Cold dark matter in brane cosmology scenario Shaaban Khalil

Center for theoretical Physics at BUE & Ain Shams University

Dark matter

Not dark matter

Outline

Introduction:

Why do we need Dark Matter ? What is the Dark Matter made of ? Dark Matter candidates: Neutrinos, Axions, WIMPs.

- Supersymmetry and Neutralino Dark Matter.
- Brane Cosmology in 5D Space-time
- Modified Friedmann equation in 5D
- DM relic density in non-conventional brane cosmology
- Conclusions.

Why do we need Dark Matter

- Most astronomers, cosmologists and particle physicists are convinced that 90% of the mass of the Universe is due to some non-luminous matter, called `dark matter'.
- □ Although the existence of dark matter was suggested 73 years ago, still we do not know its composition.
- In 1933, Fritz Zwicky provided evidence that the mass of the luminous matter in the Coma cluster was much smaller than its total mass implied by the motion of cluster member galaxies.
- Only in the 1970's the existence of dark matter began to be considered seriously.

Dark matter in galaxies

Important evidence for the existence of DM comes from the study of rotation velocity of stars or hydrogen clouds located far away from galactic centres.

□ From Newton's laws, the velocity of rotating objects

$$v(r) = \sqrt{\frac{GM(r)}{r}}$$

□ The observation of about 1000 spiral galaxies has consistently shown, that away from the centre of galaxies the rotation velocities do not drop off with distance.

- □ The explanation for these flat rotation curves is to assume that disk galaxies are immersed in extended dark matter halos.
- At small distances this dark matter is only a small fraction of the galaxy mass inside those distances, it becomes a very large amount at larger distances.
- **□** The mass density averaged over the Universe, ρ, in units of the critical density, $\rho_c \sim 10^{-29}$ g cm⁻³ is defined as $\Omega = \rho / \rho_c$.
- **If** $ρ > ρ_c$ (Ω>1) the Universe expands to a maximum then contracts leading to an inverse Big Bang (closed Universe).
- \Box If ρ > ρ_c (Ω<1) the Universe expands forever (open Universe). The same for Ω=1, where the geometry of the Universe is flat.

Ω Current observations of luminous matter in galaxies determine $\Omega \sim 0.01$. Analyses of rotation curves imply $\Omega > 0.3$

□ Theoretical arguments prefer a $\Omega \sim 1$ flat Universe.

□ Thus, larger amounts of dark matter Or nonvanishing vacuum energy density $\rho_{c.c}$ contribution to the density of the Universe.

$$\Omega = \Omega_{\text{lum}} + \Omega_{\text{dark}} + \Omega_{\text{c.c}}$$

□ It is fair to say that a small number of authors suggest that dark matter is not really necessary to explain rotation curves.

□ Their approach consists of modifying the Newton's law at galactic scales.

What is DM made of ?

- The Big-Bang nucleosynthesis, which explains the origin of the elements, sets a limit to the number of baryons that exists in the Universe: Ω_{baryon} <0.04</p>
- □ Thus, baryonic objects are likely components of the dark matter but more non-baryonic candidates are needed.
- □ Particle physics provides this type of candidate for dark matter.
- □ The three most promising are: axions, neutrinos and neutralinos

Dark Matter Candidates

- □ Weakly interacting massive particles (WIMPs) are very interesting candidates for dark matter in the Universe.
- □ They were in thermal equilibrium with the SM particles in the early Universe, and decoupled when they were non-relativistic.

□ The relic density of WIMPs can be computed with the result

$$\Omega_{WIMP} \approx \frac{7 \times 10^{-27} cm^{3} s^{-1}}{\langle \sigma_{ann} v \rangle}$$

□ For weakly coupled particle with $\sigma \sim \alpha^2/m_{weak}^2 \implies \sigma \sim 10^{-9} \text{ GeV}^{-2}$ One obtains, $< \sigma_{ann} v > \sim 10^{-26} \text{ cm}^3 \text{ s}^{-1}$. This number is close to the value that we need to obtain the observed density of the Universe.

□ This is a possible hint that new physics at the weak scale provides us with a reliable solution to the dark matter problem.

Supersymmetry

- □ SUSY is a new type of symmetry relates bosons and fermions.
- □ SUSY introduces a new unification between particles of different spin.

□ Higgs is no longer a mysterious particle. SUSY introduce fundamental scalars (squarks, sleptons).

□ SUSY ensures the stability of the hierarchy between the weak and the Planck scales.

□ Within SUSY the three gauge coupling constants of the SM join at a single unification scale.

□ Local SUSY leads to a partial unification of the SM with gravity: Supergravity, which is the low-energy limit of superstrings.

