Physics of Condensed Matter I

"He was very big in Vienna."

Solid State 1

Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl

1100-4INZ`PC

Chemical bonding and molecules

Born Oppenheimer approximation

Max Born (1882-1970)

Jacob R. Oppenheimer (1904-1967)

Chemical bonding and molecules

Harald Ibach Hans Lüth

Solid-State Physics

An Introduction to Principles of Materials Science

Fourth Edition

From the molecule to the solid state

From the molecule to the solid state

Przerwa energetyczna Energy gap

Molecules

Hybridization

2016-01-25

Hybridization

Semiconductors

The binding energy per atom:

C (diamond)	7.30 eV
Si	4.64 eV
Ge	3.87 eV

Group IV: diamond, Si, Ge Group III-V: GaAs, AlAs, InSb, InAs... Group II-VI: ZnSe, CdTe, ZnO, SdS...

Group IV: diamond, Si, Ge **Group III-V:** GaAs, AlAs, InSb, InAs... **Group II-VI:** ZnSe, CdTe, ZnO, SdS...

Covalent bonding

Covalent bonding

Allotropes of carbon

Covalent bonding

Graphene

Covalent bonding (+ polar covalent)

Valence electrons are shared between atoms (non-polar $\Delta \chi < 0,4$; polar $0,4 < \Delta \chi < 1,7$)

http://oen.dydaktyka.agh.edu.pl/dydaktyka/chemia

Ibach. Luth

Covalent bonding (+ polar covalent)

Valence electrons are shared between atoms (non-polar $\Delta \chi < 0,4$; polar $0,4 < \Delta \chi < 1,7$)

GaN (0001)

http://oen.dydaktyka.agh.edu.pl/dydaktyka/chemia

Ionic bonding

Electronegativity (symb. χ) - the tendency of an atom to attract electrons. In the extreme case when the electronegativity of both elements is very different (eg. Li and F), it comes to a full transfer of an electron toward more electronegative atom, which leads to the formation of ionic bond ($\Delta \chi \geq 1,7$).

Tablica 2.4. Values of electronegativity (according Pauling) for several major elements (*for H set 2,1*)

1	П	III	IV	V	VI	VII
Li	Ве	В	С	N	0	F
1,0	1,5	2,0	2,5	3 <i>,</i> 0	3,5	4,0
Na	Mg	AI	Si	Р	S	Cl
0,9	1,2	1,5	1,8	2,1	2,5	3,0
К	Са	Ga	Ge	As	Se	Br
0,8	1,0	1,6	1,7	2,0	2,4	2,8
Rb			Sn			J
0,8			1,7			2,4
	ic	onicity		ioni	city 🔁	

Ionic bonding

Electronegativity (symb. χ) - the tendency of an atom to attract electrons. In the extreme case when the electronegativity of both elements is very different (eg. Li and F), it comes to a full transfer of an electron toward more electronegative atom, which leads to the formation of ionic bond ($\Delta \chi \ge 1,7$).

GaN (0001)

[1000]

Convention:

Covalent bond Polar Covalent Ionic Bonds $\begin{array}{l} \Delta\chi \leq 0,4 \\ 0,4 \leq \Delta\chi \leq 1,7 \\ \Delta\chi \geq 1,7 \end{array}$

Ionic bonding

Electronegativity (symb. χ) - the tendency of an atom to attract electrons. In the extreme case when the electronegativity of both elements is very different (eg. Li and F), it comes to a full transfer of an electron toward more electronegative atom, which leads to the formation of ionic bond ($\Delta \chi \ge 1,7$).

Ionic bonding

Electronegativity (symb. χ) - the tendency of an atom to attract electrons. In the extreme case when the electronegativity of both elements is very different (eg. Li and F), it comes to a full transfer of an electron toward more electronegative atom, which leads to the formation of ionic bond ($\Delta \chi \geq 1,7$).

