Patterns of Flavour Violation in a Warped Extra Dimensional Model with Custodial Protection

Stefania Gori

MPI Munich & TU Munich

Warsaw

February 4th 2009

Outline

1. Motivations for WED:

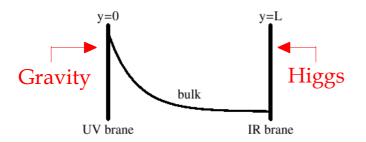
- Addressing Gauge Hierarchy Problem
- Natural Generation of Hierarchies in Masses and Mixings
- **...**

2. Randall-Sundrum Scenario:

- The Model analyzed
- New Features in the Flavour Sector
- ◆ Neutral Meson mixing: Theory
- Neutral Meson mixing: Numerics
- ◆ Rare Decays of B and K mesons: Theory
- ◆ Rare Decays of B and K mesons: Numerics

3. Conclusions

- M. Blanke, A.J.Buras, B.Duling, S.Gori, A.Weiler,
- $\Delta F = 2$ Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection [hep-ph/0809.1073]
- M. Blanke, A. J. Buras, B. Duling, K. Gemmler, S. Gori, *Rare K and B decays in a Warped Extra Dimension with Custodial Protection* [hep-ph/0812.3803]


S. Gori

Gauge Hierarchy Problem & its Solution

- Gauge Hierarchy Problem in 3 sentences:
- I. Huge hierarchy between the fundamental gravity scale M_{pl} & the EW scale Λ_{EWSB}
- II. Tremendous fine-tuning required to keep $\Lambda_{EWSB} \sim 1 \text{ TeV}$
- III. Even if $\frac{\Lambda_{EWSB}}{M_{pl}} \approx 10^{-16}$ is imposed at tree-level, loop corrections push $\Lambda_{EWSB} \sim M_{pl}$

Gauge Hierarchy Problem & its Solution

- Gauge Hierarchy Problem in 3 sentences:
- I. Huge hierarchy between the fundamental gravity scale M_{pl} & the EW scale Λ_{EWSB}
- II. Tremendous fine-tuning required to keep $\Lambda_{EWSB} \sim 1 \text{ TeV}$
- III. Even if $\frac{\Lambda_{EWSB}}{M_{pl}} \approx 10^{-16}$ is imposed at tree-level, loop corrections push $\Lambda_{EWSB} \sim M_{pl}$
- How to address it in WED Contexts?

Solution to the 5D Einstein equations in the bulk:

$$ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2 , \qquad 0 \le y \le L$$

Warping-Factor

- I. Warped-factor along extra dimension leads to: $\Lambda_{eff}(y) = e^{-ky} \Lambda_{fund}$
- II. With $\Lambda_{\text{fund}} \sim O(M_{\text{pl}})$ only a moderate hierarchy is required to obtain $\Lambda_{eff}(IR\ brane) \approx O\left(1TeV\right)$

$$kL \approx 30$$

III. fundamental gravity scale however still given by M_{pl}

If Higgs lives on the IR brane, gauge hierarchy problem is addressed!

Flavour Problem & its Solution (1)

Experiments tell us:

I. quarks and charged leptons have

$$m_e \approx 0.5~MeV~,~m_{\tau} \approx 1800~MeV,...$$
 $m_u \approx 2.5~MeV~,~m_t \approx 170~GeV,...$

... and the theory:

III. at the same time CKM picture describes data surprisingly well

II. also CKM mixing between quark

$$|V_{ud}| \approx 1$$
, $|V_{us}| \approx 0.226$

$$|V_{cb}| \approx 0.041 , |V_{ub}| \approx 0.0038$$

SM Yukawa couplings have to exhibit an extremely hierarchical structure, why?

Flavour Problem & its Solution (1)

Experiments tell us:

I. quarks and charged leptons have

$$m_e \approx 0.5 \; MeV \; , \; m_\tau \approx 1800 \; MeV, ...$$
 $m_u \approx 2.5 \; MeV \; , \; m_t \approx 170 \; GeV, ...$

... and the theory:

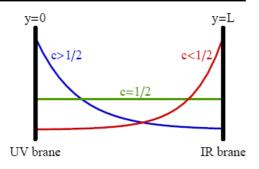
III. at the same time CKM picture describes data surprisingly well

II. also CKM mixing between quark

$$|V_{ud}| \approx 1 , |V_{us}| \approx 0.226$$

 $|V_{cb}| \approx 0.041 , |V_{ub}| \approx 0.0038$

SM Yukawa couplings have to exhibit an extremely hierarchical structure, why?

