Laboratorium Technik Obrazowania. Narzędzia diagnostki medycznej 1 marca 2023

Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów <u>szef@fuw.edu.pl</u> <u>http://www.fuw.edu.pl/~szef/</u>

Plan wykładu

Wykład w ramach Laboratorium Technik Obrazowania – "Narzędzia diagnostyki medycznej" obejmuje następujące zagadnienia:

- •Fizyka a medycyna
- Detektory promieniowania jonizującego
- Podstawy obrazowania medycznego
- Tomografia w diagnostyce radiacyjnej

Literatura

- A.Z. Hrynkiewicz i E. Rokita, Fizyczne metody diagnostyki medycznej i terapii. Wydawnictwo Naukowe PWN Warszawa, 2000
- Materiały dostarczone przez koordynatora przedmiotu w trakcie zajęć

Przemiany spontaniczne

Spontanicznymi nazywamy procesy realizowane samorzutnie, w odróżnieniu od reakcji, dla których niezbędne jest oddziaływanie między "pociskiem" a "tarczą". Mówimy wówczas o przemianie spontanicznej, bądź o rozpadzie.

Podstawową charakterystyką przemiany spontanicznej jest prawdopodobieństwo jej realizacji. Miarą jego jest stała zaniku λ , lub jej odwrotność, $\tau=1/\lambda$, czyli średni czas życia .

W fizyce jądrowej, rozważając przemiany promieniotwórcze, często używa się innej wielkości okres połowicznego zaniku, $T_{1/2}$ = τ ·ln 2.

Prawo rozpadu promieniotwórczego

Rozpady obiektów nietrwałych podlegają statystycznemu prawu, które można zapisać w postaci;

$$\Delta N = -\lambda N \Delta t \qquad \Longrightarrow \qquad \frac{dN}{dt} = -\lambda N$$

Rozwiązanie:

$$N = N_0 e^{-\lambda t}$$

Rozwiązanie po zlogarytmowaniu:

$$\ln N = \ln N_0 - \lambda t$$

1.111.2023

Prawo rozpadu promieniotwórczego

Krzywa rozpadu promieniotwórczego w skali logarytmicznej

1.111.2023

Aktywność źródła

Aktywnością promieniotwórczej próbki nazywamy liczbę rozpadów, zachodzących w jednostce czasu. Jednostki aktywności to:1*Ci – 1 kiur* 1Ci=3.7.10¹⁰ rozpadów na sekundę, oraz znacznie mniejsza jednostka: 1Bq = 1bekerel = 1 rozpad na sekundę. 1*Ci=*37 GBq

rozpad dwuciałowy, w stanie końcowym mamy dwa obiekty

 $\text{Z} \rightarrow \text{Z+1}$

rozpad trójciałowy, w stanie końcowym mamy trzy obiekty, trzecią cząstką, trudną w rejestracji jest neutrino

PRZEMIANY RADIOIZOTOPOWE PROMIENIOWANIE BETA (β+; β-)

1.111.2023

Pozytonium

Gamma-Ray Radiation

Gamma Rays

Parent Nucleus Cobalt-60 Daughter Nucleus Ni-60

Przemiana y

Widmo promieniowania emitowanego w rozpadzie z nuklidu ⁶⁰Co, obserwowane w detektorze Ge(Li)

Własności promieniowania jądrowego

1.111.2023

1.111.2023

Przykładowe bezwzględne wartości promieni jader atomowych to: R (He)=2 fm, R(Mg)= 4 fm, , R(U) = 7,5 fm, fm= 10^{-15} m).

1.III.2023

Oddziaływania fotonów

Zawsze produkowany jest w oddziaływaniu elektron, który jest obiektem jonizującym bezpośrednio. Fotony komptonowskie lub anihilacyjne mogą oddziaływać w kolejnych procesach

Absorpcja promieniowania y

1.III.2023

Oddziaływanie y z materią

Lampa rentgenowska dla promieniowania niskich i średnich energii

1.III.2023

Promieniowanie charakterystyczne

 padający elektron lub foton wybija elektron z wewnętrznej powłoki

 elektron z wyższej powłoki zapełnia dziurę, a różnica energii jest emitowana jako foton promieniowania X

Widmo promieniowania charakterystycznego

- Start z wybiciem elektronu głównie z powłoki K (możliwe również z L, M,...) jonizacja
- e- z powłoki L lub M obsadza dziurę w powłoce K
- Różnica energii jest emitowana jako foton
- Sekwencja kolejnych przejść elektronowych pomiędzy poziomami atomowymi
- Energia fotonów jest charakterystyczna dla atomu

1.111.2023

Promieniowanie hamowania

 Padający elektron jest odchylony przez pole elektryczne jądra (atomu) i hamowany. Różnica energii jest emitowana jako foton X.

