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GENERAL METROLOGY:

QUANTUM METROLOGY: PARAMETER ESTIMATION THEORY
VS

CLASSICAL PARAMETER ESTIMATION GAME
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Setup for the optimal estimation strategy:

input state quantum channel output state quantum 
measurement

estimator

the input state + the set of all POVMs + the estimator.

AIM:

o Find the optimal method of establishing      as close to     , for all                 .

o Minimise the average error:

o Very hard!
We are given the set                             , for which we need to optimise over:

QUANTUM PARAMETER ESTIMATION THEORY
CHANNEL



independent
quantum channels

⁞

N independent realisations of the estimated channel:

input state output state quantum 
measurement

estimator

WHAT IS THE SCALING OF THE AVERAGE ERROR,           , WITH THE NUMBER OF REALISATIONS N?
• Classically, as the realisations are independent we cannot overcome the shot noise.

Asymptotically (N→∞) the error can maximally scale as:

• Quantum mechanically, input can be entangled and measurement can be non-local.
Asymptotically (N→∞) the error can maximally scale as:

Shot Noise Limit (SNL)

CAN WE ASK ANY GENERAL QUESTIONS?

[Giovannetti et al, Science 306, 2004]
Heisenberg limit (HL)

⁞



LET US INVESTIGATE SOME EXAMPLES …

Channels considered that asymptotically achieve Heisenberg Limit,

, are unitary:

Do the realistic physical channels, which include 
losses/decoherence, also achieve Heisenberg Limit?



o Highest sensitivity to changes from        .
o Delta ”a priori” distribution ,                             
o Optimal (entangled) input state:

o Error scaling: 

o No knowledge of the estimated     .
o Flat ”a priori” distribution ,                          .
o Optimal (entangled) input state:

o Error scaling: 

EXAMPLE 1A: OPTICAL INTERFEROMETER
N independent realisations of the channel ↔ N photon pure input state

[Berry and Wiseman, PRL 85, 5098 (2000)]

set of POVM’s estimatorpure N photon state output state

SOLUTIONS IN TWO SCENARIOS:

[J. P. Dowling, Phys. Rev. A 57, 4736 (1998)]

NOON state:

Heisenberg Limit !
(unitary channel)



EXAMPLE 1B: OPTICAL INTERFEROMETER WITH LOSS
(photonic loss, imperfect detectors, non-optimal input)

pure N photon state output state set of POVM’s estimator

o Flat ”a priori” distribution of the estimated      ,                           .

o Channel is no longer unitary → mixed output                   .

o For finite N: optimal input state’s coefficients,         , are found numerically:

Loss in one arm: Loss in both arms:

[Kolodynski and Demkowicz-Dobrzanski, PRA 82,053804 (2010)]

e.g.



better than HL
(disallowed)

worse than SNL

o For any type of loss we provide a lower bound on error with

EXAMPLE 1B: OPTICAL INTERFEROMETER WITH LOSS

Shot Noise Limit !!!

ALREADY INFINITESMAL AMOUNT OF LOSS
DESTROYS THE ASYMPTOTIC HEISENBERG SCALING

[Kolodynski and Demkowicz-Dobrzanski, PRA 82,053804 (2010)]

SCALING OF THE ERROR ,             , WITH THE NUMBER OF PHOTONS,     . 

e.g.    Loss in both arms:



EXAMPLE 2A: ATOMIC SPECTROSCOPY
N two-level atoms (qubits) evolving for fixed time,   , oscillating independently with 

same estimated transition frequency . 

⁞ ⁞⁞

time, t

Bloch sphere picture:

[Huelga et al, PRL 79, 38653868 (1997)]

Heisenberg Limit !!!

AIM: BEST POSSIBLE ESTIMATE OF THE FREQUENCY,     .

o An optimal (entangled) input state – GHZ state:

o Error scaling: 



EXAMPLE 2B: ATOMIC SPECTROSCOPY WITH DEPHASING

⁞ ⁞⁞

time, t

Bloch sphere picture:

[Escher et al, Nature Phys. 7, 406 (2011)]

o Asymptotic error is given by 

WHAT IS NOW THE ASYMPTOTIC SCALING OF THE ERROR OF

ESTIMATED FREQUENCY,     , WITH THE NUMBER OF ATOMS ?

