Physics of Condensed Matter I

"What do you expect, since 90% of all the scientists who ever lived are alive today?"

Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl

1100-4INZ`PC

Dictionary

$$\vec{D} = \varepsilon \vec{E}$$

 ε_0 vacuum permittivity, permittivity of free space (przenikalność elektryczna próżni) ε_r relative permittivity (względna przenikalność elektryczna) $\varepsilon = \varepsilon_0 \varepsilon_r$ permittivity (przenikalność elektryczna)

$$\vec{B} = \mu \vec{H}$$

 μ_0 vacuum permeability, permeability of free space (przenikalność magnetyczna) $\mu_0 = 4\pi \cdot 10^{-7}$ H/m μ_r relative permeability (względna przenikalność magnetyczna)

 $\mu = \mu_0 \mu_r$ permeability (przenikalność magnetyczna)

magnetic susceptibility $\chi_m = \mu_r - 1$

electric field \vec{E} and the magnetic field \vec{B} displacement field \vec{D} and the magnetizing field \vec{H}

Summary – Fermi golden rule

The probability of transition per unit time:

$$W(t) = W$$

$$0 \le t \le \tau$$

$$P_{mn} = \frac{w_{mn}}{\tau} = \frac{2\pi}{\hbar} |\langle m|W|n \rangle|^2 \delta(E_m - E_n)$$

Transitions are possible only for states, for which $E_m = E_n$

$$W(t) = w^{\pm} e^{\pm i\omega t}$$

$$0 \le t \le \tau$$

$$P_{nm} = \frac{w_{nm}}{\tau} = \frac{2\pi}{\hbar} |\langle n|w^{\pm}|m\rangle|^2 \delta(E_n - E_m \pm \hbar\omega)$$

Transitions are possible only for states, for which $E_m = E_n \pm \hbar \omega$

The perturbation in a form of an electromagnetic wave:

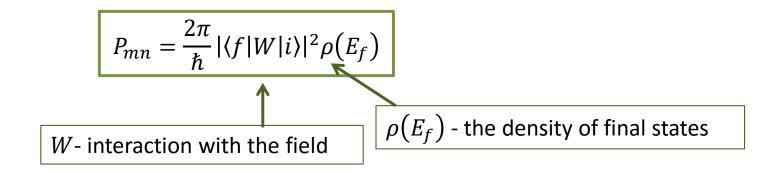
$$A_{nm} = \frac{\omega_{nm}^3 e^2}{3\pi\varepsilon_0 \hbar c^3} |\langle m|\vec{r}|n\rangle|^2 = \frac{4\alpha}{3} \frac{\omega_{nm}^3}{c^2} |\langle m|\vec{r}|n\rangle|^2$$

$$P_{nm} = A_{nm}\delta(E_n - E_m \pm \hbar\omega)$$

Summary – Fermi golden rule

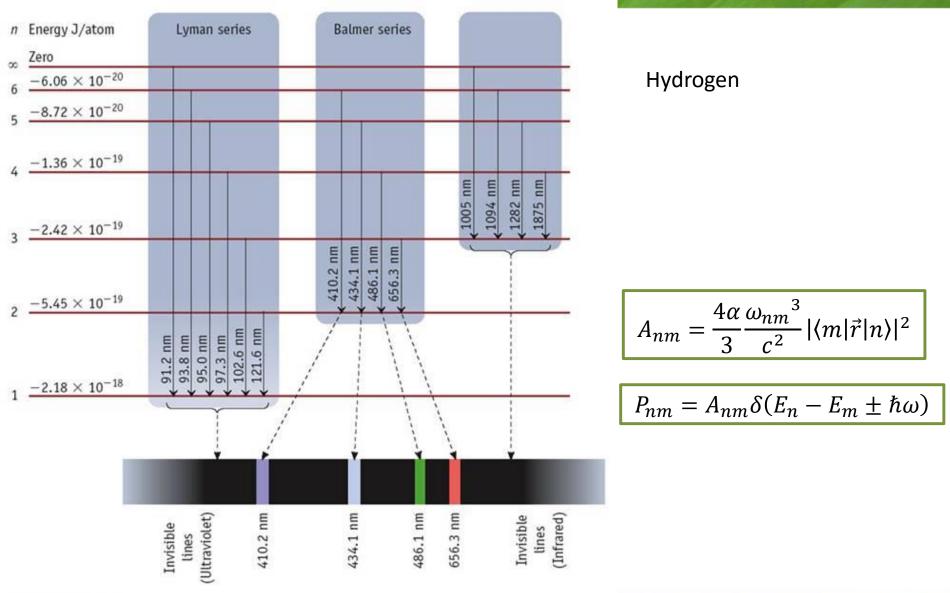
The transition rate – the probability of transition per unit time – from the initial state $|i\rangle$ to final $|f\rangle$ is given by:

Szybkość zmian – czyli prawdopodobieństwo przejścia na jednostkę czasu – ze stanu początkowego $|i\rangle$ do końcowego $|f\rangle$ dane jest wzorem:



Perturbation W does not have to be in the form of an electromagnetic wave.

Summary – Fermi golden rule

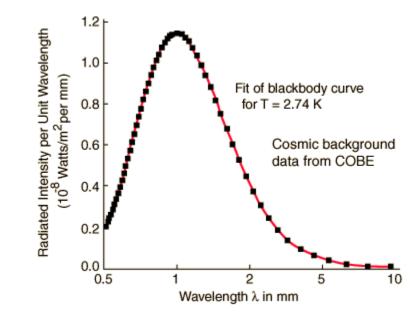


© 2006 Brooks/Cole - Thomson 2015-11-06

The history

In the XIX century: the matter is granular, the energy (mostly e-m) is a wave

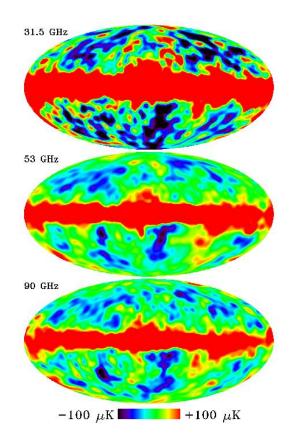
- Problems NOT solved
 - Black body radiation
 - Photoelectric effect
 - Origin of spectral lines of atoms