1.III.2023

LTO

Energie rentgenowskie

Energia wiązania elektronu ciężkich pierwiastków jest znacznie wyższa niż dla atomu wodoru (13,6 eV) .Ponieważ energia ta jest proporcjonalna do Z², możemy oczekiwać, że np. dla miedzi (Z=29) może ona osiągnąć wartości prawie trzy rzędy wyższe niż obserwowaliśmy w atomie wodoru i odpowiednio zmniejszone długości fal. Poziomy dla powłok wyższych niż K, są w rzeczywistości grupami poziomów, opisanymi różnymi liczbami kwantowymi *I, m* i *s*.

Jeśli napięcie przyłożone do antykatody przewyższa istotnie wartość energii powłoki K (n=0), to elektrony będą traciły energie na kilka sposobów:

- na ogrzewanie antykatody,
- na emisję ciągłego promieniowania hamowania,
- na wybicie elektronu z wewnętrznej powłoki antykatody, co wiąże się z emisją promieniowania charakterystycznego.

długość fali (pm)

Granica krótkofalowa jest zdefiniowana przez energię kinetyczną elektronów padających na tarczę, gdyż maksymalna energia promieniowania hamowania nie może przekroczyć energii kinetycznej elektronu.

Dla energii kinetycznej E_e , możemy wyliczyć granicę krótkofalową $E_e = hv_{max} = \frac{2\pi\hbar c}{\lambda_{min}} \Rightarrow \lambda_{min} = \frac{2\pi\hbar c}{E_e}$ Dla $E_e = 40$ keV mamy: $\lambda = -\frac{2\pi\hbar c}{2\pi\hbar c} - \frac{2\pi \cdot 197MeV \cdot fm}{2\pi \cdot 197MeV \cdot fm} = 31 \cdot 10^3 \text{ fm} = 31 \text{ pm}$

1

Dla E_e =40 keV mamy:
$$\lambda_{\min} = \frac{2\pi nc}{E_e} = \frac{2\pi \cdot 197MeV \cdot JM}{40 \cdot 10^{-3}MeV} = 31 \cdot 10^3 fm = 31pm$$

.III.2023

Filtracja

1.III.2023

hydrogen 1	Układ okresowy														helium 2			
1.0079 lithium	beryllium												boron	carbon	nitrogen	oxygen	fluorine	He 4.0026 neon
³ Li	Be													6 C	7 N	8 O	9 F	¹⁰ Ne
6.941 sodium 11	12 12												aluminium 13	silicon 14	phosphorus 15	15.999 sulfur 16	chlorine 17	20.180 argon 18
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	AI 26.982 gallium 24	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	Af 39.948 krypton
K			Sc	7 867	23 V	24 Cr	25 Mn 54 938	Fe	Co	28 Ni 58.603	29 Cu 63.546	Zn	Ga	Ge	As	34 Se	35 Br	36 Kr 83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
RD 85.468	3 87 62		88,906	91 224	92 906	95.94		101.07	102.91	PQ	AG		114.82	31 118 71	3D	127 60	126.90	Xe
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Îr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium	90 102	174.97 lawrencium	178.49 rutherfordium	180.95 dubnium 105	183.84 seaborgium	186.21 bohrium 107	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununquadium 114	208.98	[209]	[210]	[222]
Fr	Ra	* *	[262]	[261]	Db	Sg	Bh	Hs	109 Mt	Uun	Uuu	Uub		Uuq				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthaniae Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

1.III.2023

Produkcja promieniowania X

 Elektrony wysokiej energii uderzają w tarczę (metal) gdzie część ich energii jest przekształcana w promieniowanie

Własności promieniowania X

 Rozkłady kątowe: Promieniowanie X wysokich energii jest skierowane głownie do przodu, a promieniowanie X niskich energii jest emitowane głównie prostopadle do kierunku wiązki elektronów – stąd odbicie od tarczy

Liniak Megavoltowy

- Źródło elektronów o energii dziesiątków keV
- 2. Struktura akceleracyjna
- Magnetron jako źródło fali elektromagnety cznej (mikrofale)
- 4. Cyrkulator
- Filtr zapewnia równomierny rozkład wiązki
- 6. Kolimator
- 7. Komora jonizacyjna

