Effective action of a five-dimensional domain wall

Katarzyna Zuleta University of Ioannina

work in collaboration with Y. Burnier (Univ. Bielefeld) arXiv:0\$12.2227 [hep-th]

5th Workshop on Particle Physics and Cosmology, Warsaw, 4-7 February 2009

 Idea: Our universe is a "brane": a (3+1)-dimensional defect in a higher-dimensional field theory:

Thin branes - approximations of finite-width defects

SM particles: low-energy modes trapped on the defect => extra dimensions only visible in the very high energy experiments; 4D action - low energy effective action

Goldstone bosons of broken isometries of extra space

B	ra	n	\mathbf{O}	15

Goldstone bosons of broken isometries of extra space **Exemple:** 5D Minkowski space-time, coordinates X^M

Branons

Goldstone bosons of broken isometries of extra space **Exemple:** 5D Minkowski space-time, coordinates X^M

• brane with coords x^{μ} , $\mu = 0, 1, 2, 3$ 5D Poincaré broken to 4D

Branons

Goldstone bosons of broken isometries of extra space **Exemple:** 5D Minkowski space-time, coordinates X^M

 $\begin{cases} \times^{\mu}(x) = x^{\mu} \\ \times^{5}(x) = Y(x) \end{cases}$

• brane with coords x^{μ} , $\mu = 0, 1, 2, 3$ 5D Poincaré broken to 4D

• induced metric:
$$g_{\mu\nu} = \eta_{\mu\nu} - \partial_{\mu} Y \partial_{\nu} Y$$

Branons

Goldstone bosons of broken isometries of extra space **Exemple:** 5D Minkowski space-time, coordinates X^M

• brane with coords x^{μ} , $\mu = 0, 1, 2, 3$ 5D Poincaré broken to 4D

• induced metric:
$$g_{\mu\nu} = \eta_{\mu\nu} - \partial_{\mu} Y \partial_{\nu} Y$$

Nambu-Goto action (
$$\tau$$
 tension, branon $\widetilde{Y}(x) = \sqrt{\tau}Y(x)$)
 $S_{\text{brane}} = -\int d^4x \sqrt{g} \tau$
 $= \int d^4x \left\{ -\tau + \frac{1}{2} \partial_\mu \widetilde{Y} \partial^\mu \widetilde{Y} + \frac{1}{s_\tau} (\partial_\mu \widetilde{Y} \partial^\mu \widetilde{Y})^2 + \dots \right\}$

 $X^{\mu}(x) = x^{\mu}$ $X^{5}(x) = Y(x)$

Branons	J. A. R. Cembranos, A. Dobado and A. L. Maroto, ``Brane-world dark matter'', Phys. Rev. Lett. 90 (2003) 241301.
 interact weakly become massive when the symmetry is not exact (warping) 	

J. A. R. Cembranos, A. Dobado and A. L. Maroto, "Brane-world dark matter", Branons Phys. Rev. Lett. 90 (2003) 241301. • interact weakly WIMP • become massive when the => perfect DM candidate! symmetry is not exact (warping)

J. A. R. Cembranos, A. Dobado and A. L. Maroto, "Brane-world dark matter". Branons Phys. Rev. Lett. 90 (2003) 241301. • interact weakly WIMP become massive when the => perfect DM candidate! symmetry is not exact (warping) Branon ~ zero mode of the 5D kink M.Shaposhnikov, P.Tinyakov, K.Zuleta, `The Fate of the zero mode of the Our study: gravitational backreaction five-dimensional kink in the presence of gravity', JHEP 0509:062, 2005 of the brane important high probability to tunnel into the bulk wide resonance $\langle = \rangle$ DM ??? $\langle = \rangle$

J. A. R. Cembranos, A. Dobado and A. L. Maroto, "Brane-world dark matter", Branons Phys. Rev. Lett. 90 (2003) 241301. • interact weakly WIMP • become massive when the => perfect DM candidate! symmetry is not exact (warping) Branon ~ zero mode of the 5D kink M.Shaposhnikov, P.Tinyakov, K.Zuleta, `The Fate of the zero mode of the Our study: gravitational backreaction five-dimensional kink in the presence of gravity', JHEP 0509:062, 2005 of the brane important high probability to tunnel into the bulk wide resonance $\langle = \rangle$ DW 333 $\langle = \rangle$ => Look into the effective action of the brane perturbations!