The history

In the XIX century: the matter is granular, the energy (mostly e-m) is a wave

- Problems NOT solved
 - Black body radiation spectrum
 - Photoelectric effect
 - Origin of spectral lines of atoms



Ultraviolet catastrophe

Rayleigh–Jeans law

The spectral distribution of blackbody radiation:

Classically – The theorem of equipartition of energy: average energy of the standing wave is independent of frequency $\langle E \rangle = kT$ Radiation energy density (ρ) is the number of waves of a particular frequency range ($\nu d\nu$) times the average energy $\langle E \rangle$, divided by the volume of the cavity:

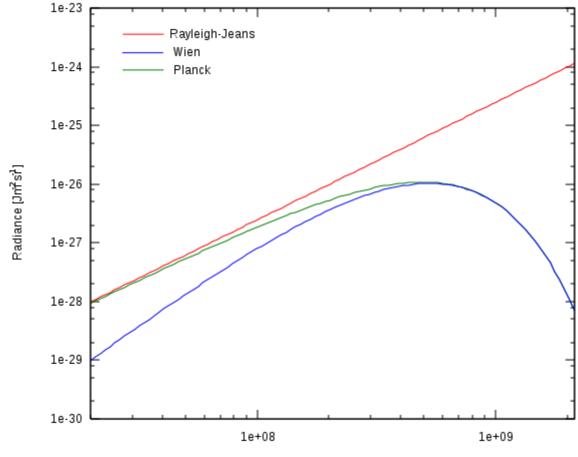
$$\rho(\nu,T)d\nu = \frac{8\pi\nu^2}{c^3}kTd\nu$$

The total radiation energy density at a given temperature is given by the sum of all frequencies:

$$\rho(T) = \int_0^\infty \rho(\nu, T) d\nu = \frac{8\pi}{c^3} kT \int_0^\infty \nu^2 d\nu = \infty$$

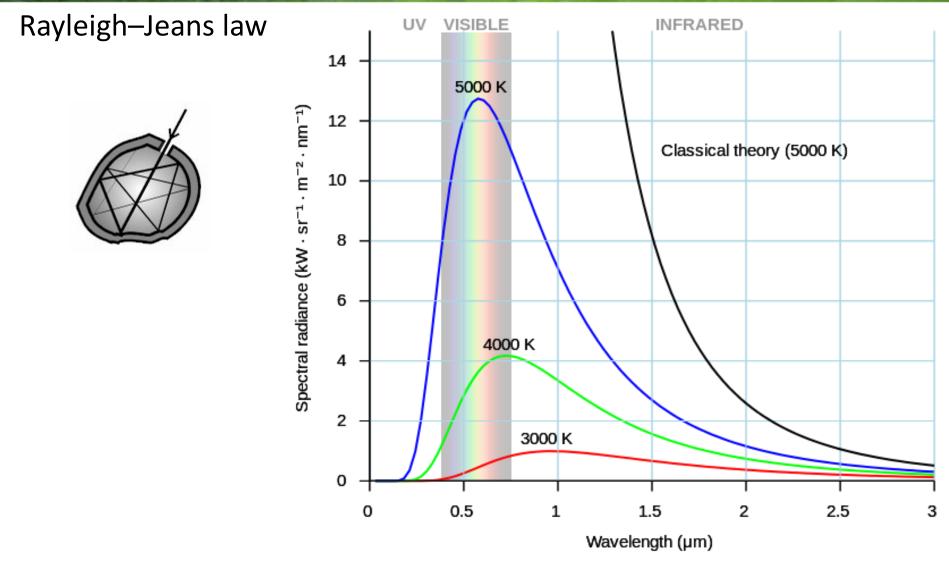
Ultraviolet catastrophe

Rayleigh–Jeans law



Frequency [Hz]

Ultraviolet catastrophe



https://en.wikipedia.org/wiki/Ultraviolet_catastrophe#/media/File:Black_body.svg

The history

- In the XX century: the matter is (also) a wave and the energy is (also) granular (corpuscular)
- Solved problems:
 - Black body radiation spectrum (Planck 1900, Nobel 1918)
 - Photoelectric effect (Einstein 1905, Nobel 1922)
 - Origin of spectral lines of atoms (Bohr 1913, Nobel 1922)

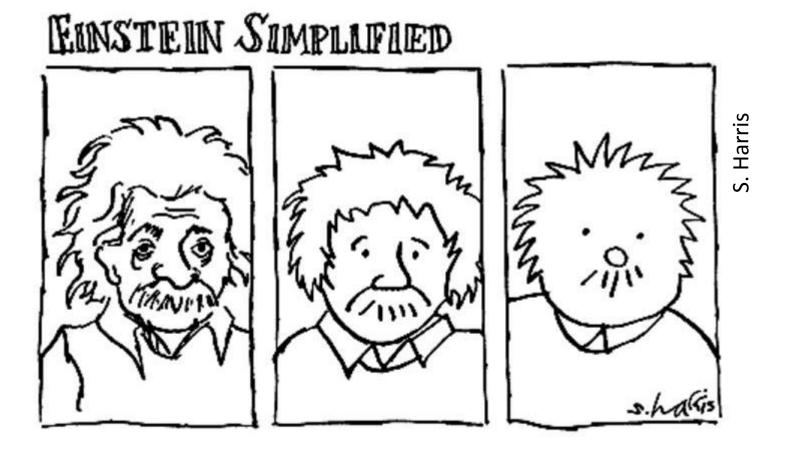
$$p = h / \lambda$$

- Photons energy: $E = h \nu$ (h = 6.626×10⁻³² J s = 4.136×10⁻¹⁵ eV s)
 - -momentum: $p = E / c = h / \lambda$

Count Dooku's Geonosian solar sailer

light mill - Crookes radiometer

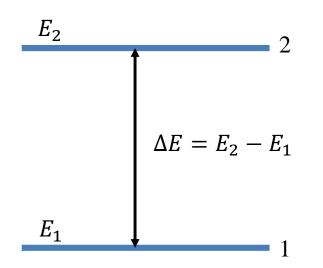
Derivation of Planck's law. Lasers.



