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Abstract

Quantum-defect model gives analytic expressions for elastic and reactive collision rates of
ultracold polar molecules interacting by a van der Waals potential [1].
Quasi-two-dimensional and quasi-one-dimensional collisions may be described as well [2].
When the molecules are highly reactive, the rate constants behave universally. When
dipole-dipole interaction occurs, numerical methods, such as the adiabatic potentials
method, become useful.

Introduction

I we consider ultaracold (T ≤ 1µK ) 40K 87Rb molecules (fermionic) in rovibrational and
electronic ground state

I at long range, they interact via van der Waals potential
I turning the electric field on polarizes the molecules, causing dipole-dipole interactions;

dipole moment d may be controlled by the value of ~E
I the molecules are put in external harmonic trap, which may be highly asymmetric and

change the geometry of the system;
I they are reactive; chemical reaction introduces losses
I the full hamiltonian of the system confined in two dimensions by the trap:
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I different partial waves are coupled by this potential
I Vsh describes short range physics; the quantum-defect theory parametrizes it by a single

parameter 0 ≤ y ≤ 1 − probability of chemical reaction
I universal regime: y → 1, no flux is reflected at short range
I information on reactive and elastic scattering for channel α is provided by the diagonal

elements Sαα of the S matrix where Sαα = eiδα, δα ∈ C
I knowing S, we may calculate the elastic and inelastic rate constants in different

dimensions; in 1D
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where gα is 1 except for identical particles, where it becomes 2 (this is the case here)
I K 1D el/re(n1D)2 gives us the number of elastic and inelastic scattering acts per unit of time

and volume

Adiabatic potentials method

I diagonalise the hamiltonian in spherical harmonics basis, with possibly large Lmax
(Lmin = 1, fermions)

I obtain the equation with effective potential λ(r )(
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)
Rn(r ) = ERn(r )

I solve it and find the S matrix
I assume that taking the lowest lying curve is sufficient (single channel approximation)

Typical experimental parameters

I trap frequency ω ≈ 2π × 50 kHz
I atomic density n3D ≈ 1010−12 cm−3; corresponding 1D density n1D ≈ 1− 100 cm−1

I temperature T ≈ 100− 1000 nK
I KRb dipole moment dperm = 0,566 Debye
I KRb van der Waals interaction strength C6 = 16130 a.u.
I characteristic van der Waals length R6 =

2µC6
~2

Quasi-1D pure van der Waals potential

I to check the accuracy of the method
we may apply it to d = 0 case

I for d = 0 analytic expressions for the
rate constants are given [2]:
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where for quasi-1D L1(k) = 6(ka)2a1,
a and a1 being the s-wave and
p-wave van der Waals scattering
lengths

I this method can be improved by
noticing that it works best at
temperatures T ≈ 4− 5µK and the
rate constants should be linear with
respect to T

Adiabatic curves for quasi-1D KRb collisions

I at short range van
de Waals potential
dominates

I at long range the
harmonic oscillator
potential
dominates -
characteristic
ladder structure

I the system exhibits
different
symmetries at
short and long
range - at short
range the electric
field direction is
important, at long
range the trap
direction

I different quantum
numbers are valid
at different
distances:

I n represents the
oscillator levels

I l represents angular
momentum

I Λx and Λz stand for
the projection of the
angular momentum
on the x and z axis

I behavior under
inversion with
respect to x , y and
z axis is shown by
+ and − sign
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Barrier heights in different dimensions

I it is interesting to
compare the barrier
heights obtained for
systems with different
geometries

I it turns out that for low
values of d the kind of
trap is not so important;
the collision is
effectively 3D

I this results from
domination of van der
Waals potential at short
range
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Loss rate constants for quasi-1D KRb collisions

I arrows point at analytic
results for no dipole
moment

I for low dipole moment
the barrier increases
(see the barier heights),
so the loss rate
decreases
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Conclusions and further plans

I quantum-defect theory enables us to get rid of the details of short-range interaction
I adiabatic potentials may provide an estimate for the rate constants possible to be checked

experimentally
I aim: full numerical treatment, such as adiabatic bisector method
I aim: multichannel computations
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