- □ In simplest SUSY models, there is ONLY interactions between one SM particle and two SUSY particles.
- SUSY particles are produced or destroyed only in pairs. The LSP is absolutely stable.
- □ LSP may be a candidate for DM, *Goldberg* 1983.
- □ SUSY fulfils the two crucial requirements: new physics at the electroweak scale with a stable particle.
- □ In MSSM, the LSP is an electrically neutral with no strong Interactions particle, called neutralino.

Lightest SUSY particle

Neutralinos are superpositions of the fermionic partners of the neutral electroweak gauge bosons, bino and wino, and the fermionic partners of the two neutral Higgs bosons, Higgsinos.

$$\begin{pmatrix} M & 0 & -M_Z c \beta s \theta_w & M_Z s \beta s \theta_w \\ 0 & M2 & M_Z c \beta c \theta_w & -M_Z s \beta c \theta_w \\ -M_Z c \beta s \theta_w & M_Z c \beta c \theta_w & 0 & -\mu \\ M_Z s \beta s \theta_w & -M_Z s \beta c \theta_w & -\mu & 0 \end{pmatrix}$$

$$\widetilde{\chi}_{1}^{0} = N_{11}B^{0} + N_{12}W^{0} + N_{13}\widetilde{H}_{u}^{0} + N_{14}\widetilde{H}_{d}^{0}$$

Exp. limit on LSP mass is m_{\chi_1} > 37 GeV.

□ There are numerous final states into which the LSP can annihilate. The most important ones occur at the tree level.

- □ fermion-antifermion pairs give the dominant contribution to LSP annhiliation.
- □ Many regions of the parameter space of the MSSM produce values of the annihilation cross section in the interesting range ($\sigma \sim 10^{-9}$ GeV⁻²).
- □ Therefore, the neutralino is a very good candidate to account for the dark matter in the Universe.

• In the usual early-Universe model, thermal production of neutralinos gives rise to $\Omega_{\tilde{v}}h^2 \propto 1/\langle \sigma_{\tilde{v}}^{ann}v \rangle$.

- The relic density is inversely proportional to the annihilation cross section.
- Large cross section leads to very small relic density, which contradicts the observational results:

$$0.1 \lesssim \Omega_{\tilde{\chi}_1^0} h^2 \lesssim 0.3.$$

- Different cosmological scenarios might give rise to different results.
- The relic density in the context of some non-standard cosmological scenarios implies different results.
- We study the relic density in the context of brane comsology.

Brane Cosmology in 5D Space-time

The theory we consider has the following action:

$$S_{5} = -\frac{1}{2k_{5}^{2}} \int d^{5}x \sqrt{-g}R + \int d^{5}x \sqrt{-g}L_{m}$$

$$k_5$$
 is given by:
 $k_5^2 = 8 \pi G_5 = M_5^{-3}$

□ The 5D metric is of the form

$$ds^{2} = -q^{2}(t, y)dt^{2} + a^{2}(t, y)\delta_{ij}dx^{i}dx^{j} + b^{2}(t, y)dy^{2}$$

□ The energy-momentum tensor:

□ Assuming an empty bulk & the matter content in the brane is

$$T_B^A = T_B^A \mid_{bulk} + T_B^A \mid_{brane}$$

$$T_{B}^{A} = \frac{\delta(y)}{b} diag(-\rho, p, p, p, 0)$$

□ In order to have well defined geometry, the metric is required to be continuous across the brane at y=0. However its derivative w.r.t y may be discontinuous in y=0

Thus, one has
$$a'' = \hat{a}'' + [a']\delta(y)$$

$$\begin{bmatrix} a' \end{bmatrix}$$
 Is the jump in 1st derivative across y=0, $\begin{bmatrix} a' \end{bmatrix} = a'(0^+) - a'(0^-)$

Matching the $\delta(y)$ in $G_{00}\&G_{ii}$, we get

$$\frac{\begin{bmatrix} a & ' \end{bmatrix}}{a_{0} b_{0}} = -\frac{k_{5} \frac{2}{3}}{3} \rho ,$$

$$\frac{\begin{bmatrix} q & ' \end{bmatrix}}{q_{0} b_{0}} = \frac{k_{5} \frac{2}{3}}{3} (3 p + 2 \rho).$$

Modified Friedmann equation in 5D

❑ The new Friedmann equation is 5D:

$$H^2 = \frac{8\pi G}{3} \rho_M \left[1 + \frac{\rho_M}{2\sigma} \right] + \frac{\Lambda_4}{3} + \frac{\mu}{a^4}$$
$$\frac{8\pi G}{3} = \frac{\sigma}{18}$$
$$\frac{\Lambda_4}{3} = \frac{\sigma^2}{36} + \frac{\Lambda_5}{6}$$

- σ is the brane tension.
- Tuning between Λ_5 and σ establishes $\Lambda_4 = 0$
- gravitational constant depends on tension σ
- µ is constant of integration (may be +ve or -ve)

The presence of the energy density σ allows for H² ~ ρ_M as in conventional cosmology.

