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Modified gravity: motivation

• Dark Energy: cosmological constant problem, equation

of state?

If ωDE ≡ pDE
ρDE

6= −1, what is the Dark Energy?

In particular if ωDE < −1 we have to accept phantom mat-

ter or modified gravity!

• Dark Matter: problems with CDM, success of MOND

fitting rotation curves from visible matter

CDM: cuspy halos, small satellites→Warm, Self-interacting

Dark Matter?

MOND: modification of Newton’s potential, very succesful

at the galactic level [Milgrom’84]

a > a0 → no modification

a < a0 → modification of Newton’s potential

a0 ∼ 10−8cm/s2 ∼ cH0

↓
suggests link with Dark Energy



Figure 1: R. H. Sanders and S. S. McGaugh, Ann. Rev. Astron. Astrophys. 40, 263
(2002)



Modifying gravity below a fixed
acceleration scale

We assume we have a correction to the EH action such that:

S =
∫
d4x

√−g
1

16πGN

{
R− µ2Log [f (R,P − 4Q)]

}

P ≡ RµνR
µν and Q ≡ RµνλρR

µνλρ.

f → 0 for Rσ
µνλ → 0

f ' Q/Q0 when Q À R2, P

• The extra term will dominate at low curvatures but it will

be negligible at large curvatures.

• Minkowski spacetime is not a solution, de Sitter is in general.

• If the “crossover” scale is when R ∼ H2
0 the models have de

Sitter solutions with R ∼ H2
0 , but the extra term would be

negligible when R >> H2
0

• To explain current acceleration we need µ ∼ H0



But these models raise other questions:

• Are there stability issues (negative energy particles, ghosts)?

• Is it possible to reproduce a correct weak field limit (in the

Solar System)?

• Can these theories be used as models of Dark Energy/Dark

Matter?

• If so, what would be their experimental signatures?

Some answers:

• The model is ghost free, no negative energy modes. The

vacuum is stable

• We have an extra scalar field, besides the massless spin two

graviton

• The mass of this extra field grows in regions of large cur-

vature. It modifies gravity only at large distances below a

fixed ACCELERATION SCALE



Particle content of modified gravity

L = R + F (R, P, Q)

↓
fourth order EOM

↓
eight propagating d.o f. :

[Hindawi et al.,PRD’96]

• two in a massless spin two graviton

• one in a massive scalar

• five in a massive spin two ghost

We would like F (R,P,Q) such that

• The spin-two ghost is absent

• The extra massive scalar gets a large mass and effectively de-

couples in regions of large curvature such as the Solar System

Expand the action up to second order in hµν over the vacuum (a

constant curvature maximally symmetric spacetime)

gµν = g(0)
µν + hµν

We are asking what is the “kinetic and mass terms” for hµν.



When L = R + F (R, P,Q), the linearisation of the action over

vacuum will be the same as the linearisation of [Chiba,JCAP’05]

S =
∫
d4x

√−g
1

16πGN


−Λ + δR +

1

6m2
0

R2 − 1

2m2
2

CµνλσCµνλσ




the mass of the ghost is m2 and the scalar mass is m0 where

Λ ≡ 〈
F −RFR + R2 (FRR/2− FP/4− FQ/6) + R3 (FRP/2 + FRQ/3) .

+R4 (FPP/8 + FQQ/18 + FPQ/6)
〉
0

δ ≡ 〈
1 + FR −RFRR −R2 (FRP + 2FRQ/3) .

−R3 (FPP/4 + FQQ/9 + FPQ/3)
〉
0

m−2
0 ≡ 〈(3FRR + 2FP + 2FQ) + R (3FRP + 2FRQ) .

+R2 (3FPP/4 + FQQ/3 + FPQ)
〉
0

m−2
2 ≡ −〈FP + 4FQ〉0 .

• So when F (R, P, Q) = F (R,Q − 4P ), m2 = ∞. There is no

ghost!

• In this case the excitations over vacuum are the usual spin

two massless graviton plus a scalar.

• Notice that the (effective) Planck mass and the mass of the

extra scalar depend on the (local) background curvature.



For our logarithmic action in vacuum R ∼ F = µ2Log[f ]. The

mass of the extra scalar in vacuum is

m2
0 ∼ H6

0/µ
4 ∼ µ2

ds2 = −

1− 8ĜM

3r
−H2

0r
2


 dt2+


1− 4ĜM

3r
−H2

0r
2




−1

dr2+r2dΩ2

But the linearisation breaks down at high energies or short dis-

tances:

S ' S(2) + M 2
p

∫
d4x

(〈
F̃UR

〉

0
(∂2h)2R(1) +

〈
F̃UU

〉

0
(∂2h)4

+
〈
F̃UUR

〉

0
(∂2h)4R(1) +

〈
F̃UUU

〉

0
(∂2h)6 + . . .

)

where F̃ ≡Log[f ], U ≡ 5R2/6 + Q− 4P

We can not trust the linearised action over vacuum when

E > Λs ≡
(
Mpµ

3
)1/4

or

r < rV ≡

GM

µ3




1/4



Expectations based on the linearisation
over vacuum

A massive scalar yields a contribution to the potential like

Vs ∼ e−m0r

r

so we expect a modification in the weak field limit when

r < m−1
0

We evaluate m0 in the Schwarzschild solution where:

R = 0, P = RµνR
µν = 0, Q = RµνλρR

µνλρ =
48(GM)2

r6

In our model m0 depends on r and we can expect a modification

when

r < m−1
0 ∼ µ

Q
1
2
∼ µ

r3

GM

⇓

r >

√√√√√
GM

µ
≡ rc

A LONG DISTANCE MODIFICATION OF NEWTONIAN

GRAVITY BELOW THE MOND CRITICAL

ACCELERATION!



