Low scale direct gauge mediation

Yuri Shirman

with C. Csaki and J. Terning

Warsaw, 2/15/2007

Introduction

Metastable SUSY breaking

The Model

Conclusions

SUSY breaking and gauge mediation

TeV scale SUSY is provides an attractive solution of the hierarchy problems. Specific models and mechanisms need to address several crucial issues

- ▶ Origin of the hierarchy, *i.e.* $M_{SUSY} \ll M_{PI}$ (DSB + GMSB)
- SUSY breaking mechanism (GMSB)
- Absence of new FCNC (GMSB)
- Origin of μ term
- Little hierarchy problem

DSB and the gauge hierarchy

If SUSY unbroken at tree level

- Unbroken to all orders in perturbation theory
- Can be broken by non-perturbative effects
- ► SUSY breaking condensate $\Lambda = M_{Pl} \exp(-8\pi^2 b/g^2) \ll M_{Pl}$
- Dynamical SUSY breaking can naturally explain origin of the hierarchy

But:

- DSB models are hard to find
- Strict conditions:
 - Non-zero Witten index
 - Need chiral models (some exceptions: ITIY models)
 - Need U(1)_R symmetry or non-generic potential
- Many potentially interesting DSB models are non-calculable
- Calculable models typically have several scales and introduce scale hierarchies.

 $100 {\rm TeV} \ll M_{\rm SUSY} \ll M_{\rm PI}$

GMSB models

DSB is parameterized by spurion $S = \langle S \rangle + \bar{\Theta}^2 F$ Vector-like 4th generation interacts with the spurion and learns about SUSY breaking at tree level.

$$W = SQ\bar{Q}$$

Messenger fermion mass < S >Messenger scalar masses $< S >^2 \pm F$ For $F \ll 10^{11} GeV$, Planck suppressed interactions are negligible and SM fields learn about SUSY breaking only through gauge interactions with massengers. Superpartner masses

$$m_{\lambda_i} \sim \frac{\alpha_i}{4\pi} \frac{F}{M} \qquad m^2 \sim \sum_i \left(\frac{\alpha_i}{4\pi}\right)^2 \frac{F^2}{M^2}$$

Summary of GMSB

Advantages

- Automatic suppression of FCNC
- Do not need to invoke quantum gravity effects
- Low scale of SUSY breaking and messenger masses
- SUSY breaking sector can be potentially observable
 Difficulties
 - Complicated multi-sector models
 - Low SUSY breaking scale hard to achieve
 - µ-problem is more serious than in SUGRA
 - Little hierarchy problem

Goal: Calculable model of very direct gauge mediation with low SUSY breaking scale, $F\sim$ 100 TeV

ISS models

Generically coupling between DSB sector and messengers

 $W = SQ\bar{Q}$

restores SUSY

- Some direct mediation models give up global SUSY breaking
 - allow runaway direction
 - calculable local minimum at large fields in orthogonal direction
- Acceptable if tunneling rate is small enough

Intriligator-Seiberg-Shih proposal:

- Give up on requirement of global SUSY breaking minimum
- Local SUSY breaking minima are generic
- Calculable SUSY breaking minima without scale hierarchies are generic

ISS models

Generically coupling between DSB sector and messengers

 $W = SQ\bar{Q}$

restores SUSY

- Some direct mediation models give up global SUSY breaking
 - allow runaway direction
 - calculable local minimum at large fields in orthogonal direction
- Acceptable if tunneling rate is small enough

Intriligator-Seiberg-Shih proposal:

- Give up on requirement of global SUSY breaking minimum
- Local SUSY breaking minima are generic
- Calculable SUSY breaking minima without scale hierarchies are generic

ISS models

Generically coupling between DSB sector and messengers

 $W = SQ\bar{Q}$

restores SUSY

- Some direct mediation models give up global SUSY breaking
 - allow runaway direction
 - calculable local minimum at large fields in orthogonal direction
- Acceptable if tunneling rate is small enough

Intriligator-Seiberg-Shih proposal:

- Give up on requirement of global SUSY breaking minimum
- Local SUSY breaking minima are generic
- Calculable SUSY breaking minima without scale hierarchies are generic

Strategy to obtain calculable models:

- Use exact results in SUSY QCD: duality between different SUSY QCD theories with the same global symmetries
- IR free theory can be dual to asymptotically free one
- Start with O'Rafeartaigh model calculable but not asymptotically free
- Find UV description of the O'Rafeartaigh model
 - SUSY restored by non-perturbative effects at large field values
- Verify that tunneling rate is small