Everything should be made as simple as possible, but not simpler

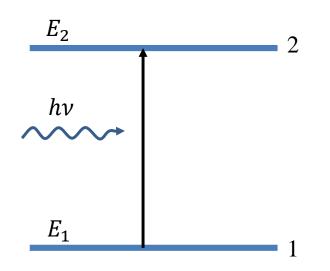
Albert Einstein

Let's consider the transition between two states



What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?

Let's consider the transition between two states

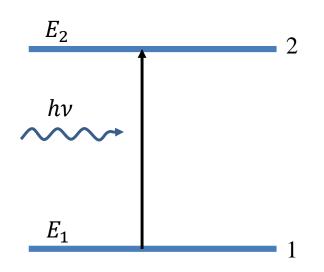


What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?

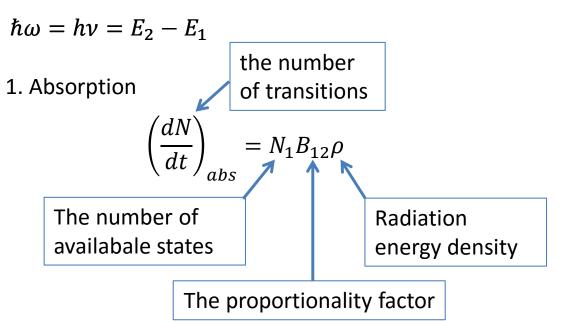
$$\hbar\omega = h\nu = E_2 - E_1$$

1. Absorption

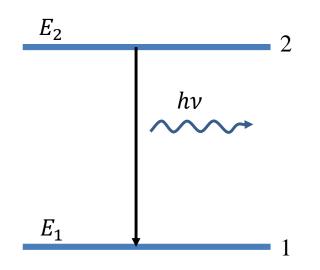
Let's consider the transition between two states



What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?



Let's consider the transition between two states



What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?

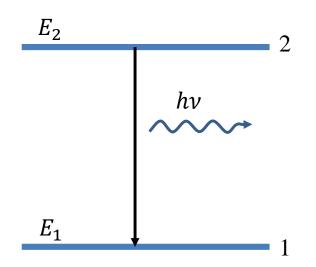
$$\hbar\omega = h\nu = E_2 - E_1$$

1. Absorption

$$\left(\frac{dN}{dt}\right)_{abs} = N_1 B_{12} \rho$$

2. Spontaneous emission

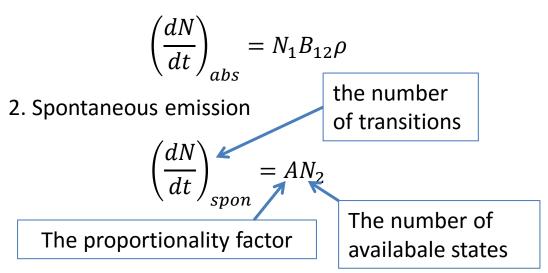
Let's consider the transition between two states



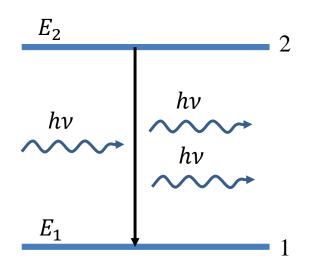
What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?

$$\hbar\omega = h\nu = E_2 - E_1$$

1. Absorption



Let's consider the transition between two states



What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?

$$\hbar\omega = h\nu = E_2 - E_1$$

1. Absorption

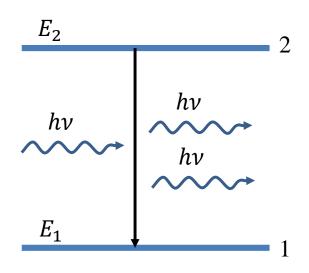
$$\left(\frac{dN}{dt}\right)_{abs} = N_1 B_{12} \rho$$

2. Spontaneous emission

$$\left(\frac{dN}{dt}\right)_{spon} = AN_2$$

3. Stimulated emission

Let's consider the transition between two states



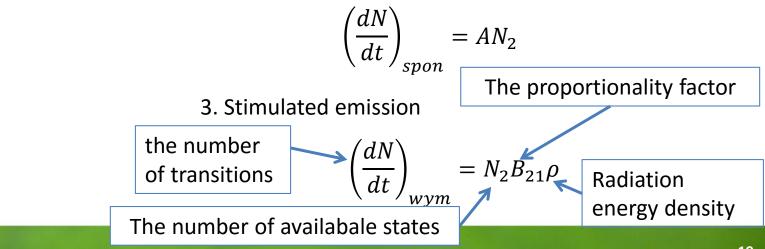
What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?

$$\hbar\omega = h\nu = E_2 - E_1$$

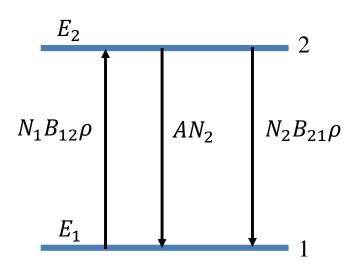
1. Absorption

$$\left(\frac{dN}{dt}\right)_{abs} = N_1 B_{12} \rho$$

2. Spontaneous emission



Let's consider the transition between two states



What are the parameters describing the number of transitions from the state 1 to 2 and vice versa?