DM relic density in non-conventional brane cosmology

□ In the standard computation for relic density, χ is assumed to be in thermal equilibrium and decoupled when the annihilation rate $\Gamma_{\chi} = < \sigma_{\chi}^{ann} v > dropped below the expansion rate of the universe: <math>\Gamma_{\chi} \leq H$

□ The relic density is determined by Boltzmann equation:

$$\frac{dY}{dx} = \frac{1}{3H} \frac{ds}{dx} \langle \sigma_{\chi}^{ann} v \rangle \left(Y^2 - Y_{eq}^2 \right).$$

Where $x=m_{\chi}/T$, $Y=n_{\chi}/s$ and $Y^{eq}=n_{\chi}^{eq}/s$. In radiation domination era, the entropy is given by:

with $k_1 = 2\pi^2/45 g_* \chi^3$, is the same in both standard and Brane comsology.

□ The Hubble parameter (as function of T) is given by:

$$H_{s} = \sqrt{\frac{4\pi^{3}g_{*}m_{\chi}^{4}}{45M_{Pl}^{2}}}x^{-2} = \sqrt{k_{2}}x^{-2}$$

$$H_b = (k_2 x^{-4} + k_3 x^{-8})^{1/2}$$

□ In the standard case:

$$\left(\frac{dY}{dx}\right)_{s} = -\sqrt{\frac{\pi g_{*}}{45}} M_{pl} m_{\chi} \frac{\langle \sigma_{\chi}^{ann} v \rangle}{x^{2}} \left(Y^{2} - Y_{eq}^{2}\right)$$

□ In brane comsology

$$\left(\frac{dY}{dx}\right)_{b} = -\sqrt{\frac{\pi g_{*}}{45}} M_{pl} m_{\chi} \left(x^{4} + \frac{k_{2}}{k_{2}}\right)^{-1/2} \langle \sigma_{\chi}^{ann} v \rangle \left(Y^{2} - Y_{eq}^{2}\right)$$

□ In the limit of $k_3 \rightarrow 0$ (i.e. $\sigma \rightarrow \infty$), the brane equation tends to the standard Boltzmann equation.

□ The transition temperature is defined as

$$\rho(T_t) = 2\sigma \Longrightarrow T_t = 0.51 \times 10^{-9} M_5^{\frac{3}{2}} GeV$$

□ To analyze the brane cosmology effect on the WIMP relic density, the freeze out temperature of the WIMP should be higher than the transition temperature , i.e., $T_F \ge T_t$. Thus

$$M_5 \le 1.57 \times 10^6 \left(\frac{m_{\chi}}{x_F}\right)^{2/3}$$

□ To obtain the present WIMP abundance Y_{∞} , we should integrate the Boltzmann equation for the WIMP number density from x_F (the decoupling temperature) to x_{∞} (present temperature)

$$Y_{\infty b}^{-1} = \sqrt{\frac{\pi g_*}{45}} M_{pl} \ m_{\chi} \left[3\sqrt{\frac{k_2}{k_3}} b \left(\sinh^{-1} \left(\sqrt{\frac{k_3}{k_2}} x_F^{-2} \right) - \sinh^{-1} \left(\sqrt{\frac{k_3}{k_2}} x_t^{-2} \right) \right) + a \left(\frac{1}{x} \ _2F_1 \left[\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, \frac{-k_3}{k_2 x^4} \right] \right)_{xF}^{x_t} + \left(\frac{a}{x_t} + \frac{3b}{x_t^2} \right) \right],$$

\Box For $x_t = x_F$ the expression of $Y^{-1}_{\infty b}$ coincides with the standard $Y^{-1}_{\infty s}$:

$$Y_{\infty s}^{-1} = \sqrt{\frac{\pi g_*}{45}} \ M_{pl} \ m_{\chi} \left(\frac{a}{x_F} + \frac{3b}{x_F^2}\right).$$

□ The relic abundance of the WIMP is given by

$$\Omega_{\chi} h^2 = \frac{\rho_{\chi}}{\rho_c/h^2} = 2.9 \times 10^8 Y_{\infty} \left(\frac{m_{\chi}}{\text{GeV}}\right),$$

□ The critical density ρ_c is given by $\rho_c \sim 10^{-5} h^2$ GeV cm⁻³ and h is the Hubble constant, h ~ 0.7.