Domain wall - two scalars model

Action:
$$S = \int d^4 x dy \left[\frac{1}{2} \eta^{MN} \partial_M \varPhi \partial_N \varPhi + \frac{1}{2} \eta^{MN} \partial_M \Xi \partial_N \Xi - V(\varPhi, \Xi) \right],$$

 $V(\varPhi, \Xi) = \frac{\lambda}{4} \left(\varPhi^2 - v^2 \right)^2 + \frac{\lambda}{4} \Xi^4 + \frac{1}{2} M^2 \Xi^2 + \frac{1}{2} \alpha (\varPhi^2 - v^2) \Xi^2$

Idea: Set up a brane as a domain wall. Compute the 4d low energy effective action.

Domain wall – two scalars model

Action:
$$S = \int d^4 x dy \left[\frac{1}{2} \eta^{MN} \partial_M \varPhi \partial_N \varPhi + \frac{1}{2} \eta^{MN} \partial_M \Xi \partial_N \Xi - V(\varPhi, \Xi) \right],$$

 $V(\varPhi, \Xi) = \frac{\lambda}{4} \left(\varPhi^2 - v^2 \right)^2 + \frac{\lambda}{4} \Xi^4 + \frac{1}{2} M^2 \Xi^2 + \frac{1}{2} \alpha (\varPhi^2 - v^2) \Xi^2$

Idea: Set up a brane as a domain wall. Compute the 4d low energy effective action.

If $M^2 < \alpha v^2$ and $\lambda \tilde{\lambda} v^4 > (\alpha v^2 - M^2)^2$, the system has a degenerate GS ($\Phi_{GS} = \pm v, \Xi_{GS} = 0$)

=> domain wall interpolating between the two vacua; kink configuration ($\Phi = v \tanh(ay), \Xi = 0$), $a^2 = \lambda v^2/2$, always solves EOM

Perturbations around $(\Phi = v \tanh(ar), \Xi = 0)$

Look at the perturbations around the background (using 4D Poincaré invariance):

$$\begin{split} \varPhi(\mathbf{x},\mathbf{y}) &= \varPhi_{c}(\mathbf{y}) + \varphi(\mathbf{x}^{\mu},\mathbf{y}) = \varPhi_{c}(\mathbf{y}) + \sum_{n} f_{n}(\mathbf{y})u_{n}(\mathbf{x}) \\ &= \xi(\mathbf{x}^{\mu},\mathbf{y}) = \xi(\mathbf{x}^{\mu},\mathbf{y}) = \sum_{n} h_{n}(\mathbf{y})v_{n}(\mathbf{x}) \end{split}$$

Perturbations around $(\Phi = v \tanh(ar), \Xi = 0)$

Look at the perturbations around the background (using 4D Poincaré invariance):

$$\begin{split} \varPhi(\mathbf{x},\mathbf{y}) &= \varPhi_{c}(\mathbf{y}) + \varphi(\mathbf{x}^{\mu},\mathbf{y}) = \varPhi_{c}(\mathbf{y}) + \sum_{n} f_{n}(\mathbf{y})u_{n}(\mathbf{x}) \\ &= (\mathbf{x},\mathbf{y}) = \xi(\mathbf{x}^{\mu},\mathbf{y}) = \sum_{n} f_{n} h_{n}(\mathbf{y})v_{n}(\mathbf{x}) \end{split}$$

• $u_n(x)$, $v_n(x)$ - scalar fields from the 4D point of view

Perturbations around $(\Phi = v \tanh(ar), \Xi = 0)$

Look at the perturbations around the background (using 4D Poincaré invariance):

$$\begin{split} \varPhi(\mathbf{x},\mathbf{y}) &= \varPhi_{c}(\mathbf{y}) + \varphi(\mathbf{x}^{\mu},\mathbf{y}) = \varPhi_{c}(\mathbf{y}) + \sum_{n} f_{n}(\mathbf{y})u_{n}(\mathbf{x}) \\ &= \xi(\mathbf{x}^{\mu},\mathbf{y}) = \xi(\mathbf{x}^{\mu},\mathbf{y}) = \sum_{n} f_{n} h_{n}(\mathbf{y})v_{n}(\mathbf{x}) \end{split}$$