$$\hbar\omega = h\nu = E_2 - E_1$$

1. Absorption

$$\left(\frac{dN}{dt}\right)_{abs} = N_1 B_{12} \rho$$

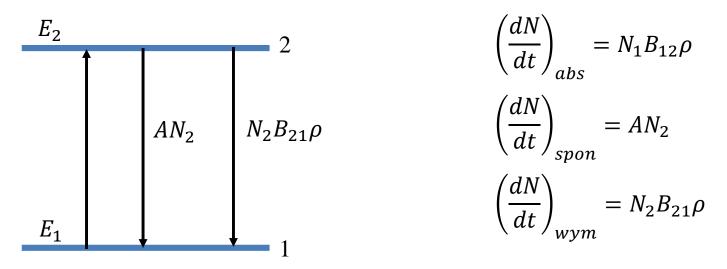
2. Spontaneous emission

$$\left(\frac{dN}{dt}\right)_{spon} = AN_2$$

3. Stimulated emission

$$\left(\frac{dN}{dt}\right)_{wym} = N_2 B_{21}\rho$$

Let's consider the transition between two states

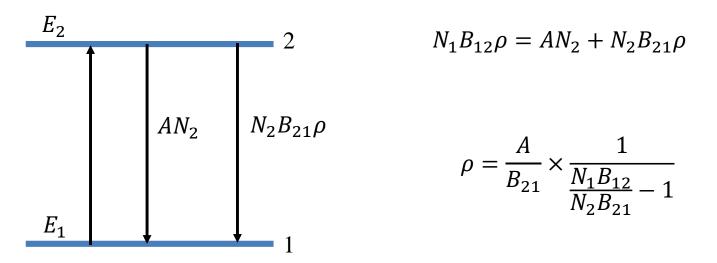


In thermal equilibrium conditions (a necessary condition, but it is also true in states far from equilibrium, eg. in lasers!)

$$\left(\frac{dN}{dt}\right)_{abs} = \left(\frac{dN}{dt}\right)_{spon} + \left(\frac{dN}{dt}\right)_{wym}$$

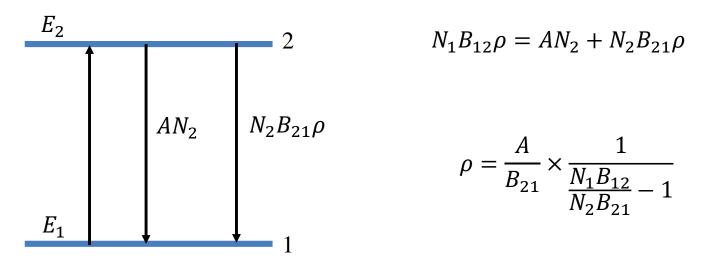
 $N_1 B_{12} \rho = A N_2 + N_2 B_{21} \rho$

Let's consider the transition between two states



The occupations of N_1 and N_2 in thermal equilibrium conditions are given by Boltzman distribution

Let's consider the transition between two states

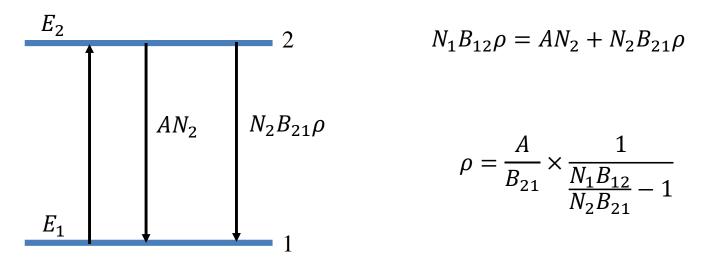


The occupations of N_1 and N_2 in thermal equilibrium conditions are given by Boltzman distribution

$$N_1 = \operatorname{const} e^{-\frac{E_1}{kT}} \qquad N_2 = \operatorname{const} e^{-\frac{E_2}{kT}} \qquad \frac{N_1}{N_2} = e^{-\frac{(E_1 - E_2)}{kT}} = e^{\frac{h\nu}{kT}}$$

What happens with ρ when $T \rightarrow \infty$?

Let's consider the transition between two states



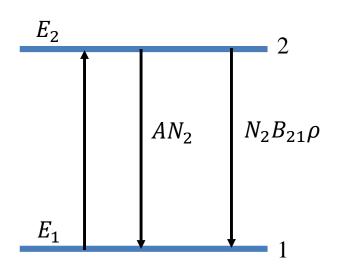
The occupations of N_1 and N_2 in thermal equilibrium conditions are given by Boltzman distribution

$$N_1 = \text{const} e^{-\frac{E_1}{kT}}$$
 $N_2 = \text{const} e^{-\frac{E_2}{kT}}$ $\frac{N_1}{N_2} = e^{-\frac{(E_1 - E_2)}{kT}} = e^{\frac{h\nu}{kT}}$

What happens with ρ when $T \rightarrow \infty$? $B_{12} = B_{21}$

Considering the degree of the degeneracy of levels $g_{12}B_{12} = g_{21}B_{21}$

Let's consider the transition between two states



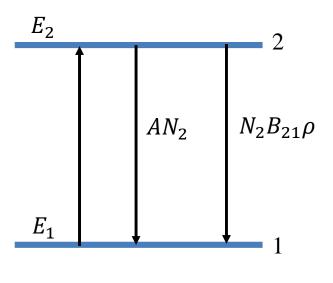
$$\rho(\nu,T) = \frac{A}{B_{21}} \times \frac{1}{\frac{N_1 B_{12}}{N_2 B_{21}} - 1} = \frac{A}{B} \times \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$$

In turn, for $h\nu \ll kT$ we have Reileigh-Jeans law

$$\rho(\nu,T)d\nu = \frac{8\pi\nu^2}{c^3}kTd\nu$$

Expanding the exponential function

Let's consider the transition between two states



$$\rho(\nu, T) = \frac{A}{B_{21}} \times \frac{1}{\frac{N_1 B_{12}}{N_2 B_{21}} - 1} = \frac{A}{B} \times \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$$