The Madelung constant A depends on the structure e.g. $A_{NaCl} = 1.748$

Ibach. Luth

Covalent bonding (+ polar covalent)

Valence electrons are shared between atoms (non-polar $\Delta \chi < 0,4$; polar $0,4 < \Delta \chi < 1,7$) **lonic bonding**

electrons are tranfered between atoms ($\Delta \chi \ge 1,7$). An essential contribution to bonds energy of ionic crystals comes from the electrostatic interaction (Madelung energy):

$$U(r) = N\left(-\frac{e^2}{4\pi\varepsilon_0 r}\sum_{i\neq j}\frac{\pm 1}{p_{ij}} + \frac{B}{r^n}\sum_{i\neq j}\frac{1}{p_{ij}^n}\right)$$

r – the distance between atoms rp_{ij} - the distance between pair of ions i, jB, n – repulsive potential parameters (n = 6 - 12)

 $A = \sum_{i \neq j} \frac{\pm 1}{p_{ij}}$ - the Madelung constant (for NaCl structure A = 1,748, for CsCl A = 1,763)

Metalic bonding

The chemical bond in metals, formed by the electrodynamic interaction between the positively charged atom cores, which are located in nodes of the lattice, and negatively charged **plasma electrons** (**delocalized electrons**, **electron gas**). Similar to a covalent bond, but electrons forming a bond are common to a large number of atoms.

Metalic bonding

The chemical bond in metals, formed by the electrodynamic interaction between the positively charged atom cores, which are located in nodes of the lattice, and negatively charged **plasma electrons** (**delocalized electrons**, **electron gas**). Similar to a covalent bond, but electrons forming a bond are common to a large number of atoms.

- In the alkali metals only delocalized electrons of the last shell *ns* contribute to bonding. In these metals the length of the bonds can be easily changed (high compressibility)
- The metals of further columns of the Periodic Table also deeper shells give an important contribution to bonding (in particular, transition metals and rare earths *d* and *f* shells). In these metals the length of the bonds is much harder to change (small compressibility)
- The bonds in metals are usually not very strong, but there are also metals with quite strong bonding eg. Tungsten (wolfram)

Metalic bonding

The chemical bond in metals, formed by the electrodynamic interaction between the positively charged atom cores, which are located in nodes of the lattice, and negatively charged **plasma electrons** (**delocalized electrons**, **electron gas**). Similar to a covalent bond, but electrons forming a bond are common to a large number of atoms.

1A (1)					ĸ	ey:										7A (17)	8A (18)
¦ ⊆'	2A					Nor	nmeta	ls				3A (13)	4A (14)	5A (15)	6A (16)	н	He
Li	Ве					Met	alloid	s				в	С	N	0	F	Ne
Na	Mg	3B (3)	4B (4)	5B (5)	6B (6)	7B (7)	(8)	- 8B - (9)	(10)	1B (11)	2B (12)	AI	Si	Р	s	CI	Ar
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115	110		
		1															
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Hydrogen bonding

Hydrogen is shared between atoms

Wiązania

Hydrogen bonding

Hydrogen is shared between

atoms

 HF_2^-

Hydrogen bonding

Hydrogen is shared between atoms

 (H_20)

Van der Waals bonds

Ne, Ar, Kr, Xe – interaction of induced dipole moments.

Dipole bonding (also intermolecular interaction)

attractive forces between the positive end of one polar molecule and the negative end of another polar molecule - intermolecular interaction (e.g. ICI).

https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s15-02-intermolecular-forces.html

Van der Waals bonds (also intermolecular interaction)

- interaction between permanent dipoles (Keesom interaction)
- interaction between permanent and induced dipoles (Debye interaction)
- London interaction London dispersion forces (interaction between induced dipoles)
- Lennard-Jones potential

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

The potential energy of *N* atoms $U_{tot}(r) = 2N\varepsilon \left[\sum_{i \neq j} \left(\frac{\sigma}{p_{ij}r}\right)^{12} - \sum_{i \neq j} \left(\frac{\sigma}{p_{ij}r}\right)^{6} \right]$

Van der Waals bonds

Ne, Ar, Kr, Xe – interaction of induced dipole moments.