- $u_n(x)$, $v_n(x)$ scalar fields from the 4D point of view
- $f_n(y)$, $h_n(y)$ wave functions; determine the localization of the modes on the brane:

$$\begin{cases} -\partial_y^2 f + \left(4a^2 - \frac{6a^2}{\cosh^2(ar)}\right) f = m^2 f \\ -\partial_y^2 h + \left(M^2 - \frac{\alpha v^2}{\cosh^2(ar)}\right) h = \widetilde{m}^2 h . \end{cases}$$

Lowest lying states: kink's zero mode: $\psi_0 = f_0(y)u_0(x) = N_0 \frac{va}{\cosh^2(ay)}u_0(x)$ massive mode of Ξ : $\psi_1 = h_1(y)v_1(x) = N_1 \frac{va}{\cosh^{\bullet}(ay)}v_1(x)$ $\bullet = \frac{1}{2}(-1 + \sqrt{1 + \delta \frac{x}{\lambda}})$

Lowest lying states:
kink's zero mode:
$$\psi_0 = f_0(y)u_0(x) = N_0 \frac{va}{\cosh^2(ay)}u_0(x)$$

massive mode of Ξ : $\psi_1 = h_1(y)v_1(x) = N_1 \frac{va}{\cosh^{\bullet}(ay)}v_1(x)$
• mass of $v_1(x)$ is $\widetilde{m}_1^2 = -\sigma^2 a^2 + M^2$
 \Rightarrow if we choose $M^2 = +\sigma^2 a^2 + \frac{\lambda v^2}{4} \varepsilon^2$, $|\varepsilon| \ll 1$
we get a light v_1 : $\widetilde{m}_1^2 = (\lambda v^2/4)\varepsilon^2$

Lowest lying states: kink's zero mode: $\psi_0 = f_0(y)u_0(x) = N_0 \frac{va}{\cosh^2(ay)}u_0(x)$ massive mode of Ξ : $\psi_1 = h_1(y)v_1(x) = N_1 \frac{va}{\cosh^2(ay)}v_1(x)$ • mass of $v_1(x)$ is $\widetilde{m}_1^2 = -\sigma^2 a^2 + M^2$ \Rightarrow if we choose $M^2 = +\sigma^2 a^2 + \frac{\lambda v^2}{4} \varepsilon^2$, $|\varepsilon| \ll 1$ we get a light v_1 : $\widetilde{m}_1^2 = (\lambda v^2/4)\varepsilon^2$

• rest of the spectrum:

for u_n 's: heavy mode with mass $3a^2$, continuum from $4a^2$ for v_n 's: continuum starts at $M^2 \approx \bullet a^2$, if other localized modes, then their masses $O(a^2)$

Lowest lying states: kink's zero mode: $\psi_0 = f_0(y)u_0(x) = N_0 \frac{va}{\cosh^2(ay)}u_0(x)$ massive mode of Ξ : $\psi_1 = h_1(y)v_1(x) = N_1 \frac{va}{\cosh^{\bullet}(ay)}v_1(x)$ • mass of $v_1(x)$ is $\widetilde{m}_1^2 = -\sigma^2 a^2 + M^2$ \Rightarrow if we choose $M^2 = +\sigma^2 a^2 + \frac{\lambda v^2}{4} \varepsilon^2$, $|\varepsilon| \ll 1$ we get a light v_1 : $\widetilde{m}_1^2 = (\lambda v^2/4)\varepsilon^2$

• rest of the spectrum:

for u_n 's: heavy mode with mass $3a^2$, continuum from $4a^2$ for v_n 's: continuum starts at $M^2 \approx \bullet a^2$, if other localized modes, then their masses $O(a^2)$

 $a \gg \widetilde{m}_1 \Rightarrow$ we can construct a sensible 4D low energy action

Collective coordinate

Collective coordinate

Presence of a zero mode => introduce a collective coordinate :

$$\begin{split} \varPhi &= \varPhi_{c}(y - Y(x)) + \int_{n \neq 0}^{n \neq 0} f_{n}(y - Y(x)) u_{n}(x) \\ &= \xi(x, y) = h_{1}(y)v_{1}(x) + \int_{n \neq 0}^{n \neq 0} h_{n}(y - Y(x)) v_{n}(x) \end{split}$$

=> only derivative interactions for Y, as expected for a Goldstone.

