CP Violating Observables in a Flavor Blind MSSM

Wolfgang Altmannshofer

Fifth Workshop on Particle Physics and Cosmology Warsaw February 4 - 7, 2009

Outline

based on:

Phys. Lett. B 669 (2008) 239

WA, Patricia Ball, Aoife Bharucha, Andrzej Buras, David Straub and Michael Wick JHEP 0901 (2009) 019

- 1 Introduction: Hints for New Sources of CP Violation
- 2 A Flavor Blind MSSM
- Phenomenology of CP Violation in the FBMSSM

Summary

Apart from the QCD θ term, the only source for CP violation in the SM is the phase in the CKM matrix.

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\varrho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \varrho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

CP violation from the CKM matrix can be visualized by Unitarity Triangles e.g.

$$V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0$$

CP Violation in the SM

Impressive confirmation of the CKM picture for CP violation

1 CP Asymmetry in $B \rightarrow \psi K_S$ and $\sin 2\beta$

► Tree level decay \rightarrow sensitivity to the phase of the B_d mixing amplitude without NP in the decay amplitude

• in SM:
$$\operatorname{Arg}(M_{12}^d) = \operatorname{Arg}(V_{td}^2) = 2\beta$$

$$\sin 2eta \stackrel{\text{SM}}{=} S_{\psi K_{\mathcal{S}}}^{\text{exp.}} = 0.671 \pm 0.024$$

1 CP Asymmetry in $B \rightarrow \psi K_S$ and $\sin 2\beta$

Tree level decay → sensitivity to the phase of the B_d mixing amplitude without NP in the decay amplitude

• in SM:
$$\operatorname{Arg}(M_{12}^d) = \operatorname{Arg}(V_{td}^2) = 2\beta$$

 $\sin 2\beta \stackrel{\rm SM}{=} S^{\rm exp.}_{\psi {\rm K_S}} = 0.671 \pm 0.024$

• In the SM also loop induced modes like $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$ give the same value

$$\mathbf{S}^{\mathbf{S}M}_{\phi\mathbf{K}_{\mathbf{S}}} = \mathbf{S}^{\mathbf{S}M}_{\eta'\mathbf{K}_{\mathbf{S}}} = \mathbf{S}^{\mathbf{S}M}_{\psi\mathbf{K}_{\mathbf{S}}} = \sin 2\beta$$

But experimentally one has

$$S_{\phi K_S}^{\text{exp.}} = 0.44 \pm 0.17$$
, $S_{\eta' K_S}^{\text{exp.}} = 0.59 \pm 0.07$
 \Rightarrow New Phases in decays?

- Tensions in the Unitarity Triangle Lunghi, Soni '08; Buras, Guadagnoli '08, '09
- Construct the UT using only $S_{\psi K_s}$ and $\Delta M_d / \Delta M_s$
- ▶ sin 2 β as determined from $B \rightarrow \psi K_S$ and R_t as determined from $\Delta M_d / \Delta M_s$ lead to a prediction for CP violation in the K system

$$\epsilon_{K}^{SM} = (1.78 \pm 0.25) \times 10^{-3} \quad \Leftrightarrow \quad \epsilon_{K}^{exp.} = (2.23 \pm 0.01) \times 10^{-3}$$

- 2 Tensions in the Unitarity Triangle Lunghi, Soni '08; Buras, Guadagnoli '08, '09
- Construct the UT using only $S_{\psi K_s}$ and $\Delta M_d / \Delta M_s$
- sin 2β as determined from $B \to \psi K_S$ and R_t as determined from $\Delta M_d / \Delta M_s$ lead to a prediction for CP violation in the K system

$$\epsilon_{K}^{\text{SM}} = (1.78 \pm 0.25) \times 10^{-3} \quad \Leftrightarrow \quad \epsilon_{K}^{\text{exp.}} = (2.23 \pm 0.01) \times 10^{-3}$$

$$\Rightarrow \text{ NP phase in } B_{d} \text{ mixing?}$$

$$\Rightarrow \text{ Additional CP violation in } K \text{ mixing?}$$
Wolfgang Altmannshofer (TUM) CP Violation in a Flavor Blind MSSM Warsaw, February 5, 2009

