

Quest for the chiral symmetry breaking in atomic nuclei

Ernest Grodner XXX Mazurian Lakes Conference on Physics 08.09.2007

Main subjects

BROKEN SYMMETRY SYMMETRY CONSERVED

Translational symmetry

PIASKI 200

Rotational symmetry

Breaking of the chiral symmetry LOCALIZATION IN THE HANDEDNESS PARAMETER

Chiral symmetry

Three mutually perpendicular angular momenta vectors forming the reference frame with defined handedness

PIASKI 200'

Chiral symmetry operator $R_{Y}T$

Changes left-handed state to right-handed one and vice versa $R_{Y}T|L\rangle = |R\rangle$

 $R_{V}T|R\rangle = |L\rangle$

Localized states

are not observed in the laboratory reference frame

Experimental observation of handedness

is imposible in laboratory reference frame.

Breaking of the chiral symmetry EXPECTED PROPERTIES IN LAB FRAME PIASKI 2007 Two close lying |+> and |-> states with restored symmetry (defined chirality) and undefined handedness are expected to be observed $|+\rangle = \frac{1}{\sqrt{2}} \frac{|L\rangle + |R\rangle}{\sqrt{1 + C}}$ Chirality + $\left|-\right\rangle = \frac{i}{\sqrt{2}} \frac{\left|L\right\rangle - \left|R\right\rangle}{\sqrt{2}}$

Breaking of the chiral symmetry EXPECTED PROPERTIES IN LAB FRAME

PIASKI 2007

Chiral partner bands

Two rotational bands with similar energy levels, same spins and parity.

Similar electromagnetic properties

The same transition probabilities between corresponding levels

A=B C=D

...

Main subjects

EXPERIMENTAL PREMISES

134**P**

Structure of the level scheme two similar rotational bands

EXPERIMENTAL PREMISES

PIASKI 2007

Structure of the level scheme two similar rotational bands

Stony Brook

EXPERIMENTAL PREMISES

PIASKI 2007

Structure of the level scheme

two similar rotational bands

EXPERIMENTAL PREMISES

PIASKI 2007

Tennessee

Structure of the level scheme

two similar rotational bands

EXPERIMENTAL PREMISES

Structure of the level scheme

two similar rotational bands

EXPERIMENTAL PREMISES

Structure of the level scheme two similar rotational bands

Breaking of the chiral symmetry EXAMPLES OF THE PARTNER BANDS

¹³⁰Cs

¹³⁴Pr

Breaking of the chiral symmetry EXAMPLES OF THE PARTNER BANDS

Breaking of the chiral symmetry EXAMPLES OF THE PARTNER BANDS

yrast band

Chiral partner bands can differ in each element depending on the limit of the symmetry breaking

Brief theoretical description

ENERGIES AND TRANSITION PROBABILITIES

 $\left[R_{Y}T,H\right]=0$

$$|+\rangle = \frac{1}{\sqrt{2}} \frac{|L\rangle + |R\rangle}{\sqrt{1 + \varepsilon}}$$
$$|-\rangle = \frac{i}{\sqrt{2}} \frac{|L\rangle - |R\rangle}{\sqrt{1 - \varepsilon}}$$

$$\left| \left| \left| + \right| \right| + \right\rangle = \frac{E_0 + \Delta E}{1 + \varepsilon}$$

 $\left| \left| \left| - \right| \right\rangle = \frac{E_0 - \Delta E}{1 - \varepsilon}$

Doubling of the energy for LAB states

Parameters

Overlap $\varepsilon = \operatorname{Re}\langle L | R \rangle$ Tunneling effect $\Delta E = \operatorname{Re}\langle L | H | R \rangle$ Diagonal mat. element $E_0 = \operatorname{Re}\langle L | H | L \rangle$

 $\begin{bmatrix} R_Y T, B(\sigma \lambda) \end{bmatrix} = 0 \qquad \sigma \lambda = M1, E2, M3, E4, \dots$ $\left\langle + \left| B(\sigma \lambda) \right| + \right\rangle = \frac{B_0 + \Delta B}{1 + \varepsilon}$ $\left\langle - \left| B(\sigma \lambda) \right| - \right\rangle = \frac{B_0 - \Delta B}{1 - \varepsilon}$ Doubling of the transition probabilities

Parameters

Overlap non-diagonal element diagonal mat. element

 $\mathcal{E} = \operatorname{Re}\langle L | R \rangle$ $\Delta B = \operatorname{Re}\langle L | B | R \rangle$ $B_0 = \operatorname{Re}\langle L | B | L \rangle$

Lifetime measurements

EXPERIMENTAL SETUP

Multidetector array OSIRIS II

12 HPGe detectors (currently) BGO anticompton shields

Beam

U200P cyclotron

Nuclear reactions

¹²²Sn(¹⁴N,4n)¹³²La ¹²²Sn(¹⁰B,4n)¹²⁸Cs

E=70 MeV E=55 MeV

Heavy Ion Laboratory

University of Warsaw

Principles of the lifetime measurement

PIASKI 2007

Required

good energy resolution excellent apparatus lineshape (gaussian and symmetric)