Also, Y(x) is the transverse coordinate of the brane implies direct connection with the geometric description and easy comparaison with NG action.

4D action:

$$S = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2} \partial^{\mu} \vee_{1} \partial_{\mu} \vee_{1} - \frac{1}{2} \widetilde{m}_{1}^{2} \vee_{1}^{2} - \frac{\lambda_{4}^{(0)}}{4} \vee_{1}^{4} + \lambda_{(2,2)}^{(0)} \vee_{1}^{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2} \sum_{\substack{n \neq 0}} \int \left[\partial^{\mu} u_{n} \partial_{\mu} u_{n} - m_{n}^{2} u_{n}^{2} \right] + \frac{1}{2} \sum_{\substack{n \neq 1}} \int \left[\partial^{\mu} v_{n} \partial_{\mu} v_{n} - \widetilde{m}_{n}^{2} \vee_{n}^{2} \right] + \mathcal{L}_{heavy}^{int} \right\}$$

where

$$\tau = \int dy \varPhi_c' = \frac{\$a^3}{3\lambda}, \qquad \lambda_4^{(0)} = \widetilde{\lambda} \int dy \, h_1^4 \sim \widetilde{\lambda} a, \qquad \lambda_{(2,2)}^{(0)} = \frac{1}{\tau} \int dy \, h_1'^2 \sim \frac{a^2}{\tau} = \frac{\lambda}{a}$$

$$\mathcal{L}_{heavy}^{\text{int}} = \int_{n\neq0}^{\infty} J_{n}^{(1)} u_{n} + \frac{1}{2} \int_{nm}^{\infty} J_{nm}^{(2)} u_{n} u_{m} + \int_{mm}^{\infty} K_{nm}^{\mu} u_{n} \partial_{\mu} u_{m} + \int_{mm}^{n\neq0} \int_{mm}^{\infty} J_{nm}^{(2)} v_{n} v_{m} + \int_{mm}^{n,m\neq0} \widetilde{K}_{nm}^{\mu} v_{n} \partial_{\mu} v_{m} + \int_{n\neq0}^{\infty} \int_{mm}^{\infty} \widetilde{J}_{nm}^{(2)} u_{n} v_{m} + \dots$$

Effective action? Easy - neglect all the terms involving the heavy modes (only corrs to couplings, suppressed by the heavy scale):

 $S = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} + \frac{1}{2} \partial^{\mu} \vee_{1} \partial_{\mu} \vee_{1} - \frac{1}{2} \widetilde{m}_{1}^{2} \vee_{1}^{2} - \frac{\lambda_{4}^{(0)}}{4} \vee_{1}^{4} + \lambda_{(2,2)}^{(0)} \vee_{1}^{2} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \right\}$

Effective action? Easy - neglect all the terms involving the heavy modes (only corrs to couplings, suppressed by the heavy scale):

$$S = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}_{1}^{2} v_{1}^{2} - \frac{\lambda_{4}^{(0)}}{4} v_{1}^{4} + \lambda_{(2,2)}^{(0)} v_{1}^{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right\}$$
Really?

Effective action? Easy - neglect all the terms involving the heavy modes (only corrs to couplings, suppressed by the heavy scale):

$$S = \int d^4 x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}_1^2 v_1^2 - \frac{\lambda_4^{(0)}}{4} v_1^4 + \lambda_{(2,2)}^{(0)} v_1^2 \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right\}$$
Really?

Wrong! The heavy modes contribute significantly because of the trilinear interactions LLH even when $m_n \rightarrow \infty$ and cannot be simply thrown away!

S. Ranjbar-Daemi,

A. Salvio, M. Shaposhnikov, 'On the decoupling of heavy modes in Kaluza-Klein theories' Nucl. Phys. B741:236-26**\$**,2006.

We have to be extra careful as we have an infinite tower of heavy modes and all of them will contribute...