CP Violation in a Flavor Blind MSSM

UTfit collaboration

CKM fitter collaboration

Wolfgang Altmannshofer (TUM)

(3) CP Asymmetry in $B_s \rightarrow \psi \phi$ and $\sin 2\beta_s$

- Tree level decay \rightarrow sensitivity to the phase of the *B_s* mixing amplitude without NP in the decay amplitude
- in SM: Arg $(M_{12}^s) = \text{Arg}(V_{ts}^2) = 2\beta_s$ with $\beta_s \simeq 1^\circ$
- beyond the SM one has

$$S_{\psi\phi} = \sin 2(\beta_s + \Phi_{B_s}^{NP})$$
,

► recent analyses seem to hint towards large NP effects $\Phi_{B_s}^{NP} = (19^\circ \pm 8^\circ) \cup (69^\circ \pm 7^\circ)$

\Rightarrow Large B_s mixing phase?

Going Beyond the Standard Model

Baek, Ko '99

Bartl, Gajdosik, Lunghi, Masiero, Porod, Stremnitzer, Vives '01 (Flavor Blind MSSM)

Ellis, Lee, Pilaftsis '07 (MCPMFVMSSM)

WA, Buras, Paradisi '08

A Flavor Blind MSSM with CP Violating Phases

In a flavor blind MSSM (FBMSSM) there are no additional flavor structures apart from the CKM matrix. In particular, we assume universal squark masses and diagonal trilinear couplings.

 \Rightarrow no gluino contributions to FCNCs

Parameters of our setup

- ► Higgs sector: $\tan \beta$, $M_{H^{\pm}}$
- ► Higgsino mass: µ
- ► Gaugino masses: *M*₁, *M*₂, *M*₃
- ▶ squark masses: m_Q^2 , m_U^2 , m_D^2
- ▶ trilinear couplings: A_d, A_s, A_b, A_u, A_c, A_t

The Higgsino and Gaugino masses as well as the trilinear couplings can in general be complex.

Observables only depend on particular combinations of complex parameters.

A Flavor Blind MSSM with CP Violating Phases

Within this setup large NP effects arise dominantly through the magnetic and chromomagnetic dipole operators

$$\mathcal{O}_7 = rac{\mathrm{e}}{\mathrm{16}\pi^2} m_b ar{\mathrm{s}}_L \sigma^{\mu
u} F_{\mu
u} b_R \ , \ \ \mathcal{O}_8 = rac{g_{\mathrm{s}}}{\mathrm{16}\pi^2} m_b ar{\mathrm{s}}_L \sigma^{\mu
u} G_{\mu
u} b_R$$

The corresponding Wilson coefficients are mainly sensitive to one complex parameter combination

$$\mathcal{C}_{7,8} \propto \mu A_t$$

 \rightarrow Interesting correlated effects in CP violating observables

WA, Buras, Paradisi '08

$$\mathcal{BR}[B o X_s \gamma]^{ ext{exp.}} = (3.52 \pm 0.25) imes 10^{-4}$$
 HFAG '08 $\mathcal{BR}[B o X_s \gamma]^{ ext{SM}} = (3.15 \pm 0.23) imes 10^{-4}$ Misiak et al. '06

- $b \rightarrow s\gamma$ amplitude is helicity suppressed
- typically large NP effects, even in a FBMSSM with low $\tan \beta$

$$\mathcal{BR}[B o X_{
m s}\gamma]^{
m exp.}=(3.52\pm0.25) imes10^{-4}$$
 HFAG '08 $\mathcal{BR}[B o X_{
m s}\gamma]^{
m SM}=(3.15\pm0.23) imes10^{-4}$ Misiak et al. '06

- $b \rightarrow s\gamma$ amplitude is helicity suppressed
- typically large NP effects, even in a FBMSSM with low $\tan \beta$

$$\mathcal{BR}[B o X_{
m s}\gamma]^{
m exp.}=(3.52\pm0.25) imes10^{-4}$$
 HFAG '08 $\mathcal{BR}[B o X_{
m s}\gamma]^{
m SM}=(3.15\pm0.23) imes10^{-4}$ Misiak et al. '06