Responsible for the possibility of condensation and solidification of noble gases (London ineraction)

Covalent bond	Ionic bond	Metallic bond
 Directional bond (hybrydization) Isolators or semiconductors (charge between atoms) Many of the covalent compounds dissolved in non-polar solvents, and are insoluble in water 	 non-directional bond Isolators (charge in ions) Many of the ionic compounds dissolved in a polar solvent (water) and not soluble in non-polar 	 non-directional bond, delocalised electrons The more electrons, the stronger the bond Conductors (free charge) Metals crystallize preferentially in closed packed structures (fcc, hcp, bcc) Plastic (metal ions can easily move under the influence of an external force)

(Covalent bond		Ionic bond Metallic bon			d	
• Direc (hybr	tional bond yd <u>ization)</u>	non-dIsolate	irectional bon ors (charge in i	d ons)	 non-directional bond, delocalised electrons 		
 Isolat semio betw 	cor cor ee <i>Bonding Type</i>	Substance	Bondis kJ/mol (kcal/mol)	ng Energy eV/At Ion, Ma	om. Jecule	Melting Temperature (°C)	s, the harge)
Many	O Ionic	NaCl MgO	640 (153) 1000 (239)	3.3 5.2		801 2800	nsed
non-p	Covalent	Si C (diamond)	450 (108) 713 (170)	4.7 7.4		1410 >3550	(fcc, hcp,
insolu	Metallic	Hg Al Fe W	68 (16) 324 (77) 406 (97) 849 (203)	0.7 3.4 4.2 8.8		- 39 660 1538 3410	can the
	van der Waals	Ar Cl ₂	7.7 (1.8) 31 (7.4)	0.0 0.3	8 2	-189 -101	erna
	Hydrogen	NH ₃ H ₂ O	35 (8.4) 51 (12.2)	0.3 0.5	6 2	- 78 0	

Crystals

$$\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$$

$$\vec{T}$$
primitive translation vectors

 $V(\vec{r}) = V\left(\vec{r} + \vec{T}\right)$

Kryształ

Lattice is a regular and periodic arrangement of points in space (*lattice sites* or *lattice points*).

It is a mathematical abstraction; the crystal structure there is only when the base is uniquely assigned to each network node

Ciało amorficzne

Crystals

$$\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$$

$$\vec{T}$$
primitive translation vectors

Crystals

$$\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$$
primitive translation vectors

Primitive translation vectors are not selected unambiguously!

Crystals

$$\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$$
primitive translation vectors

Primitive translation vectors are not selected unambiguously!

Crystals

Crystals

$$\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$$
primitive translation vectors

Crystals

The basis (*baza***)** may be a single atom, ion, a set of atoms, eg. proteins 10⁵, positioned around each and every lattice point.

Crystals

The basis (baza) may be a single atom, ion, a set of atoms, eg. proteins 10⁵, positioned around each and every lattice point.

Crystals

$$B'A' = CD = nt_1 = t_1(1 - 2\cos\varphi)$$
$$\cos\varphi = \frac{1}{2}(1 - n)$$

n	$\cos \varphi$	φ	Obrót
-1	1	0°	ε
0	1/2	60°	<i>C</i> ₆
+1	0	90°	C4
+2	-1/2	120°	C ₃
+3	-1	180°	C ₂

Dwa sposoby wyboru komórki elementarnej w sieci kubicznej centrowanej na ścianach: a) komórka o wysokiej symetrii, b) komórka prosta

Bravais lattice

In three-dimensional space, there are 14 Bravais lattices.