Required

time-velocity correlation for the recoils feeding time distribution

Method of the lifetime measurement

DOPPLER SHIFT ATTENUATION 0.2 – 1.5 ps

Doppler effect

 $E=E_0(1+\beta\cos\theta)$

Initial velocity

0.01c

Gamma emission

w during the slowing down process in the target

lifetime

Determined from the Doppler disturbed gamma lineshape

E. G. et al.. Eur. Phys. Jour. A27, 325-340 (2006)

Doppler disturbed gamma lineshape

Gamma emission at different velocities of the recoils Velocity distribution – lineshape – depends on the lifetime

Data analysis process

E [keV] 3forward Counts/1000 kanał

Results

LIFETIMES OF THE EXCITED STATES OF ¹³²La i ¹²⁸Cs

E. G. et al.. Int. Jour. Of Mod. Phys. E13, 243, (2004)

E. G. et al.. Int. Jour. Of Mod. Phys. E14, 347, (2005)

Lifetime results

$$B(E2) = \frac{1}{\tau} \cdot \frac{4\pi}{1.2^4} \left(\frac{5}{3}\right)^2 A^{-4/3} \frac{1}{1.22 \cdot 10^{-3}} E^{-5}$$

$$B(M1) = \frac{1}{\tau} \cdot \frac{\pi}{10} \left(\frac{4}{3}\right)^2 \frac{1}{17.6} E^{-3}$$

PIASKI 2007

A. Bohr, B. Mottelson Nuclear Structure, Benjamin, New York (1969)

Main subjects

Pseudo-spin concept

LEVEL ENERGIES

pseudo-spin transformation

Unitary transformation U relabeling physical states into their pseudo counterparts. The transformed hamiltonian UHU⁺ has reduced spin-orbit term.

Signature splitting

PIASKI 2007

(non-rotating) Nilsson potential Single particle basis $|k,\Omega_k\rangle$ doubly degenerated. The $|k,\Omega_k\rangle$ state and time reversed one $|k,\overline{\Omega_k}\rangle$ have the same energy

Signature splitting

LEVEL ENERGIES

PIASKI 2007

rotating potential

Coriolis interaction ωI_x split the time reversed states. The $|k,\Omega_k\rangle$ state and time reversed one $|k,\overline{\Omega_k}\rangle$ have different energies

Results and discussion

ELECTROMAGNETOC PROPERTIES OF ¹³²La

PIASKI 2007

Transition probabilities

conclusion

The electromagnetic properties of ¹³²La do not support the chiral symmetry breaking

E. G. et al.. Phys. Rev. Lett. 97, 172501, (2006)

Results and discussion

ELECTROMAGNETIC PROPERTIES OF 128Cs

Transition probabilities

0,01

PIASKI 2007

128Cs

spin

E. G. et al..

Phys. Rev. Lett. 97, 172501, (2006)

Results and discussion

¹²⁸Cs COMPARISON WITH THEORETICAL CALCULATIONS

Calculations done in frame of CQPC model

Chiral symmetry breaking in ¹²⁸Cs predicted

T. Koike et al.. Phys. Rev. C67, 044319, (2003)

Gamma Selection rules

E. Grodner, I. Zalewska, T. Morek, J. Srebrny, Ch. Droste, M. Kowalczyk, J. Mierzejewski, M. Sałata.

Institute of Experimental Physics, Warsaw University, Warsaw, Poland

A. A. Pasternak

A. F. Ioffe Physical Technical Institute RAS, St. Petersburg, Russia

S. G. Rohoziński, J. Dobaczewski, P.Olbratowski, W. Satuła

Institute of Theoretical Physics, Warsaw University, Warsaw, Poland

J. Kownacki, M. Kisieliński, A. Kordyasz, P. Napiorkowski, M.Wolińska-Cichocka

Heavy Ion Laboratory of Warsaw University, Warsaw, Poland

L. Nowicki, R. Ratajczak, R. Kaczarowski, W. Płóciennik, E. Ruchowska, A. Wasilewski The Andrzej Sołtan institute for Nuclear Studies, Otwock-Świerk, Poland

summary

research subject

Experimental search for chiral symmetry breaking in atomic nuclei

PIASKI 200

method

DSA lifetime measurements

experiment

Cyclotron U200P, OSIRIS II multidetector array

results

First lifetime measurements in nuclei supposed of the chirality phenomenon

¹³²La – chiral symmetry breaking not confirmed

¹²⁸Cs – all observables agree with chiral interpretation – first chiral nucleus

¹²⁶Cs – propably the second chiral nucleus

conclusion

Lifetime measurements are necessary for study of the chirality New dynamic variable (handedness) needed to be introduced for proper quantum mechanical description Study Center of Electromagnetic Transition Probabilities based on Warsaw Array for γ -Ray Spectrometry (WARS)