- $b \rightarrow s\gamma$ amplitude is helicity suppressed
- typically large NP effects, even in a FBMSSM with low $\tan \beta$

 $\mathcal{BR}[B \to X_{\text{S}}\gamma] \propto |\mathcal{C}_7^{\text{SM}}(m_b) + \mathcal{C}_7^{\text{NP}}(m_b)|^2 \simeq |\mathcal{C}_7^{\text{SM}}(m_b)|^2 + 2\text{Re}(\mathcal{C}_7^{\text{SM}}(m_b)\mathcal{C}_7^{\text{NP}}(m_b))$

\rightarrow Constraint on Re(μA_t)

Wolfgang Altmannshofer (TUM)

CP Violation in a Flavor Blind MSSM

► In the MSSM, EDMs can be induced already at the 1loop level → typically tight constraints on CP violating phases

- ► In the MSSM, EDMs can be induced already at the 1loop level → typically tight constraints on CP violating phases
- ► Example: Gluino contribution to the up-quark EDM

$$d_{u} \simeq rac{eg_{s}^{2}}{16\pi^{2}}m_{u}rac{\mathrm{Im}(M_{ ilde{g}}A_{u}^{*})}{ar{m}_{ar{u}}^{4}}F\left(rac{|M_{ ilde{g}}|^{2}}{ar{m}_{ar{u}}^{2}}
ight)$$

- ► In the MSSM, EDMs can be induced already at the 1loop level → typically tight constraints on CP violating phases
- ► Example: Gluino contribution to the up-quark EDM

Constraints can be avoided by e.g.

- ▶ hierarchical trilinear couplings $A_{u,c} \ll A_t$, $A_{d,s} \ll A_b$
- ▶ heavy 1st and 2nd generation of squarks

But: sizeable effects in flavor observables still possible, as 3rd generation squarks enter

Chang, Keung, Pilaftsis '98

2-loop Barr-Zee type diagrams generating both lepton and quark EDMs

- sensitive to 3rd generation of squarks
- decouple with $1/\max(M_{A^0}^2, m_{\tilde{t}}^2)$

 $d_f \propto \text{Im}(\mu A_t)$

Chang, Keung, Pilaftsis '98

2-loop Barr-Zee type diagrams generating both lepton and quark EDMs

- sensitive to 3rd generation of squarks
- decouple with $1/\max(M_{A^0}^2, m_{\tilde{t}}^2)$

 $d_f \propto \text{Im}(\mu A_t)$

 \rightarrow Constraint on Im(μA_t)

CP Asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$

Time dependent CP Asymmetries in decays of neutral B mesons to final CP Eigenstates

$$A_{CP}(t,\phi K_{S}) = \frac{\Gamma(B(t) \to \phi K_{S}) - \Gamma(\bar{B}(t) \to \phi K_{S})}{\Gamma(B(t) \to \phi K_{S}) + \Gamma(\bar{B}(t) \to \phi K_{S})}$$
$$= C_{\phi K_{S}} \cos(\Delta M_{d} t) - S_{\phi K_{S}} \sin(\Delta M_{d} t)$$

$$S_{\phi K_{\rm S}} = -\frac{2 {\rm Im}(\xi_{\phi K_{\rm S}})}{1+|\xi_{\phi K_{\rm S}}|^2} \ , \ \xi_{\phi K_{\rm S}} = {\rm e}^{-i {\rm Arg}(M_{\rm 12}^d)} \frac{{\rm A}(\bar{B} \to \phi K_{\rm S})}{{\rm A}(B \to \phi K_{\rm S})}$$