Integrating out the heavy modes

We have to integrate out the heavy modes:

$$S_{H} = \int d^{4}x \left\{ \frac{1}{2} \partial^{\mu} H \partial_{\mu} H - \frac{1}{2} m_{H}^{2} H^{2} + J H \right\}$$

Effective action:

$$S_{eff} = -\frac{1}{2} \int d^{4}x d^{4}y J(x) \Delta_{H}(x-y) J(y) = \frac{1}{2M_{H}^{2}} \int d^{4}x J^{2}(x) + \dots$$

Integrating out the heavy modes

We have to integrate out the heavy modes:

$$S_{H} = \int d^{4}x \left\{ \frac{1}{2} \partial^{\mu} H \partial_{\mu} H - \frac{1}{2} m_{H}^{2} H^{2} + J H \right\}$$

Effective action:

$$S_{eff} = -\frac{1}{2} \int d^{4}x d^{4}y J(x) \Delta_{H}(x-y) J(y) = \frac{1}{2M_{H}^{2}} \int d^{4}x J^{2}(x) + \dots$$

In our case, more involved...

Importance of the heavy modes

Integrating out the heavy modes:

$$\begin{split} S_{eff} &= \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2\tau^{2}} \sum_{\substack{n\neq 0 \\ n\neq 0}} \frac{1}{m_{n}^{2}} \left(\int_{-\infty}^{\infty} d_{y} \varPhi_{c}' f_{n}' \right)^{2} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^{2} \right. \\ &+ \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} \\ &- \left[\frac{\widetilde{\lambda}}{4} \left(\int_{-\infty}^{\infty} d_{y} h_{1}^{4} \right) - \frac{1}{2\tau^{2}} \sum_{\substack{n\neq 0 \\ n\neq 0}} \frac{1}{m_{n}^{2}} \left(\int_{-\infty}^{\infty} d_{y} \varPhi_{c}' f_{n}' \right)^{2} \right] v_{1}^{4} \\ &+ \frac{2}{\tau} \sum_{\substack{r}{f}} \frac{1}{m_{n}^{2}} \left(\int_{-\infty}^{\infty} d_{y} h_{1} h_{n}' \right)^{2} \partial^{\mu} \widetilde{Y} \partial^{\mu} \widetilde{Y} \partial_{\mu} v_{1} \partial_{\nu} v_{1} \\ &+ \left[\frac{1}{2\tau} \int_{-\infty}^{\infty} d_{y} h_{1}'^{2} - \frac{\alpha}{\tau} \sum_{\substack{n\neq 0 \\ n\neq 0}} \frac{1}{m_{n}^{2}} \left(\int_{-\infty}^{\infty} d_{y} \varPhi_{c}' f_{n}' \right) \left(\int_{-\infty}^{\infty} d_{y} \varPhi_{c}' h_{1}^{2} f_{n} \right) \right] v_{1}^{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \end{split}$$

γ

Importance of the heavy modes

Integrating out the heavy modes:

$$\begin{split} S_{eff} &= \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2\tau^{2}} \sum_{\substack{n\neq 0 \\ n\neq 0}}^{r} \frac{1}{m_{n}^{2}} \left(\int_{-\infty}^{\infty} dy \, \varPhi_{c}' f_{n}' \right)^{2} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^{2} \right. \\ &+ \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} \\ &- \left[\frac{\widetilde{\lambda}}{4} \left(\int_{-\infty}^{\infty} dy \, h_{1}^{4} \right) - \frac{1}{2\tau^{2}} \sum_{j}^{r} \frac{1}{m_{n}^{2}} \left(\int_{-\infty}^{\infty} dy \, \varPhi_{c}' f_{n}' \right)^{2} \right] v_{1}^{4} \\ &+ \frac{2}{\tau} \sum_{j}^{r} \frac{1}{\widetilde{m}_{n}^{2}} \left(\int_{-\infty}^{\infty} dy \, h_{1} h_{n}' \right)^{2} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_{1} \partial_{\nu} v_{1} \\ &+ \left[\frac{1}{2\tau} \int_{-\infty}^{\infty} dy \, h_{1}'^{2} - \frac{\alpha}{\tau} \sum_{n\neq 0}^{r} \frac{1}{m_{n}^{2}} \left(\int_{-\infty}^{\infty} dy \, \varPhi_{c}' f_{n}' \right) \left(\int_{-\infty}^{\infty} dy \, \varPhi_{c}' h_{1}^{2} f_{n} \right) \right] v_{1}^{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y$$

= 0!

