

q
hk is so-called quasi-momentum or crystal momentum.

If we consider interactions with other quasi-particles (electrons, phonons, magnons etc.)
existing in the crystal and real particles penetrating through the crystal (e.g. photons, neutron)
the momentum conservation law must be replaced by the quasi-momentum conservation law :

Zhl_éi-l_zﬁi =ZhEi,+Zﬁl{+hE
[ [ [ [

The energy conservation is always the same:

ZEizin’
i [
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