In turn, for $h\nu \ll kT$ we have Reileigh-Jeans law

$$\rho(\nu,T)d\nu = \frac{8\pi\nu^2}{c^3}kTd\nu$$

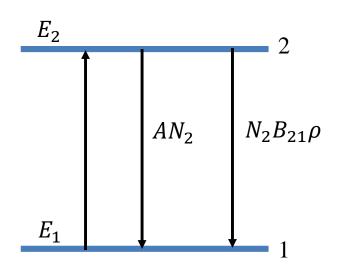
Expanding the exponential function

$$\rho(\nu,T) \approx \frac{A}{B} kT/h\nu$$

Thus:
$$\frac{A}{B} = \frac{8\pi}{c^3}hv^3 = D(v)hv$$

The amount of radiation modes in a given volume

Let's consider the transition between two states



$$\rho(\nu,T) = \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1} \frac{8\pi\nu^2}{c^3} h\nu$$

Planck equation

A and B are **Einstein coefficients**. Units of A:

$$\left(\frac{dN}{dt}\right)_{spon} = AN_2 \Rightarrow A = \frac{1}{\tau}$$

and:
$$B = [\tau D(\nu)h\nu]^{-1}$$

Electromagnetic wave

The perturbation in a form of an electromagnetic wave.

$$H \approx \frac{e}{m} \vec{A} \vec{p}$$

$$P_{nm} = \frac{w_{nm}}{\tau} = \frac{2\pi}{\hbar} |\langle n|w^{\pm}|m\rangle|^{2} \delta(E_{n} - E_{m} \pm \hbar\omega)$$

$$\vec{A} = \vec{A}_{0} \left\{ e^{-i(\omega t - \vec{k}\vec{r})} + e^{i(\omega t - \vec{k}\vec{r})} \right\}$$

$$\left[(-i\vec{k}\vec{x})^{2} - 1 \right]$$

expanding a series

$$\vec{p} e^{-i(\vec{k}\vec{r})} \approx \vec{p} \left[1 + (-i\vec{k}\vec{r}) + \frac{(-i\vec{k}\vec{r})^2}{2!} + \cdots \right]$$

after laborious calculations we get the probability of emission of electromagnetic radiation dipole (described by the operator $e\vec{r}$)

$$A_{nm} = \frac{w_{nm}}{\tau} = \frac{\omega_{nm}^3 e^2}{3\pi\varepsilon_0 \hbar c^3} |\langle n|\vec{r}|m\rangle|^2 = \frac{4\alpha}{3} \frac{\omega_{nm}^3}{c^2} |\langle n|\vec{r}|m\rangle|^2 \qquad \alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} \approx \frac{1}{137}$$

It is one of the Einstein coefficients (lasers, etc. - next week!) for nondegenerated states.

Fala elektromagnetyczna

The perturbation in a form of an electromagnetic wave.

$$A_{nm} = \frac{\omega_{nm}^3 e^2}{3\pi\varepsilon_0 \hbar c^3} |\langle m|\vec{r}|n\rangle|^2 = \frac{4\alpha}{3} \frac{\omega_{nm}^3}{c^2} |\langle m|\vec{r}|n\rangle|^2$$

In the case o degenerated states we introduce "oscillator strength"

$$A_{nm} = \frac{4\alpha}{3} \frac{\omega_{nm}^{3}}{c^{2}} \frac{S_{mn}}{g_{m}} \qquad S_{nm} = \sum_{i} \sum_{j} |\langle n_{i} | \vec{r} | m_{j} \rangle|^{2}$$

the degeneracy of the initial state

In the case of the hydrogen atom states it is convenient to represent operator \vec{r} in the circular form: $|\langle n, |\vec{r}|m, \rangle|^2 - |\langle n, |z|m, \rangle|^2 + \frac{1}{2} |\langle n, |x + iy|m, \rangle|^2 + \frac{1}{2} |\langle n, |x - iy|m, \rangle|^2$

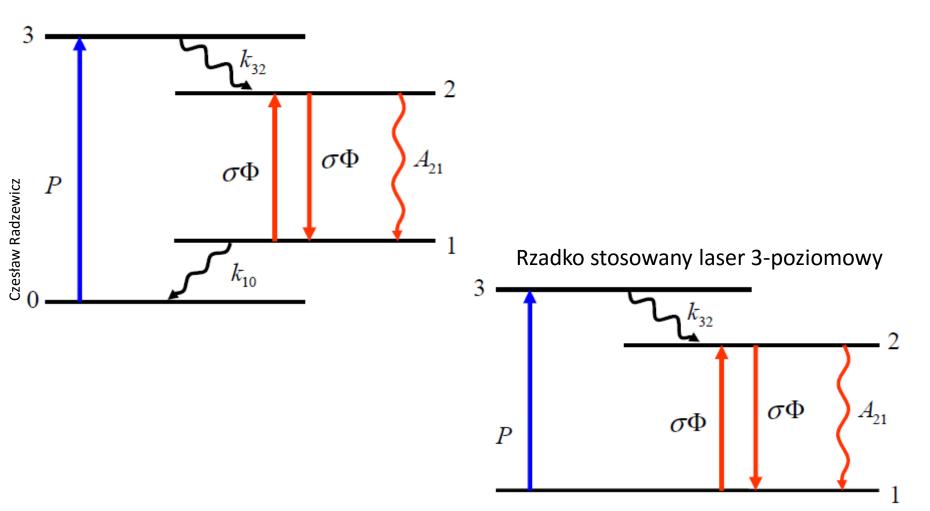
$$|\langle n_i | \vec{r} | m_j \rangle|^2 = |\langle n_i | z | m_j \rangle|^2 + \frac{1}{2} |\langle n_i | x + iy | m_j \rangle|^2 + \frac{1}{2} |\langle n_i | x - iy | m_j \rangle|^2$$

it is easy to then integrate spherical harmonics, because:

$$z = r \cos \vartheta$$
$$x \pm iy = re^{\pm i\varphi} \sin \vartheta \qquad \text{Check it!}$$