CP Asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$

Time dependent CP Asymmetries in decays of neutral B mesons to final CP Eigenstates

$$A_{CP}(t,\phi K_{S}) = \frac{\Gamma(B(t) \to \phi K_{S}) - \Gamma(\bar{B}(t) \to \phi K_{S})}{\Gamma(B(t) \to \phi K_{S}) + \Gamma(\bar{B}(t) \to \phi K_{S})}$$
$$= C_{\phi K_{S}} \cos(\Delta M_{d} t) - S_{\phi K_{S}} \sin(\Delta M_{d} t)$$

$$S_{\phi K_{\rm S}} = -\frac{2 {\rm Im}(\xi_{\phi K_{\rm S}})}{1+|\xi_{\phi K_{\rm S}}|^2} \ , \ \xi_{\phi K_{\rm S}} = {\rm e}^{-i {\rm Arg}(M_{12}^d)} \frac{{\it A}(\bar{B} \to \phi K_{\rm S})}{{\it A}(B \to \phi K_{\rm S})}$$

▶ sizeable, correlated effects in $S_{\phi K_S}$ and $S_{\eta' K_S}$

▶ larger effects in $S_{\phi K_s}$ as indicated by the data

CP Asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$

Time dependent CP Asymmetries in decays of neutral B mesons to final CP Eigenstates

$$\begin{aligned} \mathsf{A}_{CP}(t,\phi\mathsf{K}_{S}) &= \frac{\mathsf{\Gamma}(B(t)\to\phi\mathsf{K}_{S})-\mathsf{\Gamma}(\bar{B}(t)\to\phi\mathsf{K}_{S})}{\mathsf{\Gamma}(B(t)\to\phi\mathsf{K}_{S})+\mathsf{\Gamma}(\bar{B}(t)\to\phi\mathsf{K}_{S})} \\ &= C_{\phi\mathsf{K}_{S}}\cos(\Delta M_{d}t) - S_{\phi\mathsf{K}_{S}}\sin(\Delta M_{d}t) \end{aligned}$$

$$S_{\phi K_{\rm S}} = -\frac{2 {\rm Im}(\xi_{\phi K_{\rm S}})}{1+|\xi_{\phi K_{\rm S}}|^2} \ , \ \xi_{\phi K_{\rm S}} = e^{-i {\rm Arg}(M_{12}^d)} \frac{{\it A}(\bar{B} \to \phi K_{\rm S})}{{\it A}(B \to \phi K_{\rm S})}$$

- sizeable, correlated effects in S_{φKs} and S_{η'Ks}
- ▶ larger effects in $S_{\phi K_S}$ as indicated by the data
- For S_{φK_S} ≃ 0.4, lower bounds on the electron and neutron EDMs:

$$d_e\gtrsim 5 imes 10^{-28} ecm$$
 , $d_n\gtrsim 8 imes 10^{-28} ecm$

Direct CP Asymmetry in $b \rightarrow s\gamma$

Soares '91; Kagan, Neubert '98

$$A_{CP}^{bs\gamma} = \frac{\Gamma(\bar{B} \to X_s\gamma) - \Gamma(B \to X_{\bar{s}}\gamma)}{\Gamma(\bar{B} \to X_s\gamma) + \Gamma(B \to X_{\bar{s}}\gamma)}$$

- arises first at order α_s
- doubly Cabibbo and GIM suppressed in the SM
- sizeable value would be clear signal for New Physics

$$\begin{split} A_{CP}^{bs\gamma}(\text{SM}) &\simeq (0.44_{-0.14}^{+0.24})\% & \text{Hurth, Lunghi, Porod '03} \\ \\ A_{CP}^{bs\gamma}(\text{exp.}) &\simeq (0.4 \pm 3.6)\% & \text{HFAG} \\ \\ A_{CP}^{bs\gamma} &\simeq \frac{\alpha_8}{|C_7|^2} \left(b_{27} \text{Im}(C_2 C_7^*) + b_{87} \text{Im}(C_8 C_7^*) + b_{28} \text{Im}(C_2 C_8^*) \right) \end{split}$$

Direct CP Asymmetry in $b \rightarrow s\gamma$

Soares '91; Kagan, Neubert '98

$$A_{CP}^{bs\gamma} = \frac{\Gamma(\bar{B} \to X_{s}\gamma) - \Gamma(B \to X_{\bar{s}}\gamma)}{\Gamma(\bar{B} \to X_{s}\gamma) + \Gamma(B \to X_{\bar{s}}\gamma)}$$