Connection with NG action

We expect our effective action:

$$S_{eff} = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{s_{\tau}} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^{2} + \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} \right. \\ \left. - \left(\frac{\widetilde{\lambda}}{4} - \frac{\lambda \bullet^{2}}{16} \right) \left(\int_{-\infty}^{\infty} dy h_{1}^{4} \right) v_{1}^{4} + \frac{1}{2\tau} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_{1} \partial_{\nu} v_{1} \right\}$$

to coincide with the Nambu-Goto action:

$$\begin{split} S_{\text{NG}} &= \int d^4 x \sqrt{-g} \left\{ -\tau + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right\} \\ &= \int d^4 x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{\$_{\mathcal{T}}} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^2 + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right. \\ &+ \frac{1}{2\tau} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_1 \partial_{\nu} v_1 - \frac{1}{4\tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial^{\nu} v_1 \partial_{\nu} v_1 + \frac{\widetilde{m}_1^2}{4\tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} v_1^2 + \dots \right\} \end{split}$$

Connection with NG action

We expect our effective action:

$$S_{eff} = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{s_{\tau}} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^{2} + \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} \right. \\ \left. - \left(\frac{\widetilde{\lambda}}{4} - \frac{\lambda \sigma^{2}}{16} \right) \left(\int_{-\infty}^{\infty} dy h_{1}^{4} \right) v_{1}^{4} + \frac{1}{2\tau} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_{1} \partial_{\nu} v_{1} \right\}$$

to coincide with the Nambu-Goto action:

$$\begin{split} S_{\text{NG}} &= \int d^{4} \times \sqrt{-g} \left\{ -\tau + \frac{1}{2} \partial^{\mu} \vee_{1} \partial_{\mu} \vee_{1} - \frac{1}{2} \widetilde{m}^{2} \vee_{1}^{2} - \frac{\lambda_{4}}{4} \vee_{1}^{4} \right\} \\ &= \int d^{4} \times \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} + \frac{1}{\$_{T}} \left(\partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \right)^{2} + \frac{1}{2} \partial^{\mu} \vee_{1} \partial_{\mu} \vee_{1} - \frac{1}{2} \widetilde{m}^{2} \vee_{1}^{2} - \frac{\lambda_{4}}{4} \vee_{1}^{4} \right. \\ &+ \frac{1}{2\tau} \partial^{\mu} \widetilde{\Upsilon} \partial^{\nu} \widetilde{\Upsilon} \partial_{\mu} \vee_{1} \partial_{\nu} \vee_{1} - \frac{1}{4\tau} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \partial^{\nu} \vee_{1} \partial_{\nu} \vee_{1} + \frac{\widetilde{m}_{1}^{2}}{4\tau} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \partial_{\mu}$$

The two actions are almost identical - but not exactly...

Connection with the NG action

What about
$$\frac{P^2}{m_n^2}$$
 corrections to our action? On-shell:

$$\begin{split} S_{eff} - S_{NG} &= \int d^4 x \left\{ -\frac{\pi^2 - 6}{4 \$ a^2 \tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} + \frac{1}{4 \tau} \left(2F(\bullet) + 1 \right) \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \left[\partial^{\nu} v_1 \partial_{\nu} v_1 - \widetilde{m}_1^2 v_1^2 \right] \right\} \end{split}$$
No closer to NG... Why?

Connection with the NG action

What about
$$\frac{P^2}{m_n^2}$$
 corrections to our action? On-shell:
 $S_{eff} - S_{NG} = \int d^4 x \left\{ -\frac{\pi^2 - 6}{4 \$ a^2 \tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} + \frac{1}{4 \tau} \left(2F(\bullet) + 1 \right) \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \left[\partial^{\nu} v_1 \partial_{\nu} v_1 - \widetilde{m}_1^2 v_1^2 \right] \right\}$
No closer to NG... Why?

Nambu-Goto action is only correct in the zero-thickness approximation! => curvature corrections

B. Carter, R. Gregory, "Curvature corrections to dynamics of domain walls", PRD51:5**8**39-5**8**46,1995

Connection with the NG action

What about
$$\frac{P^2}{m_n^2}$$
 corrections to our action? On-shell:
 $S_{eff} - S_{NG} = \int d^4 x \left\{ -\frac{\pi^2 - 6}{4 s a^2 \tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} + \frac{1}{4 \tau} \left(2F(\bullet) + 1 \right) \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \left[\partial^{\nu} \vee_1 \partial_{\nu} \vee_1 - \widetilde{m}_1^2 \vee_1^2 \right] \right\}$
No closer to NG... Why?