Fala elektromagnetyczna

Laser needs minimum 3 states



The revision of optics

Maxwell equations

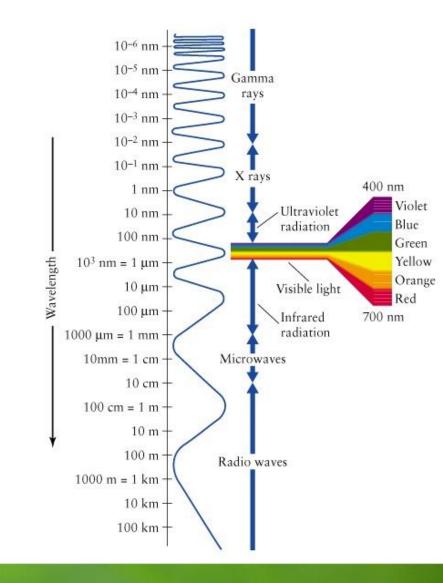
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}_{sw} + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \vec{D} = \rho_{sw} \qquad \qquad \vec{D} = \varepsilon \varepsilon_0 \vec{E}$$

$$\nabla \vec{B} = 0 \qquad \qquad \vec{B} = \mu \mu_0 \vec{H}$$

$$\vec{J}_{sw} = \sigma \vec{E}$$



The revision of optics

Electromagnetic wave in vacuum	Electromagnetic wave in dielectric
Maxwell equations:	Maxwell equations:
$\nabla \times \vec{E} = rot \ \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = rot \ \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$	$ abla imes \vec{E} = rot \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
$\nabla \times \vec{B} = rot \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$	$\nabla \times \vec{B} = rot \vec{B} = \varepsilon_0 \mu_0 \varepsilon \mu \frac{\partial \vec{E}}{\partial t}$
Wave equation:	Wave equation:
$\Delta \vec{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$ $\Delta \vec{B} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2}$	$\Delta \vec{E} = \varepsilon_0 \mu_0 \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2}$ $\Delta \vec{B} = \varepsilon_0 \mu_0 \varepsilon \mu \frac{\partial^2 \vec{B}}{\partial t^2}$
$\Delta \vec{B} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2}$	$\Delta \vec{B} = \varepsilon_0 \mu_0 \varepsilon \mu \frac{\partial^2 \vec{B}}{\partial t^2}$
The speed of the electromagnetic wave:	The speed of the electromagnetic wave:
$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}, \qquad c \approx 3 \cdot 10^8 \frac{m}{s}$	$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0 \varepsilon \mu}} = \frac{c}{n}$
Refractive index: $n = 1$ $k = \frac{\omega}{c}$	Refractive index: $n = \frac{c}{v} = \sqrt{\varepsilon \mu}$ $k = \frac{n\omega}{c}$

The revision of optics

El	ectromagnetic wave in vacuum	Electromagnetic wave in dielectric
Maxwell equations:		Maxwell equations:
	$\nabla \times \vec{E} = rot \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{R} = rot \vec{R} = s_{\rm eff} \frac{\partial \vec{E}}{\partial t}$	$\nabla \times \vec{E} = rot \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{R} = rot \vec{R} = c_{\rm eff} c_{\rm eff}$
	$\nabla \times \vec{R} - rot \vec{R} - s_{a} \mu_{a} \frac{\partial E}{\partial r}$	$\nabla \times \vec{R} - rot \vec{R} - s_{-} u_{-} s_{-} \frac{\partial \vec{E}}{\partial \vec{E}}$
Wave		m interacts with an
electromagnetic wave? Is ε (so n) constant?		
	$\Delta \vec{B} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2}$	$\Delta \vec{B} = \varepsilon_0 \mu_0 \varepsilon \mu \frac{\partial^2 \vec{B}}{\partial t^2}$
The speed of the electromagnetic wave:		The speed of the electromagnetic wave:
	$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}, \qquad c \approx 3 \cdot 10^8 \frac{m}{s}$	$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0 \varepsilon \mu}} = \frac{c}{n}$
Refrac	tive index: $n = 1$ $k = \frac{\omega}{c}$	Refractive index: $n = \frac{c}{v} = \sqrt{\varepsilon \mu}$ $k = \frac{n\omega}{c}$

Classical theory for the index of refraction

Classical theory for the index of refraction

The Lorentz Oscillator model

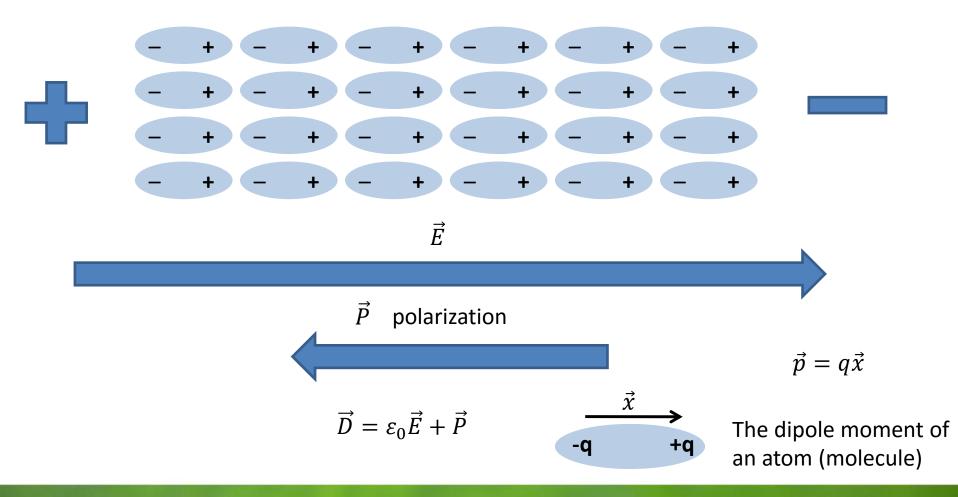
A polarizable medium - dielectric:

\vec{E}

Classical theory for the index of refraction

The Lorentz Oscillator model

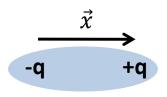
A polarizable medium - dielectric:



The Lorentz Oscillator model

We consider

- A space filled with oscillators of the resonant frequency ω_0 and damping factor γ ;
- Oscillators have a mass *m*, the charge *q*
- They are moved by the oscillating electric field \vec{E} .



$$\vec{p} = q\vec{x}$$
 the dipole moment of an atom (molecule)

polarization
$$\vec{P} = N\vec{p} = N(\varepsilon_0 \alpha \vec{E}) = \varepsilon_0 \chi \vec{E}$$