- arises first at order α_s
- doubly Cabibbo and GIM suppressed in the SM
- sizeable value would be clear signal for New Physics

$$\begin{split} A_{CP}^{bs\gamma}(\text{SM}) &\simeq (0.44_{-0.14}^{+0.24})\% & \text{Hurth, Lunghi, Porod '03} \\ \\ A_{CP}^{bs\gamma}(\text{exp.}) &\simeq (0.4 \pm 3.6)\% & \text{HFAG} \\ \\ A_{CP}^{bs\gamma} &\simeq \frac{\alpha_{s}}{|C_{7}|^{2}} \left(b_{27} \text{Im}(C_{2}C_{7}^{*}) + b_{87} \text{Im}(C_{8}C_{7}^{*}) + b_{28} \text{Im}(C_{2}C_{8}^{*}) \right) \\ \\ & \bullet \text{ Sign of } A_{CP}^{bs\gamma} \text{ is correlated with sign of } S_{\phi K_{S}} \\ \\ & \bullet \text{ For } S_{\phi K_{S}} < S_{\phi K_{S}}^{\text{SM}}, A_{CP}^{bs\gamma} \text{ is unambiguously positive} \end{split}$$

- $\mathbf{F} = \{\mathbf{r}_{\phi K_{S}} \in \mathbf{C}_{\phi K_{S}}, \mathbf{C}_{C} \in \mathbf{C} \}$
- values typically in the range 1% 6%

The Decay $B^0 \to K^{0*}(\to K^+\pi^-)\ell^+\ell^- \dots$

Bobeth, Hiller, Piranishvili '08 Egede, Hurth, Matias, Ramon, Reece '08 WA, Ball, Bahrucha, Buras, Straub, Wick '09

$$\begin{aligned} \frac{d^4\Gamma}{dq^2 \, d\cos\theta_I \, d\cos\theta_{K^*} \, d\phi} &= \frac{9}{32\pi} \, l(q^2, \theta_I, \theta_{K^*}, \phi) \\ l(q^2, \theta_I, \theta_{K^*}, \phi) &= \\ &= l_1^S \sin^2\theta_{K^*} + l_1^C \cos^2\theta_{K^*} + (l_2^S \sin^2\theta_{K^*} + l_2^C \cos^2\theta_{K^*}) \cos 2\theta_I \\ &+ l_3 \sin^2\theta_{K^*} \sin^2\theta_I \cos 2\phi + l_4 \sin 2\theta_{K^*} \sin 2\theta_I \cos \phi \\ &+ l_5 \sin 2\theta_{K^*} \sin\theta_I \cos \phi \\ &+ (l_6^S \sin^2\theta_{K^*} + l_6^C \cos^2\theta_{K^*}) \cos\theta_I + l_7 \sin 2\theta_{K^*} \sin\theta_I \sin \phi \\ &+ l_8 \sin 2\theta_{K^*} \sin 2\theta_I \sin \phi + l_9 \sin^2\theta_{K^*} \sin^2\theta_I \sin 2\phi \end{aligned}$$

Full angular reconstruction possible at LHCb

7200 events with $2fb^{-1}$ (\approx 1 year of running)

Wolfgang Altmannshofer (TUM)

CP Violation in a Flavor Blind MSSM

... a Gold Mine of New Observables

Wolfgang Altmannshofer (TUM)

▶ S_6^s is basically the well known forward-backward asymmetry in $B \to K^* \ell^+ \ell^-$

► The CP averaged angular observables S₄, S₅ and S^s₆ have zeros in their q² distributions

- ► S_6^s is basically the well known forward-backward asymmetry in $B \to K^* \ell^+ \ell^-$
- ► The CP averaged angular observables S₄, S₅ and S^s₆ have zeros in their q² distributions
- ► The large complex NP contributions to C₇ in the FBMSSM lead to significant shifts in the zeros of S₄, S₅ and S^s₆ towards lower values