O'Rafeartaigh model with $SU(N) \times SU(F)$ global symmetry

$W = \widetilde{M}_{ij} \widetilde{\phi}^{ia} \widetilde{\phi}^j_a + h f^2 T r \widetilde{M}$

F-term conditions for *M*:

 $hf^2\delta_{ij} + \tilde{\phi}^a_i \tilde{\phi}_{aj} = 0$

 $(\tilde{\phi}\bar{\phi})_{ij}$ matrix has maximal rank min(N, F). SUSY is broken for N < F. O'Rafeartaigh model with $SU(N) \times SU(F)$ global symmetry

$$W = \widetilde{M}_{ij} \widetilde{\phi}^{ia} \widetilde{\phi}^j_a + h f^2 T r \widetilde{M}$$

F-term conditions for M:

$$hf^2\delta_{ij} + \tilde{\phi}^a_i \tilde{\phi}_{aj} = 0$$

 $(\tilde{\phi}\bar{\phi})_{ij}$ matrix has maximal rank min(N, F). SUSY is broken for N < F. O'Rafeartaigh model with $SU(N) \times SU(F)$ global symmetry

$$W = \widetilde{M}_{ij} \widetilde{\phi}^{ia} \widetilde{\phi}^j_a + h f^2 T r \widetilde{M}$$

F-term conditions for \overline{M} :

$$hf^2\delta_{ij} + \tilde{\phi}^a_i \tilde{\phi}_{aj} = 0$$

 $(\tilde{\phi}\bar{\phi})_{ij}$ matrix has maximal rank min(N, F). SUSY is broken for N < F. Features of the model

- O'Rafeartaigh model requires explicit mass scales etc.
- ► Massless fields at the minimum: Goldstones and pseudo-flat directions. E.g. TrM.
- Massless fields stabilized near the origin due to CW potential

$$V_{eff}^{(1)} \sim \frac{\log 4 - 1}{8\pi^2} (F - N) |Tr\widetilde{M}|^2 + \dots$$

- Accidental R-symmetry at the minimum of the potential
- Symmetry broken to $SU(N) \times SU(F-N) \times U(1)_R$
- ► Weakly gauging SU(N) preserves SUSY breaking

 Tree level superpotential corresponds to magnetic description of SU(N + F) SUSY QCD with F flavors and masses

$$hf^2 = m\Lambda_e$$

 $\phi \& \overline{\phi}$ — dual quarks, \overline{M} — mesons of electric description

- ► For F > 3N, magnetic description is weakly coupled in IR. Preceding analysis of metastable vacuum remains reliable.
- Global SUSY preserving vacuum exists
 - ► For large M, low energy theory is pure SYM with the superpotential

$$W = N(\Lambda_m^{-(F-3N)} \det \widetilde{M})^{1/N}$$

- ► For N = 1 the electric dual is an s-confining SQCD
- Dual quarks ϕ , $\overline{\phi}$ are baryons of electric theory
- Non-perturbative superpotential

$$W = rac{\widetilde{\phi}\widetilde{M}\widetilde{\phi} - \det\widetilde{M}}{\Lambda^{2N-3}}$$

restores supersymmetry

Aside:

For N = 0 theory (quantum modified moduli space in electric description) ISS conjectured existence of local SUSY breaking minimum. While some evidence for such a minimum exists, dynamics is non-calculable.

- ► For N = 1 the electric dual is an s-confining SQCD
- Dual quarks ϕ , $\overline{\phi}$ are baryons of electric theory
- Non-perturbative superpotential

$$W = rac{\widetilde{\phi}\widetilde{M}\widetilde{\phi} - \det\widetilde{M}}{\Lambda^{2N-3}}$$

restores supersymmetry

Aside:

For N = 0 theory (quantum modified moduli space in electric description) ISS conjectured existence of local SUSY breaking minimum. While some evidence for such a minimum exists, dynamics is non-calculable.