□ The relic density is inversely proportional to its annihilation cross section as in the standard case.

 \Box Unlike the standard case, it depends explicitly on WIMP mass since $k_3/k_2 ~\propto m_\chi^{-4}$

$$R = (\Omega_{\chi} h^2)_b / (\Omega_{\chi} h^2)_s$$

□ R measures the enhancement/suppression in the relic abundance due to the brane cosmology.

$$R = \frac{\frac{a}{x_F} + \frac{3b}{x_F^2}}{3\sqrt{\frac{k_2}{k_3}}b\left(\sinh^{-1}\left(\sqrt{\frac{k_3}{k_2}}x_F^{-2}\right) - \sinh^{-1}\left(\sqrt{\frac{k_3}{k_2}}x_t^{-2}\right)\right) + a\left(\frac{1}{x}\ _2F_1\left[\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, \frac{-k_3}{k_2x^4}\right]\right)_{x_F}^{x_t} + \frac{a}{x_t} + \frac{3b}{x_t^2}}$$

Q R could be larger or smaller than one, depending on the values of the annihilation cross section parameters a, b, m_{χ} and M_{5} .

Consider, as an example, the LSP as pure Bino:

$$\simeq 8\pi \alpha_1^2 \frac{1}{m_\chi^2} \frac{1}{(1+x_{\tilde{l}_R})^2},$$

 $m_{\chi} \sim m_{\tilde{l}_R} \sim 100 \text{ GeV}$, one finds $b \simeq \mathcal{O}(10^{-8}) \text{ GeV}^{-2}$, which in the standard cosmology scenario leads to $\Omega_{\chi} h^2 \ge 0.1$.

□ The enhancement/suppression factor R as a function of M_5 (GeV) for m_{χ} = 100 (solid curve), 200 (dashed curve) and 500 GeV (dotted curve).

\Box For M₅ < 10⁶ the brane cosmology effect is quite large and R >>1

□ The transition process from non-conventional cosmology to convention cosmology should be above the nucleosynthesis era (i.e., $T_t > 1 \text{ MeV}$). Thus $M_5 > 1.2 \times 10^4$.

□ For $M_5 > 1.2 \times 10^6$, the ratio R becomes less than on and small suppression for $(\Omega_{\chi} h^2)_s$ can be obtained.

□ This brane enhancement or suppression for the dark matter relic density could be favored or disfavored based on the value of the relic abundance in the standard scenario.

 \Box If $(\Omega_{\chi} h^2)_s$ is already larger than the observational limit, as in the case of bino-like particle, then a suppression effect would be favored and hence M5 is constrained to be larger than 5×10^6 .

□ For wino- or Higgsino-like particle where the standard computation leads to very small relic density, the enhancement effect will be favored and the constraint on M5 can be relaxed a bit .

□ In general, it is remarkable that in this scenario the dark matter relic density imposes stringent constraint on the fundamental scale M₅.

□ DM relic density in brane cosmology with low reheating temperature has been also studied.

□ In case of low reheating with non-equilibrium production and freeze out within brane cosmology:

$$Y_{\infty b} \simeq 0.02095 \times 10^{-6} \sqrt{\frac{\pi}{45}} g_{\chi}^2 g_*^{-3/2} M_{pl} m_{\chi} (9.3 \ a + 3.7 \ b).$$

□ In case the WIMP has large annihilation cross section and reaches the chemical equilibrium before reheating (m_{χ} =100, M_{5} =10⁶):

 $\Omega_{\chi} h^2 \sim 1.1 \times 10^{-7} (95.2 \ a - 4.12 \ b)^{-1}$.

□ Now, with large annihilation cross section $O(10^{-6} - 10^{-8})$, we can have $\Omega_{\nu}h^2 \sim 0.1$

Conclusions

□ we have analyzed the relic abundance of cold dark matter in brane cosmology.

□ We investigated the brane comsology effect in two different scenarios, namely when the reheating temperature is higher or lower than the freeze-out temperature.

□ We showed that with high reheating temperature, the relic density is enhanced with many order of magnitude for $M_5 < 10^6$.

□ This imposes one of the strongest constraints on the scale of large extra dimensions.

□ In case of low reheating temperature, we considered the possibility that WIMPs are in chemical equilibrium or non-equilibrium, which depends on the value of their annihilation cross section.

□ We showed if WIMPs are in chemical non-equilibrium, then their relic density is very small and they can not account for the observational limits.

□ While in case WIMPs reach chemical equilibrium before reheating, we showed that the relic density is enhanced by two order of magnitudes than the standard thermal scenario result.

□ This enhancement can be considered as an interesting possibility for accommodating dark matter with large cross section, which is favored by the detection rate experiments.