The modification becomes important for
a < a0 ∼ H0

Gµν + µ2Hµν = 0.

Expanding the solution to the EoM in powers of µ2 the zero-

th order background is the Schwarzschild solution and the first

correction is

ds2 ' −A(r)dt2 + B−1(r)dr2 + r2dΩ2
2

A(r) = 1− 2GNM

r


1 +

4

3


 r

rc




4

+O




 r

rc




8






B(r) = 1− 2GNM

r


1− 2


 r

rc




4

+O




 r

rc




8






Gravity is modified beyond the distance rc given now by

2GNM

r2
c

= µ ∼ H0

the relation

a0 ∼ 10−8cm/s2 ∼ cH0

has a natural explanation in these theories



Scalar-tensor
Non-perturbative

regime General Relativity

Ls

rV rc

VACUUM SOURCE

Energy

Distance

ms LGR

• So at small energies or large distances we have a scalar-tensor

theory, with a scalar of mass

m2
0 ∼ R4n+4/µ4n+2 ∼ µ2

• At larger energies (E > Λs) or smaller distances (r < rV )

we enter a non perturbative regime. It can, perhaps, be

understood in terms of a theory with “running couplings”

m2
0 ∼ Q/µ2 ∼ (GM)2

r6µ2

• At even larger energies (E > ΛGR) or smaller distances (r <

rc) the extra degree of freedom decouples and we recover GR

dynamics.

Some numbers:

for Msun → rc ' 3000 AU , rV ' 7 kpc

for 1011Msun → rc ' 4 kpc, rV ' 4 Mpc

for 1015Msun → rc ' 400 kpc, rV ' 40 Mpc



Is this theory compatible with high precision measurements of

orbits at the solar system level?

Most stringest test: Lunar Laser Ranging. The anomalous pre-

cession per revolution is bound to be

∆φ < 2.4× 10−11

Our theory predicts

∆φ ' πr
d

dr


r2 d

dr


 δV

rVN





 ' 16π



r(Moon−Earth)

rc(Earth)




4

∼ 10−12

PASSES PRECESSION OF PERIHELION TESTS!



We expect modifications of Newton’s law whenever r < m−1
0 .

The inverse square law for gravity has been tested on the lab

down to scales of order 1mm [Adelberger et al.,ARPS53’03]

What is the local mass of the scalar on the Earth surface?

The gravitational field here is dominated by the one produced

by the Earth:

m0(Earth) ∼
GM(Earth)

r3
(Earth)H0

∼ (0.1mm)−1

PASSES TESTS OF SHORT DISTANCE CORRECTIONS!

Predicts: both anomalous perihelion shifts for the Moon and

short distance corrections to Newton’s law one order of magni-

tude below current bounds



Anisotropic corrections to Newton’s law at
the sub-mm scale: a smoking gun for

MOND-like modified gravity

Consider the situation:

r
0

r

z

m

M

ds2 = −(1+2Φ)dt2+wi(dtdxi+dxidt)+[(1−2Ψ)δij+2sij]dxidxj

When r0 ¿ rc(M), r ¿ r0, Gm ¿ r, GM ¿ r0

Φ(0) ≈ Ψ(0) ≈ −Gm

r
− GM

r0
(1 +

z

r0
+

3

2

z2

r2
0

− r2

2r2
0

)

To get the first order corrections Ψ(1), Φ(1) we have to solve

G(1)
µν = −µ2H(0)

µν



We get

G
(1)
00 ≈ 2∇2Ψ(1) = µ2H

(0)
00 ≈ −3

4

Gm

r3

1

m2
sr

2
(3− 30

z2

r2
+ 35

z4

r4
)

Gµ
µ
(1) ≈ 2∇2Φ(1) − 4∇2Ψ(1) = µ2Hµ

µ
(0) ≈ 0

where ms ≡ GM
r3
0µ

is the “local mass” of the scalar around r = 0

We get therefore the short-distance correction of Newton’s po-

tential

Φ ' Φ(0)+Φ(1) = −Gm

r


1 +

3

8m2
sr

2


1− 6

z2

r2
+ 5

z4

r4


 +O

(
1/m3

sr
3
)






The correction to the potential
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Summary and conclusions

• Actions of the type L = R − µ2Log[f (R, Q − 4P )] can

explain the acceleration of the universe when µ ∼ H0

• In these models Newtonian gravity is modified below a char-

acteristic acceleration scale given by a0 = µ ∼ H0

• The Planck mass is rescaled at large distances to a value

M 2
p(eff) =

〈
1− µ2fR − 2RfQ

f

〉

0

M 2
p

• They also predict short distance deviations from Newton’s

law, where the short distance scale depends on the local

background curvature. On the Earth surface the correction

is anisotropic and appears at a scale

m−1
s ∼ µ/Q1/2 ∼ H0r

3
e/(GNMe) ∼ 0.1mm

Will be tested soon. Smoking gun for MOND-like modified

gravity!