The Model

Embed SM into unbroken subgroup of the flavor symmetry of DSB sector. Need $F \ge 6$. Electric theory: $SU(5) \times SU(6)_F$, $SU(5)_{SM} \subset SU(6)_F$. Magnetic theory

Under $SU(5)_{SM}$:

$$\widetilde{M} = \begin{pmatrix} M_i^j & N^j \\ \overline{N}_i & X \end{pmatrix}, \quad \widetilde{\phi} = (\phi, \psi), \quad \widetilde{\phi} = (\overline{\phi}, \overline{\psi}) \\ M = \mathbf{Ad} + \mathbf{1}, \quad \phi = \Box, \quad \overline{\phi} = \overline{\Box}, \quad N = \Box, \quad \overline{N} = \overline{\Box}, \\ X = \mathbf{1}, \quad \psi = \mathbf{1}, \quad \overline{\psi} = \mathbf{1}.$$

 $W = \bar{\phi}M\phi + \bar{\psi}X\psi + \bar{\phi}N\psi + \bar{\psi}\bar{N}\phi - hf^2\left(\text{Tr}\tilde{M} + X\right)$. At the minimum: $F_{\text{Tr}M} \neq \sqrt{5}hf^2$, $\langle\psi\rangle \neq 0$

Both M and $\overline{\phi}$, ϕ (with N, \overline{N}) are potential messengers Messenger spectrum:

- ψ , N fermions have mass f
- ▶ ψ , N scalars have masses squareds 0 and f^2 ($F_{TrM} = 0$)
- ▶ Scalars and fermions in *M* massless at tree level
- ▶ *M* scalars obtain mass at one loop from CW potential
- M fermions remain massless as long as R symmetry unbroken at the minimum

 $W = \bar{\phi}M\phi + \bar{\psi}X\psi + \bar{\phi}N\psi + \bar{\psi}\bar{N}\phi - hf^2\left(\mathrm{Tr}\tilde{M} + X\right) \;.$

At the minimum: $F_{\text{Tr}M} \neq \sqrt{5}hf^2$, $\langle \psi \rangle \neq 0$

Both M and $\overline{\phi}$, ϕ (with N, \overline{N}) are potential messengers Messenger spectrum:

- ψ , *N* fermions have mass *f*
- ▶ ψ , N scalars have masses squareds 0 and f^2 ($F_{TrM} = 0$)
- Scalars and fermions in M massless at tree level
- ▶ *M* scalars obtain mass at one loop from CW potential
- M fermions remain massless as long as R symmetry unbroken at the minimum

 $W = \bar{\phi}M\phi + \bar{\psi}X\psi + \bar{\phi}N\psi + \bar{\psi}\bar{N}\phi - hf^2\left(\mathrm{Tr}\tilde{M} + X\right) \;.$

At the minimum: $F_{\text{Tr}M} \neq \sqrt{5}hf^2$, $\langle \psi \rangle \neq 0$

Both M and $\overline{\phi}$, ϕ (with N, \overline{N}) are potential messengers Messenger spectrum:

- ψ , N fermions have mass f
- ▶ ψ , N scalars have masses squareds 0 and f^2 ($F_{TrM} = 0$)
- Scalars and fermions in M massless at tree level
- M scalars obtain mass at one loop from CW potential
- M fermions remain massless as long as R symmetry unbroken at the minimum

 $W = \bar{\phi}M\phi + \bar{\psi}X\psi + \bar{\phi}N\psi + \bar{\psi}\bar{N}\phi - hf^2\left(\mathrm{Tr}\tilde{M} + X\right) \;.$

At the minimum: $F_{\text{Tr}M} \neq \sqrt{5}hf^2$, $\langle \psi \rangle \neq 0$

Both M and $\overline{\phi}$, ϕ (with N, \overline{N}) are potential messengers Messenger spectrum:

- ψ , N fermions have mass f
- ▶ ψ , N scalars have masses squareds 0 and f^2 ($F_{TrM} = 0$)
- Scalars and fermions in M massless at tree level
- M scalars obtain mass at one loop from CW potential
- M fermions remain massless as long as R symmetry unbroken at the minimum

From singlet dynamics

$$W_{2}=m'(Sar{Z}+Zar{S})+(d{\sf Tr}M+m)Sar{S}$$

- $S, \ \bar{S} \ {\rm and} \ Z, \ \bar{Z} \ {\rm at}$ the origin due to mass term
- Tr $MS\bar{S}$ coupling generates CW potential for S, \bar{S}

$$\frac{1}{64\pi^2} STr \mathcal{M}^4 \log \frac{\mathcal{M}^2}{\Lambda^2}$$

$$For small d: \langle M \rangle \sim dm$$

$$\frac{1}{-4} -3 -2 -1$$

$$Tr M$$

From gauge dynamics (like Dine, Mason)