▶ The CP asymmetries A₇ and A₈ are negligible small in the SM

- ▶ The CP asymmetries A₇ and A₈ are negligible small in the SM
- In the FBMSSM huge effects are possible and they are highly correlated
- ► Deviations from the correlation point clearly towards sizeable complex NP contributions to other operators, e.g. C'₇

Correlations among Angular Observables

- ► There are also strong correlations between the integrated CP asymmetries $\langle A_7 \rangle$ and $\langle A_8 \rangle$ and the zeros of S_4 , S_5 and S_6^s
- Large shifts in the zeros unambiguously lead to large effects in the CP asymmetries

Correlations with Other CP Violating Observables

- $\langle A_7 \rangle$ and $\langle A_8 \rangle$ are also correlated with $S_{\phi K_S}$ and $S_{\eta' K_S}$
- S_{φK_s} ≃ 0.4 implies positve ⟨A₇⟩ ≃ 0.05 ÷ 0.2 and negative ⟨A₈⟩ ≃ −0.11 ÷ −0.03
- ► Finally, $\langle A_7 \rangle$ and $\langle A_8 \rangle$ are also correlated with the CP asymmetry in $b \rightarrow s\gamma$ and the EDMs

CP Violation in $\Delta F = 2$ Transitions

- I Phases in the B_d and B_s mixing amplitudes
- ► Leading NP contributions to the mixing amplitudes M^d₁₂ and M^s₁₂ turn out to be insensitive to the new phases of a flavor blind MSSM.

 $\operatorname{Arg}(M_{12}^{d,s}) \simeq \operatorname{Arg}(M_{12}^{d,s}(SM))$

$$ightarrow$$
 $S_{\psi {\it K}_{
m S}}$ and $S_{\psi \phi}$ are SM like

CP Violation in $\Delta F = 2$ Transitions

ABP'08

2 CP violation in K mixing

- ► Also M^K₁₂ has no sensitivity to the new flavor blind phases
- Still, *ϵ_K* ∝ Im(*M*^K₁₂) can get a positive NP contribution up to 15%
- ► But only for a very light SUSY spectrum: $\mu, m_{\tilde{t}_1} \simeq 200 \text{GeV}$

• $S_{\psi K_s}$ and $\Delta M_d / \Delta M_s$ basically NP free

UT can be constructed from the angle β and the side R_t

 $\sin 2eta = S_{\psi} K_{
m S} = 0.671 \pm 0.024$

$$R_t = \xi rac{1}{\lambda} \sqrt{rac{m_{B_s}}{m_{B_d}}} \sqrt{rac{\Delta M_d}{\Delta M_s}} = 0.913 \pm 0.033$$

▶ $S_{\psi K_S}$ and $\Delta M_d / \Delta M_s$ basically NP free

UT can be constructed from the angle β and the side R_t

 $\sin 2eta = \mathcal{S}_{\psi K_{\mathrm{S}}} = 0.671 \pm 0.024$

$$R_t = \xi \frac{1}{\lambda} \sqrt{\frac{m_{B_s}}{m_{B_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_s}} = 0.913 \pm 0.033$$

Predictions for $|V_{ub}|$ and the angle γ $|V_{ub}| = (3.5 \pm 0.2) \times 10^{-3}$ $\gamma = 63.5^{\circ} \pm 4.7^{\circ}$ \rightarrow can be tested at a SuperB Factory

▶ $S_{\psi K_S}$ and $\Delta M_d / \Delta M_s$ basically NP free

UT can be constructed from the angle β and the side R_t

 $\sin 2\beta = S_{\psi K_s} = 0.671 \pm 0.024$

$$R_t = \xi \frac{1}{\lambda} \sqrt{\frac{m_{B_s}}{m_{B_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_s}} = 0.913 \pm 0.033$$

Predictions for $|V_{ub}|$ and the angle γ $|V_{ub}| = (3.5 \pm 0.2) \times 10^{-3}$ $\gamma = 63.5^{\circ} \pm 4.7^{\circ}$ \rightarrow can be tested at a SuperB Factory

 ϵ_K constraint ($B_K = 0.72 \pm 0.05$)