Zmiany osłabienia w funkcji liczby atomowej ośrodka

Oddziaływanie fotonów, zależność od energii

http://pdg.lbl.gov/2011/AtomicNuclearProperties/

Zasada działania skanera CT

Projection Displacement

rekonstrukcja 1 kąt

rekonstrukcja 2 kąty

1.111.2023

rekonstrukcja 16 kątów

rekonstrukcja 60 kątów

1.111.2023

rekonstrukcja 180 kątów

REKONSTRUKCJA

Sinogram

Reconstruct

Narzędzia medycyny nuklearnej

Scyntylatory (historia) -NaI(TI) (Hofstadter, 1948) (+) silna emisja światła, tani (-) niskie Z, niska gęstość, powolny, higroskopijny -BGO (1977) (+) wysokie Z, wysoka gęstość, (-) niska emisja światła, powolny -LSO (Melcher, 1990) (+) wysokie Z, wysoka gęstość, silna emisja światła, szybki, (-) wewnętrzna radioaktywność -GSO (~1995) (+) wysokie Z, wysoka gęstość, szybki, (-) niska emisja światła 1.111.2023 LTO

Scyntlator	Liniowy współczynnik osłabienia	E ² (Wydajność)²	Czas zaniku świecenia [ns]	Względne natężenie scyntylacji
NaI(TI)	0,34	0,06	230	100
BGO	0,95	0,18	300	15
LSO	0,88	0,17	40-43	75
GSO	0,70	0,14	30-60	25
BaF ₂	0,44	0,09	0.6, 620	6,20

P.Zanzonico, Sem. in Nucl. Med. <u>34</u> (2004) 242

L. Ericson et al. Nucl. Instr. Meth. in Phys. Research <u>A525</u> (2004) 242

LTO

cascades

Detekcja fotonów

Rozpady sekwencyjne

Rozwiązania:

$$N_{1} = N_{01}e^{-\lambda_{1}t}$$

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}}N_{01}\left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t}\right) + N_{02}e^{-\lambda_{2}t}$$

$$N_{3} = N_{01}\left(1 + \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}}e^{-\lambda_{2}t} - \frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}}e^{-\lambda_{1}t}\right) + N_{02}\left(1 - e^{-\lambda_{2}t}\right) + N_{03}$$

Rozpady sekwencyjne

Bardzo często mamy do czynienia z przypadkiem, gdy na początku mamy tylko jądra N_1 . Wtedy $N_{02} = 0$ i $N_{03} = 0$, a rozwiązania opisujące liczby jąder 2 i 3 w rozpadzie sekwencyjnym są znacznie prostsze:

$$\begin{split} N_{2} &= \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{01} \Big(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \Big), \lambda_{1} << \lambda_{2} \Longrightarrow N_{2} \cong \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{01} \Big(1 - e^{-\lambda_{2}t} \Big) \\ N_{3} &= N_{01} \bigg(1 + \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} e^{-\lambda_{2}t} - \frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}} e^{-\lambda_{1}t} \bigg) \end{split}$$

W przemianach sekwencyjnych często przeplatają się rozpady różnych rodzajów

Schemat rozpadu 99-Mo

Radiofarmaceutyki

Radiofarmaceutyki

Part of the Body	Example Radiotracer		
Brain	^{99m} Tc-HMPAO		
Thyroid (tarczyca)	Na ^{99m} TcO ₄		
Lung (wentylacja)	¹³³ Xe gas		
Lung (uszkodzenie)	^{99m} Tc-MAA		
Liver (wątroba)	^{99m} Tc-Tin Colloid		
Spleen (śledziona)	^{99m} Tc-Damaged Red Blood Cells		
Pancreas (trzustka)	⁷⁵ Se-Selenomethionine		
Kidneys (nerki)	^{99m} Tc-DMSA		

Najszersze zastosowanie mają:

^{99m}Tc - okresie połowicznego rozpadu 6 h. Najczęściej wykorzystywany.