Fermion masses

Fermion messenger matrix

$$m_f = \left(\begin{array}{cc} & <\psi>\\ <\psi> & 0 \end{array} \right)$$

Diagram for gaugino and *M*-fermion masses

- ► Leading order gaugino mass $m_{\lambda} \sim \text{Tr}(m_f^{-1}\mathcal{F}) = 0$
- Gaugino masses starts at order $\mathcal{O}(F^3/m_f^5)$
- Scalar masses $\mathcal{O}(F^2/m_f^2)$
- ▶ NEED $F \sim m_f^2$

Origin of scales

Electric theory determines natural values of couplings:

$$h \sim \frac{\Lambda}{\Lambda_{UV}}, \quad d \sim \frac{\Lambda}{\Lambda_{UV}}$$

Generate SUSY breaking scale dynamically through supercolor sector: SU(2) with 2 flavors, p, \bar{p} .

$$f^2(\operatorname{Tr} M + X) \rightarrow \frac{\det(p\bar{p})}{\Lambda_{UV}^{\prime 2}}(TrM + X) \rightarrow \frac{1}{\Lambda_{UV}^4}\det(p\bar{p})(q_e\bar{q}_e)$$

Force det $(p\bar{p}) = \Lambda_{sc}^4$

$$hf^2 = h\frac{\Lambda_{sc}^4}{\Lambda_{UV}^2} = \frac{\Lambda_{sc}^4\Lambda}{\Lambda_{UV}^3}$$

Need $m < \Lambda$ and $hf^2 \sim 100 \text{TeV}$ Example:

$$\Lambda \sim \Lambda_{sc} \sim 10^{11} - 10^{12}, \quad m \sim 0.1\Lambda, \quad \Lambda_{UV} \sim 10^{16}$$

While all scales large, SUSY breaking scale f can be small with mass splittings in messenger multiplet of order 1.

Sparticle spectrum

- ► Leading contribution to spartner masses comes from φ, φ̄ messengers
- ➤ Splittings in the supermultiplet are large; mixing with N, N̄ modifies the usual result; calculation is needed.
- Component fields in *M* obtain masses at one loop and from gauge mediation. Contributions to spartner masses subleading.
- Additional fermion scalars at the scale of SM superpartners

Sparticle spectrum

Higgs sector

$$W_{\mu} = \beta \frac{p^2 \bar{p}^2}{\Lambda_{UV}^3} H_u H_d , \quad \mu \sim \beta f$$

After confinement of supercolor

$$\mu \sim \beta f \left(\frac{\Lambda_{sc}}{\Lambda_{\rm UV}}\right)^2 \sim \beta h^{1/2} f \frac{\Lambda_{sc}^2}{\Lambda_{\rm UV}^{3/2} \Lambda^{1/2}}$$

No *B*-term at tree level. Small *B*-term is generated at two loop order

$$B_{\mu} \sim rac{3lpha_2}{2\pi} M_2 \mu \ln rac{hf^2}{M_2 \mu} \sim eta (100 {
m TeV}) \left(rac{\Lambda_{sc}}{\Lambda_{
m UV}}
ight)^{3/2}$$

Large tan $\beta \sim 10-50$

Recent work on ISS models

- Kitano, Ooguri, Ookuchi
 - Close to us in spirit: very direct gauge mediation
 - Different mechanism for generation of fermion masses
 - Possibility to avoid Landau pole
 - Low SUSY breaking scale more difficult to achieve
- Dine, Feng, Silverstein and Dine, Mason
 - Tools to construct natural gauge mediation models in metastable vacua
 - Most general superpotential, all scales dynamical
 - Phenomenologically: more conventional GMSB
- Murayama, Nomura (twice)
 - Use ISS for DSB, but messengers not part of DSB sector
- Aharony, Seiberg
 - ISS type model in DSB sector and dynamics like Dine, Mason to break R-symmetry, generate gaugino masses.

Conclusions

- Combination of DSB and GM is very attractive
 - Explains $M_{SUSY} \ll M_{PI}$
 - Suppresses FCNC
 - Possibility of observable SUSY breaking sector
- Metastable DSB (ISS) opens new possiblilities
 - Calculable low scale direct gauge mediation
 - Messengers directly participate in DSB dynamics ("no messenger models")
 - Messengers composites of DSB
 - Many new light particles, potential for interesting signatures
 - ► Improved situation with µ-term, further improvements possible
- Many other ISS inspired models proposed recently
- Further work on spartcile spectrum and phenomenological signatures/implications in progress