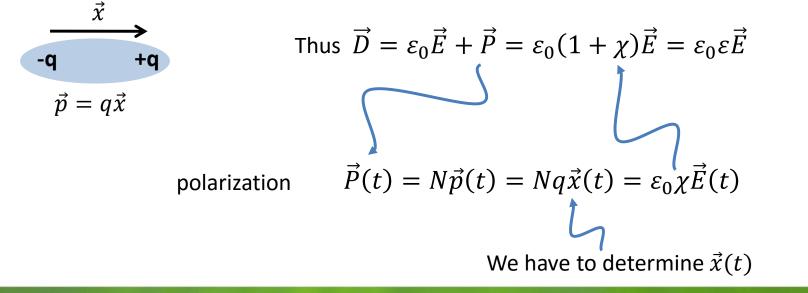
polarisability $\int \int d\vec{E} delectric susceptibility}$

The Lorentz Oscillator model

We consider

- A space filled with oscillators of the resonant frequency ω_0 and damping factor γ ;
- Oscillators have a mass *m*, the charge *q*
- They are moved by the oscillating electric field \vec{E} .

We are determining $n^2 = \varepsilon = 1 + \chi$

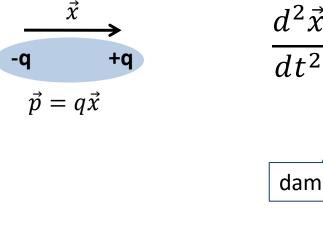


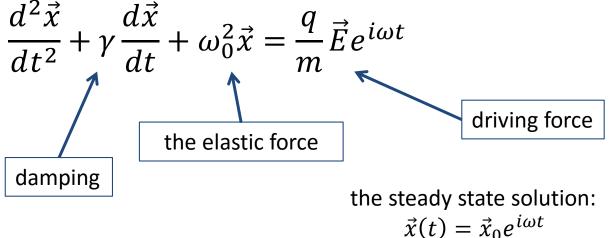
The Lorentz Oscillator model

We consider

- A space filled with oscillators of the resonant frequency ω_0 and damping factor γ ;
- Oscillators have a mass *m*, the charge *q*
- They are moved by the oscillating electric field \vec{E} .

We are determining $n^2 = \varepsilon = 1 + \chi$

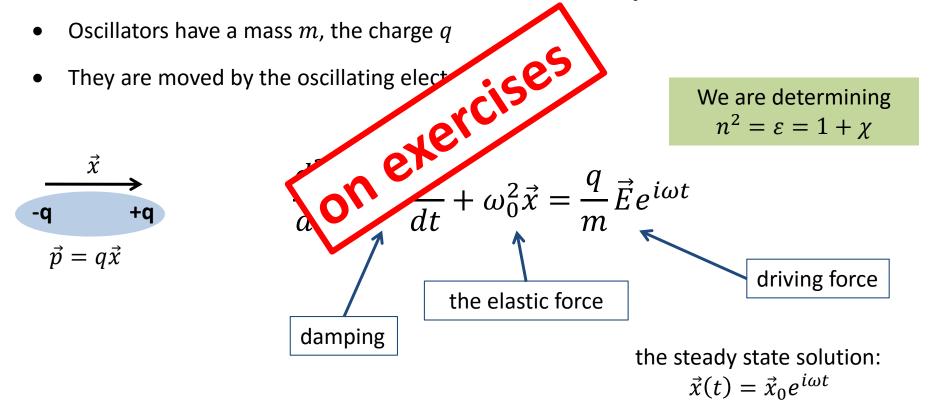




The Lorentz Oscillator model

We consider

• A space filled with oscillators of the resonant frequency ω_0 and damping factor γ ;



The wave in the media (different):

$$\frac{d^2 \vec{x}}{dt^2} + \gamma \frac{d \vec{x}}{dt} + \omega_0^2 \vec{x} = \frac{q}{m} \vec{E} e^{i\omega t} \quad \text{Lorentz model}$$

$$\frac{d^2\vec{x}}{dt^2} + \gamma \frac{d\vec{x}}{dt} + \omega_0^2 \vec{x} = \mathbf{0}$$

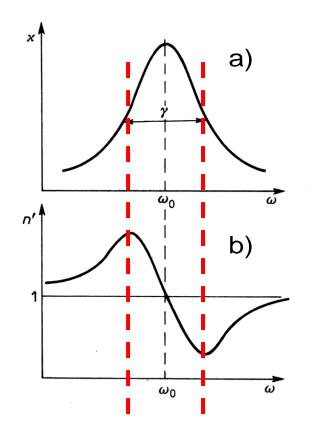
Emission spectrum

$$\frac{d^2\vec{x}}{dt^2} + \mathbf{0} + \mathbf{0} = \frac{q}{m}\vec{E}e^{i\omega t}$$

the steady state solution: $\vec{x}(t) = \vec{x}_0 e^{i\omega t}$

The Lorentz Oscillator model

We obtain:



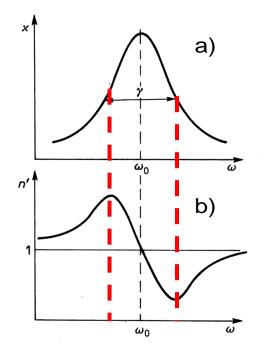
Kramers – Kronig dispersion relations

anomalous dispersion

$$\kappa = \frac{Nq^2}{2\varepsilon_0 m} \frac{\gamma\omega}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}$$

$$n' = 1 + \frac{Nq^2}{2\varepsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}$$

The Lorentz Oscillator model (dispersion medium)



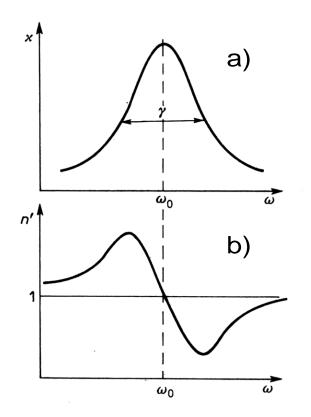
- *n* is the refractive index and indicates the phase velocity real refractive index.
- Without absorption n' = n.
- the imaginary part κ is called the "extinction coefficient and indicates absorption of the wave propagating through the material
- The quantity $\frac{dn'}{d\omega}$ is called the *dispersion of the medium*