They form 7 lattice systems

2016-01-25

Bravais lattice Regularna a = b = cIn three-dimensional space, $\alpha = \beta = \gamma = 90^{\circ}$ there are 14 Bravais lattices. Simple Face-centered Body-centered cubic cubic cubic They form 7 lattice systems $a = b \neq c$ Tetragonalna $\alpha = \beta = 90^{\circ}$ $a = b \neq c$ $\gamma = 120^{\circ}$ $\alpha = \beta = \gamma = 90^{\circ}$ Simple Body-centered Hexagonal tetragonal tetragonal Heksagonalna Rombowa $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ Face-centered Simple Body-centered **Base-centered** orthorhombic orthorhombic orthorhombic orthorhombic $a \neq b \neq c$ Jednoskośna Romboedryczna $\alpha \neq \beta \neq \gamma$ $a \neq b \neq c$ a = b = c $\alpha = \gamma = 90^{\circ}$ $\alpha = \beta = \gamma < 120^\circ \neq 90^\circ$ $\beta \neq 90^{\circ}$ Triclinic Base-centered Simple Trójskośna monoclinic Rhombohedral Monoclinic 2016-01-25

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Bravais lattice

Lattice points

Lattice points

Lattice directions

The set of any of integers relatively prime (coprime, *względnie pierwsze*) which are to each other as the projections of a vector parallel to the direction of crystal axes..

Planes in the crystal

A family of lattice planes are written (hkl), and denote the family of planes that intercepts the three points:

$$\frac{\vec{a}_1}{h}, \frac{\vec{a}_2}{k}, \frac{\vec{a}_3}{l}$$

If one of the indices is zero, it means that the planes do not intersect that axis (1/0 = infinity)

Also: the family of planes orthogonal to: $h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3$ Where $\vec{g}_1, \vec{g}_2, \vec{g}_3$ are reciprocal lattice vectors

```
E.g.: A=2, B=3, C=6, plane (3,2,1)
```

(hkl) plane
{hkl} set of planes
[hkl] diections
(hkl) set of directions

Planes in the crystal

A family of lattice planes are written (hkl), and denote the family of planes that intercepts the three points:

$$\frac{\vec{a}_1}{h}, \frac{\vec{a}_2}{k}, \frac{\vec{a}_3}{l}$$

If one of the indices is zero, it means that the planes do not intersect that axis (1/0 = infinity)

Also: the family of planes orthogonal to: $h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3$ Where $\vec{g}_1, \vec{g}_2, \vec{g}_3$ are reciprocal lattice vectors

```
E.g.: A=2, B=3, C=6, plane (3,2,1)
```

(hkl) plane
{hkl} set of planes
[hkl] diections
(hkl) set of directions

Planes in the crystal

A family of lattice planes are wr denote the family of planes tha three points: $\vec{z} = \vec{z}$

$$\frac{\vec{a}_1}{h}, \frac{\vec{a}_2}{k}, \frac{\vec{a}_3}{l}$$

If one of the indices is zero, it m planes do not intersect that axi:

Also: the family of planes ortho $h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3$ Where $\vec{g}_1, \vec{g}_2, \vec{g}_3$ are reciprocal

E.g.: A=2, B=3, C=6, plane (3,2

(hkl) plane
{hkl} set of planes
[hkl] diections
(hkl) set of directions

Rys. 1.27. Kilka rodzin płaszczyzn (hk0) i ich odległości międzypłaszczyznowe d_{hk0} w rzucie na płaszczyznę (001) prostokątnej sieci przestrzennej

2016-01-25

Planes in the crystal

A family of lattice planes are written (hkl), and denote the family of planes that intercepts the three points:

$$\frac{\vec{a}_1}{h}, \frac{\vec{a}_2}{k}, \frac{\vec{a}_3}{l}$$

If one of the indices is zero, it means that the planes do not intersect that axis (1/0 = infinity)

Planes in the crystal

Crystalography

Planes in the crystal

The crystalline structure is studied by means of the diffraction of photons, neutrons, electrons or other light particles