Shot Noise Limit !!!

ALREADY INFINITESMAL AMOUNT OF DEPHASING

DESTROYS THE ASYMPTOTIC HEISENBERG SCALING



ARE THERE ANY CHANNELS THAT

INCLUDE DECOHERENCE AND PRESERVE

THE HEISENBERG SCALING?



o Consider the convex set of all quantum channels mapping a general input density 
matrix onto an output one:

o Consider the unitary subset parameterised by the estimated parameter: 

o Consider the family of subsets for different strengths of the decoherence model:

o Heisenberg Limit for extremal (    unitary) channels at the border.

o Shot Noise Limit for ones inside the convex set.

1

GEOMETRIC INTUITION

HL

SNL

WHAT IS SO SPECIAL ABOUT THE NON-EXTREMAL CHANNELS?
WE COULD TRY TO MOVE THE ESTIMATED PARAMETER DEPENDENCE INTO THE ”MIXING” PROBABILITY!



NON-EXTREMAL CHANNELS WITH SQL SCALING
IDEA OF MADALIN GUTA, UNIVERSITY OF NOTTINGHAM

For the channel to possess SQL scaling it is enough to show that 
the channel has the following properties:

1. It has to be non-extremal – must not lie on the (non-flat) boundary of the 
convex set of all channels:

2. The estimated parameter dependence can be moved into the ”mixing” 
probability distribution:

3. The ”mixing” probability has to be regular  w.r.t.       at the estimated     :

e.g. not a Dirac delta function,

[Keiji Matsumoto, arXiv:1006.0300, 2010]



PROOF

CPTP channels

⁞

input 
state

output 
state

set of 
POVM’s

estimator

Originally we had:

Markov chain of information about the parameter:

classical !!! SQL!!! Q.E.D.

⁞

But NOW we have:

independent vars



IN CASE OF OUR EXAMPLES…



EXAMPLE 2B: ATOMIC SPECTROSCOPY WITH DEPHASING

o one independent channel – one atom (qubit) evolving for time t.

o The channel,                 , is a qubit-qubit one. Due to dephasing it is 

not unitary and possesses two Kraus operators :

We construct the required ”mixing” probability distribution:

with the smearing probability,                        , being a solution to the diffusion 
equation on the phase circle (group U(1)) :

”MIXING” PROBABILITY DISTRIBUTION CONSTRUCTED→ PROVED SQL SCALING



EXAMPLE 1B: OPTICAL INTERFEROMETER WITH LOSS

o one independent channel – one photon in the MZ interferometer.

o With loss the channel,                    , becomes a qubit-qutrit one, accounting 
for the possibility of losing the photon to the vacuum state at the output.

o Hence, the Kraus operators :

We construct the required ”mixing” probability distribution:

where the smearing probability,                        , is a solution to the diffusion 
equation on the phase circle (group U(1)) :

”MIXING” PROBABILITY DISTRIBUTION CONSTRUCTED→ PROVED SQL SCALING



CONCLUSIONS:
1. OPTICAL INTERFEROMETRY WITH LOSS

Asymptotically, we cannot do better than the Shot Noise scaling allows:

2. ATOMIC SPECTROSCOPY WITH DEPHASING
Asymptotically, we are follow the Shot Noise scaling:

3. GENERALISATION: 

IF WE CAN CONSTRUCT THE ”MIXING” PROBABILITY FOR A NON-EXTREMAL

CHANNEL, THEN WE TRIVIALLY PROVE ASYMPTOTIC SHOT NOISE SCALING.

4. OPEN QUESTION:
HOW DOES THIS METHOD OVERLAPS AND RELATES TO OTHER METHODS OF FINDING ASYMPTOTIC SCALING?

• Considering purification of the estimated channel –

• Considering extension of the estimated channel –

which proved SNL of all full rank channels.

[JK and RDD, PRA 82,053804 (2010)]

[Escher et al, Nat. Phys. 7, 406 (2011)]

[Fujiwara & Imai,

J.Ph.A:Math.Theor.,41, 255304 (2008)]