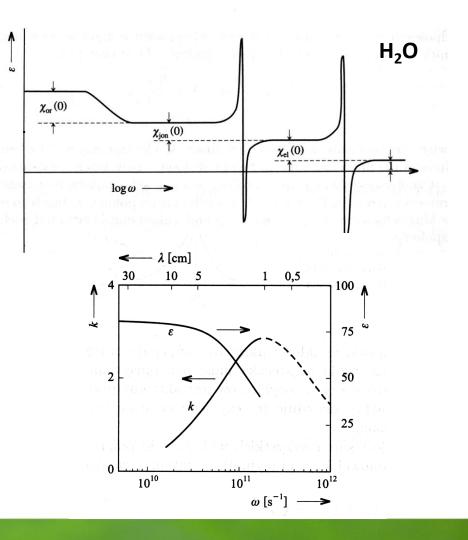
- *dn*' Far from the resonance this is positive function **normal dispersion**
 - At the frequencies close to the resonance it is negative anomalous dispersion

 $\overline{d\omega}$

The Lorentz Oscillator model

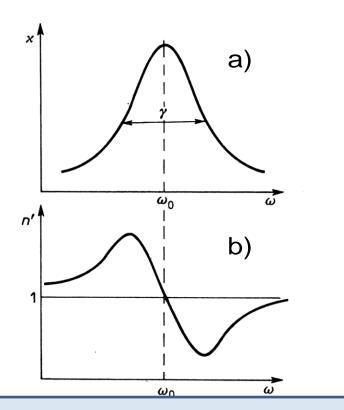
Several resonances in the medium



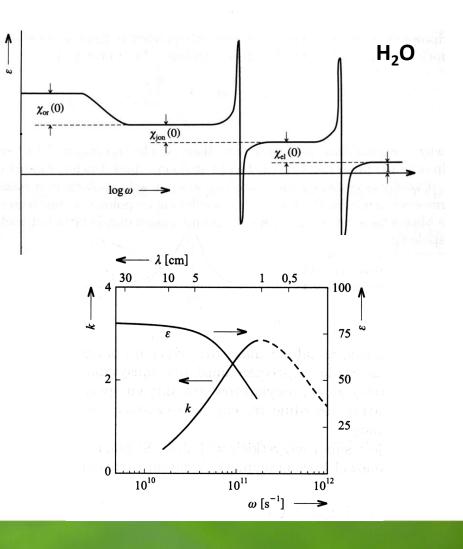


The Lorentz Oscillator model

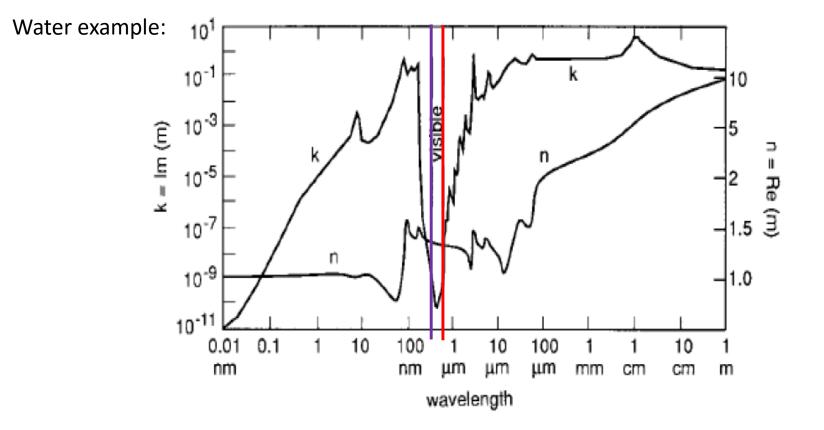
Several resonances in the medium



For one oscillator frequency $\omega_0 \ \varepsilon_L = 1$, but for many frequencies it is approximately constant sum of the contributions from all the other.



The Lorentz Oscillator model



V. M. Zoloratev and A. V. Demin, "Optical Constants of Water over a Broad Range of Wavelengths, 0.1 Å-1 m," Opt. Spectrosc. (U.S.S.R.) 43(2):157 (Aug. 1977).

Lambert-Beer law :

The electromagnetic field of the wave passing through the medium:

$$\vec{E}(z,t) = \vec{E}_0 \exp[i(\omega_0 t - k_0 n'z + ik_0 \kappa z)] = \vec{E}_0 \exp\left(-\frac{2\pi}{\lambda} \kappa z\right) \exp[i(\omega_0 t - k_0 n'z)]$$

$$\omega_0, k_0 - \text{ of the wave in vacuum}$$

The intensity
$$I(z) \propto \left| \vec{E}(z) \right|^2 = E_0^2 \exp\left(-\frac{4\pi}{\lambda} \kappa z\right)$$

$$I(z) = I_0 e^{-\alpha z} \qquad \alpha = 2\kappa k_0$$

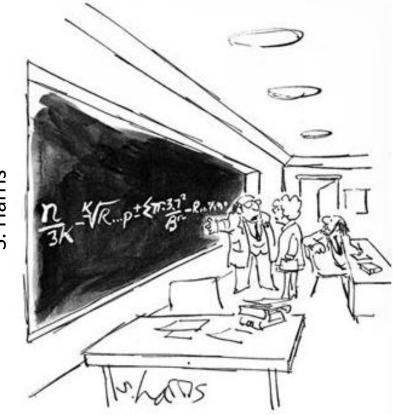
Absorption coefficuent $\alpha = 2\kappa k_0$

I1

c, a.

 I_0

Derivation of Planck's law. Lasers.



"BUT THIS IS THE SIMPLIFIED VERSION FOR THE GENERAL PUBLIC."

S. Harris