CP Violation in a Flavor Blind MSSM

Wolfgang Altmannshofer (TUM)

▶ $S_{\psi K_S}$ and $\Delta M_d / \Delta M_s$ basically NP free

UT can be constructed from the angle β and the side R_t

 $\sin 2\beta = S_{\psi K_s} = 0.671 \pm 0.024$

$$R_t = \xi \frac{1}{\lambda} \sqrt{\frac{m_{B_s}}{m_{B_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_s}} = 0.913 \pm 0.033$$

Predictions for $|V_{ub}|$ and the angle γ $|V_{ub}| = (3.5 \pm 0.2) \times 10^{-3}$ $\gamma = 63.5^{\circ} \pm 4.7^{\circ}$ \rightarrow can be tested at a SuperB Factory

 ϵ_K constraint ($B_K = 0.72 \pm 0.05$) and with +15% NP corrections

Implications for direct searches of SUSY particles

- $S_{\phi K_{
 m S}} \simeq 0.4$ implies $\mu \lesssim$ 600GeV and $m_{ ilde{t}_{
 m I}} \lesssim$ 700GeV
- ▶ similarly, large non standard effects in $A_{CP}^{bs\gamma} \gtrsim 2\%$ imply $\mu \lesssim 600$ GeV and $m_{\tilde{t}_1} \lesssim 800$ GeV

In the flavor blind MSSM sizeable, correlated effects in $S_{\phi K_S}$ and $S_{\eta' K_S}$ are possible. Such effects imply:

► lower bounds on the electron and neutron EDMs at the level of d_{e,n} ≥ 10⁻²⁸ ecm

► a positive, sizeable direct CP asymmetry $A_{CP}^{bs\gamma} \simeq 1\% - 6\%$

The decay $B \to K^* \ell^+ \ell^-$ offers a multitude of observables sensitive to new CP violating phases. In the FBMSSM we find:

- The zeros of the CP averaged coefficients S₄, S₅ and S^s₆ are shifted towards lower values
- Sizeable effects in the CP asymmetries A₇ and A₈
- These effects are highly correlated among themselves and also with S_{φKs}, A^{bsγ}_{CP} and d_{e,n}
- The definite pattern of effects allows a clear distinction from scenarios where Wilson coefficients other than C₇ play an important role

In addition, within the framework of the FBMSSM, there are

- ▶ small effects in $S_{\psi\phi} \simeq 0.03 0.05$
- ▶ small effects in $S_{\psi K_S}$ and in $\Delta M_d / \Delta M_s$ ⇒ The Unitarity Triangle can be constructed from the side R_t and the angle β . Predictions: $|V_{ub}| = (3.5 \pm 0.2) \times 10^{-3}$ and $\gamma = 63.5^\circ \pm 4.7^\circ$.

▶ positive NP effects in ϵ_K up to 15%

Back Up

The Anomalous Magnetic Moment of the Muon

$$a_{\mu}^{ ext{exp.}} = 11659$$
20.80 $(63) imes 10^{-9}$ Muon (g-2) collaboration $a_{\mu}^{ ext{SM}} = 11659$ 17.85 $(61) imes 10^{-9}$ Miller et al. '07

$$\Delta \pmb{a}_{\mu}=\pmb{a}_{\mu}^{ ext{exp.}}-\pmb{a}_{\mu}^{ ext{SM}}\simeq(3\pm1) imes10^{-9}$$

 $\simeq 3\sigma$ discrepancy

A very rough formula for SUSY contributions to a_{μ}

$$a_{\mu}^{
m SUSY} \simeq 1.5 \left(rac{ aneta}{10}
ight) \left(rac{300 {
m GeV}}{m_{ ilde{\ell}}}
ight)^2 {
m sign}({
m Re}(\mu)) imes 10^{-9}$$

with common SUSY mass $m_{\tilde{\ell}}$

 $S_{\phi K_{\rm S}} \simeq 0.4$ naturally leads to $a_{\mu}^{
m SUSY} \simeq {
m few} imes 10^{-9}$

Wolfgang Altmannshofer (TUM)

CP Violation in a Flavor Blind MSSM