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Goals of quantum metrology

We want to measure some quantities more and more
precisely - ultimately with the best possible precision.
Gravitational waves detection (LIGO, GEO600 etc.).

Precise measurements of frequencies.
Atomic clocks.
Magnetometry.
Many others...
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Scheme
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We send N particle state |Ψ〉 through our system.
System is modeled by some quantum channel Λφ which
acts on |Ψ〉 and depends on some unknown parameter φ
which we want to know.
We make some general quantum measurement (POVM)
Π̂x at the output which gives us some value x and then we
use estimator φ̃(x) to get estimated value φ̃ of φ.
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How to calculate the precision of a given observable?

The most basic and the most common situation -
measurement of observable Â at the output and estimation
of φ from the average of our outcomes. What is the
precision of such estimation procedure?

Answer:

∆φ =
∆Â

|∂〈Â〉∂φ |

where ∆Â is defined as usual ∆Â =

√
〈Â2〉 − 〈Â〉2.

Searching for optimal precision means that we have to
optimize the input state |Ψ〉.
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∆Â
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Cramer-Rao bound and quantum Fisher information

Precision is bounded from below by Cramer-Rao inequality

∆φ ≥ 1√
kF (φ)

where F (φ) is quantum Fisher information (QFI) and k is the
number of repetitions of experiment.

QFI gives bound on precision optimized over all possible
quantum measurements and unbiased estimators.
Hard evaluation - need for diagonalization of ρ̂φ.

Shot noise ∆φ = 1/
√

N, Heisenberg limit - ∆φ = 1/N.
Fact: For states |Ψ〉 = |ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉 = |ψ〉⊗k QFI is
equal to FΨ = kFψ → only c/

√
N scaling.
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Searching for optimal states

How to describe states?

Any state of a chain of N, d-level particles can be written
as

|ψ〉 =
∑

σ1,σ2...σN

cσ1σ2...σN |σ1σ2 . . . σN〉

We need to know dN coefficients to describe the state.
Practically impossible to implement any efficient algorithm
of searching cσ1σ2...σN - exponential scaling of their number
with N.
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Searching for optimal states

Slightly better situation is when our state before and after
the evolution is from symmetric subspace, than (in case of
d = 2)

|ψ〉 =
N∑

n=0

cn|n,N − n〉

We have only N + 1 coefficients to find.
Also inefficient for large N, numerical optimization possible
up to N ∼ 50.

Is there any other way to efficiently describe the state?
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YES!
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What is MPS?

Answer - matrix product states (MPS). They are defined as:

|ψ〉 =
1√
N

∑
σ1,σ2,...,σN

Tr(Aσ1Aσ2 . . .AσN )|σ1σ2 . . . σN〉

where Aσi are some D × D matrices (D is called bond
dimension) and N =

∑
σ1...σN

Tr[(A∗σ1
⊗ Aσ1) . . . (A∗σN

⊗ AσN )] is
the normalization factor.

Only dD2N coefficients needed to describe any MPS with
bond dimension D.
Any state can be described by MPS, perhaps with large
bond dimension D.
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MPS - properties and extensions

MPS has some more nice properties:

Very good to describe states with "local" correlations.
For translationally invariant states matrices Aσi do not
depend on i (they are the same for all particles).
For permutationally invariant states (states from symmetric
subspace) all permutations of Aσi ’s should have the same
trace.
Easy evaluation of average values of single particle
operators.
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Example

For example: NOON state = GHZ state.

|N00N〉 =
1√
2

(|N,0〉+ |0,N〉) =

=
1√
2

(|1,1,1, . . . ,1〉+ |0,0,0, . . . ,0〉) = |GHZ〉

This state is MPS with minimal bond dimension D = 2 and
matrices

A0 =

(
1 0
0 0

)
,A1 =

(
0 0
0 1

)
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Why MPS? - Intuition

Fact: in the presence of noise asymptotically we have only
SQL-like scaling ∆φ ∼ c/

√
N → the same as with product

states!
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Asymptotically optimal state should have structure |Ψ〉 = |ψ〉⊗k

-entanglement only in small groups!
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Losses

Let’s consider one of the most common cases d = 2, i.e
photons in interferometer, two-level atoms etc. and losses of
probes:
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A2

AN

=Lf L Uf

Lf=LëUf=UfëL

Our channel is composition of unitary evolution Ûφ = ei n̂φ

and noisy channel responsible only for losses.
We loose each of the probes independently with the
probability 1− η.
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Losses

We can write the state as |Ψ〉 =
∑N

n=0 cn|n,N − n〉.

States are translationally invariant→ we need only two
matrices A0, A1 (corresponding to states |0〉 and |1〉 of
each particle).
States are from symmetric subspace→ trace of any
permutation of k matrices A0 and N − k matrices A1 is the
same→ diagonal matrices are sufficient→ only 2D
parameters for any N.
Output state is mixed but also from symmetric subspace.
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Results
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η = 0.9.
Very good approximation for low D up to large N.
Insight into the structure of optimal states:

– A0,A1 have the same diagonal elements ordered
complementarily - the largest with lowest etc.

– The higher is N the closer are diagonal elements of A’s.
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Ramsey spectroscopy - scheme

We have N two-level atoms ≈ one spin j = N/2 particle.

Apply π/2 pulse, let everything evolve, apply another π/2
pulse and measure difference in population (Ĵz).
Effectively: rotation around Jz about angle φ and
measurement of Jx

J
`

y

J
`

z

J
`

x f

J
`

y’

J
`

z

J
`

x’

Optimal angle is φ = 0.
Precision:

∆φ =

√
∆2Ĵx

〈Ĵy 〉2
+

1− η
η

N
4〈Ĵy 〉2

.
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〈Ĵy 〉2
+

1− η
η

N
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Results
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Larger D than previously but still good approximation.
Insight into the structure of optimal states:

– A0,A1 have the same diagonal elements ordered
complementarily - the largest with lowest etc.

– The higher is N the closer are diagonal elements of A’s.
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Conclusions

Matrix product states are feasible for numerical
optimization in quantum metrology.
We have insight into the structure of optimal states.

Thank You!
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