- ²⁰¹TI półokres zaniku 73h gromadzony w komórkach serca
- ⁶⁷Ga T_{1/2} 3,3 dnia zmiany zapalne
 ¹³¹I T_{1/2} 8 dni nowotwór,
 niedoczynność tarczycy
- ¹²³**I** $T_{1/2}$ 13,1 h niedoczynność tarczycy

Obrazowanie w medycynie nuklearnej

Znacznik- izotop radioaktywny, często ^{99m}Tc

Ligand- nośnik (wektor)

Radiofarmaceutyk Znacznik + ligand

Gamma Kamera

Kamera Gamma DST-XLi

Schemat blokowy Kamery Gamma

Kryształ + PM (Głowica KG)

Organ containing radiopharmaceutical

Jak określić współrzędne

Budowa kamery Gamma

Układ rejestracji promieniowania w Kamerze Gamma

Fotopowielacze w Kamerze Gamma

37-91 PMT

Rola kolimatora w Kamerze Gamma

LTO

View of collimator from above:

View of collimator from the side:

Typy kolimatorów

pin-hole

Parallel-hole

1.111.2023

Energy (keV)

Dodawanie pochłaniania/osłabienia

1₀

1.111.2023

Rekonstrukcja obrazów SPECT

Załóżmy dla prostoty, że rejestrujemy promieniowanie z czterech voxeli o radioaktywnościach odpowiednio A1, A2, A3 i A4. PI – to odpowiednie projekcje natężeń.

Filtered Back Projection (Projekcja wsteczna)

- 1. Generujemy pusty zbiór (macierz)
- 2. Dodajemy kolejne projekcje (n -projekcji)
- 3. Odejmujemy sumę z pojedynczej projekcji od każdego elementu
- 4. Dzielimy poszczególne elementy przez n-1
- 5. Uzyskujemy macierz aktywności

Rekonstrukcja iteracyjna

Analytic and iterative reconstruction algorithms in SPECT Philippe P. Bruyant The Journal of Nuclear Medicine; 43(2002) 1343

Metoda iteracyjna

- 1. Zaczynamy od pustej macierzy
- Z projekcji P1 dzielimy wartości pomiędzy voxele dające przyczynek do projekcji
- 3. Znajdujemy przybliżenie R1
- 4. Porównujemy projekcję P2 z P2(R1) i znajdujemy różnice
- 5. Dodajemy różnice do R1 uzyskując R2
- 6. Wracamy do punktu 4 z rozwiązaniem R2 i projekcją P3
- 7. Pętlę 4-6 wykonujemy dla kolejnych rozwiązań i projekcji.

Projekcje P1

Projekcja P1

Rekonstrukcja iteracyjna!

Pierwsze przybliżenie macierzy

Rozw. R1

3

1

4

8

Projekcja P3 Co wynika z projekcji P3(R2)

Projekcja P4

Rekonstrukcja iteracyjna 3 4 5

Obrazy z Kamery Gamma

Figure 2

1.III.2023

Nowotwór tarczycy (GK-scan)

Skan układu kostnego (SPECT)

Skan watroby i mózgu (SPECT)

1928 Dirac postuluje istnienie czastki o masie elektronu i diodatnim ładunku. 1.111.2023 LTO 1932 Anderson odkrywa pozyton

Pierwsza fotografia toru pozytonu w komorze Wilsona zarejestrowana przez Andersona 2 sierpnia 1932 roku

© Copyright California Institute of Technology. All rights reserved. Commercial use or modification of this material is prohibited.

Jak powstaje obraz PET

©2000 How Stuff Works

1.III.2023

(¹⁸F)

(C₆O₅FH₁₁)

Izotopy dla PET

Nuklid	(min)	E _{max} (MeV)	Zasięg Efektywny	Target	Reakcja jądrowa
			(mm)		
¹⁸ F	109.7	0,635	1.4	¹⁸ O woda	¹⁸ O(p,n) ¹⁸ F
		,	•	Ne gaz	²⁰ Ne(d, α) ¹⁸ F
¹¹ C	20,4	0,96	2,06	N ₂ -gaz	¹⁴ N(p,α) ¹¹ C
¹³ N	9,96	1,72	4,5	¹⁶ O woda	$^{16}O(p,\alpha)^{13}N$
		·			$^{13}C(p,n)^{13}N$
15 0					
O ^{c1}	\2,07/	1,19	X 3,0 /	N ₂ -gaz	$^{14}N(d,n)^{15}O$
					·•n(p,n)·•O

¹⁸F podstawiane w miejsce grupy hydroksylowej związku

Współczynnik korekcyjny: $I_0/I = e^{\mu D}$

Powody zniekształcenia obrazu: fotony rozproszone Przesunięte koincydencje

Powody zniekształcenia obrazu: koincydencje losowe

1.III.2023

Część fotonów jest osłabiana w tkankach

Efekt zależy od miejsca emisji

PET korekcja osłabiania – AC (Attenuation Correction)

PET bez AC

PET z AC

Współczynniki osłabienia dla PET (ACF)

Korekcja:

Sino. emisyjny * Sino. ACF = Sino. Skorygowany

Efekty rekonstrukcji