Nambu-Goto action is only correct in the zero-thickness approximation! => curvature corrections

B. Carter, R. Gregory, "Curvature corrections to dynamics of domain walls", PRD51:5**8**39-5**8**46,1995

Are branon interactions modified by curvature effects?

Geometric description

Yes! As for NG, the effects of branons can be rewritten in purely geometric terms:

$$\begin{split} S_{eff} &= \int d^4 x \sqrt{-g} \left\{ -\tau - \frac{(\pi^2 - 6)\tau}{24a^2} R + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right. \\ &\left. - \frac{1}{4} \left(1 + 2F(\bullet) \right) v_1^2 R \right\} , \\ \end{split}$$
where $R &= -\frac{1}{\tau} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y}$ is the Ricci scalar

Geometric description

Yes! As for NG, the effects of branons can be rewritten in purely geometric terms:

$$\begin{split} S_{eff} &= \int d^{4}x \sqrt{-g} \left\{ -\tau - \frac{(\pi^{2} - 6)\tau}{24a^{2}} R + \frac{1}{2} \partial^{\mu}v_{1} \partial_{\mu}v_{1} - \frac{1}{2} \widetilde{m}^{2}v_{1}^{2} - \frac{\lambda_{4}}{4}v_{1}^{4} \right. \\ &\left. - \frac{1}{4} \left(1 + 2F(\bullet) \right) v_{1}^{2}R \right\} , \\ \text{where } R &= -\frac{1}{\tau} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} \text{ is the Ricci scalar} \\ P \text{ Comment } 1: \int d^{4}x R \sim \int d^{4}x \left\{ \underbrace{\partial^{\alpha} \left(\partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} \right)}_{\text{total derivative}} - \underbrace{\partial^{\nu} \widetilde{Y} \partial_{\nu} \partial^{\alpha} \partial_{\alpha} \widetilde{Y}}_{\text{vanishes on shell}} \right\}, \\ \text{however non-negligible contributions to the interaction terms} \end{split}$$

Geometric description

Yes! As for NG, the effects of branons can be rewritten in purely geometric terms:

$$\begin{split} S_{eff} &= \int d^{4}x \sqrt{-g} \left\{ -\tau - \frac{(\pi^{2} - 6)\tau}{24a^{2}} R + \frac{1}{2} \partial^{\mu}v_{1} \partial_{\mu}v_{1} - \frac{1}{2} \widetilde{m}^{2}v_{1}^{2} - \frac{\lambda_{4}}{4}v_{1}^{4} \right. \\ &\left. - \frac{1}{4} \left(1 + 2F(\bullet) \right) v_{1}^{2}R \right\} , \\ \text{where } R &= -\frac{1}{\tau} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} \text{ is the Ricci scalar} \\ \text{Comment 1: } \int d^{4}x R \sim \int d^{4}x \left\{ \frac{\partial^{\alpha} \left(\partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} \right)}{\text{total derivative}} - \frac{\partial^{\nu} \widetilde{Y} \partial_{\nu} \partial^{\alpha} \partial_{\alpha} \widetilde{Y}}{\text{vanishes on shell}} \right\}, \\ \text{however non-negligible contributions to the interaction terms} \\ \text{Comment 2: Curvature, but no graviton! Only one d.o.f} \end{split}$$

The contribution of the heavy modes to obtain the correct effective action is crucial.

Conclusions and outlook

- The contribution of the heavy modes to obtain the correct effective action is crucial.
- There are corrections to the Nambu-Goto action which can be expressed through the Ricci scalar of the induced metric

Conclusions and outlook

- The contribution of the heavy modes to obtain the correct effective action is crucial.
- There are corrections to the Nambu-Goto action which can be expressed through the Ricci scalar of the induced metric
- These corrections are likely to be important to describe branon interactions correctly!

Conclusions and outlook

- The contribution of the heavy modes to obtain the correct effective action is crucial.
- There are corrections to the Nambu-Goto action which can be expressed through the Ricci scalar of the induced metric
- These corrections are likely to be important to describe branon interactions correctly!
- Including bulk metric perturbations? To be looked into soon. Expect scalar-tensor gravity.