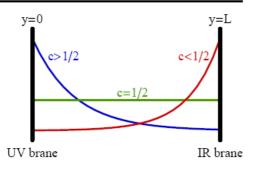

- Preliminaries
- Gauge fields and matter fields can propagate into the 5th dimension
- For each particle species, there is an infinite number of solutions:

Kaluza-Klein tower of particles

Zero mode solutions (if existent) are identified with the SM particles (with BC (++))

Flavour Problem & its Solution (2)

Zero Modes of Fermions:



$$f^{(0)}(y,c) = \sqrt{\frac{(1-2c)kL}{e^{(1-2c)kL}-1}} e^{(\frac{1}{2}-c)ky}$$

Strong dependence on bulk masses

Flavour Problem & its Solution (2)

Zero Modes of Fermions:

$$f^{(0)}(y,c) = \sqrt{\frac{(1-2c)kL}{e^{(1-2c)kL}-1}} e^{(\frac{1}{2}-c)ky}$$

Strong dependence on bulk masses

- ◆ The Solution of the Flavour Problem:
- I. 4D Yukawas in terms of shape functions:

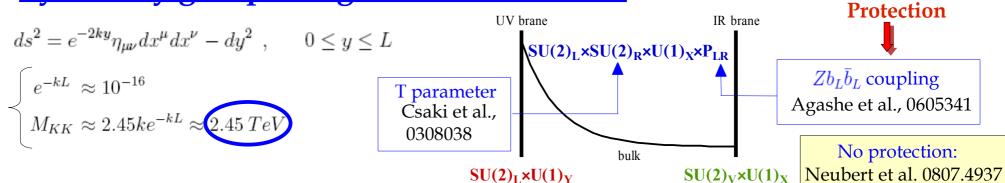
$$Y_{ij} = \int_0^L \frac{dy}{L^{3/2}} \lambda_{ij} h(y) f_L^{(0)} \left(y, c^i \right) f_R^{(0)} \left(y, c^j \right)$$
5D Yukawas

 λ_{ij} assumed to be **anarchical** and O(1)

Higgs localized on the IR brane: $h(y) = \sqrt{2(\beta - 1)kL} \ e^{kL}e^{\beta k(y-L)}$, $\beta > 1$

II. Result: slightly different c parameters of O(1) lead to a large hierarchy in Y_{ij}

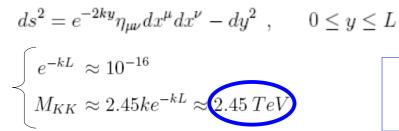
Hierarchy of quark masses and mixings explained by a purely geometrical approach!

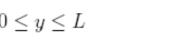

BUT Still missing a theory for the bulk masses

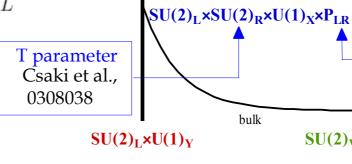
Numerical example:

 $c_1 = 0.66$, $c_2 = 0.59$, $c_3 = 0.41$ $Y_1 = 0.0017$, $Y_2 = 0.017$, $Y_3 = 0.42$

Definition of the Model


1. Symmetry group and geometric structure:




WED with Custodial

Definition of the Model

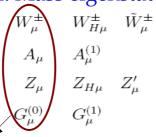
1. Symmetry group and geometric structure:

UV brane

WED with Custodial **Protection**

 $Zb_L\bar{b}_L$ coupling Agashe et al., 0605341

No protection: $SU(2)_V \times U(1)_X$ | Neubert et al. 0807.4937


2. Field content:

Gauge bosons:

I. Gauge eigenstates:

$$W_{L\mu}^{a}(++)$$
, $B_{\mu}(++)$, $G_{\mu}^{c}(++)$, $W_{R\mu}^{b}(-+)$, $Z_{X\mu}(-+)$ $a=1,2,3$; $b=1,2;$ $c=1,...,8$

II. Mass eigenstates:

Gauge bosons of the SM

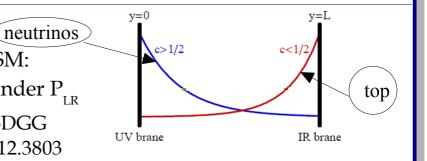
Higgs boson:

bulk

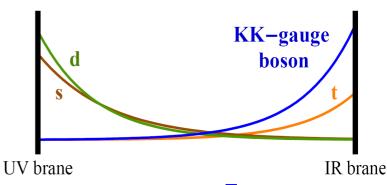
I. Bidoublet of $SU(2)_{I} \times SU(2)_{R}$

IR brane

- II. EWSB mechanism is not specified
- III. Resides on the IR brane


Fermions:

- I. Different localizations in the bulk of the fermions of the SM:
- II. Left down quarks (all three generations) are symmetric under P_{LR}


generalization of the protection to $Zd_L^i\bar{d}_L^j$

BBDGG 0812.3803

Non Universality & FCNC at Tree Level

• KK tower of heavy gauge bosons ...that are all localized towards the IR brane

Their couplings to SM fermions are non-universal ...because couplings to SM fermions depend on their localization

$$\Delta_{L,R} \propto \int_0^L dy \, e^{ky} \left[f_{L,R}^{(0)}(y, c_{\Psi}^i) \right]^2 g(y)$$

Rotation to mass eigenstates:

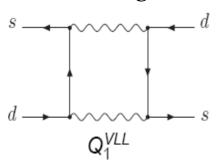
non universalities

off-diagonal terms

Flavour Changing Neutral Currents at Tree Level

$$\Delta_{L,R} \sim U^\dagger \left(egin{array}{c} \clubsuit & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

New sources of flavour and CP violation beyond CKM: model is non-MFV


Meson Mixing: some Theoretical Aspects

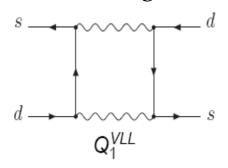
Example:

$$K^0 - \bar{K}^0$$
 mixing

Standard Model

Process through boxes

action of the GIM-mechanism

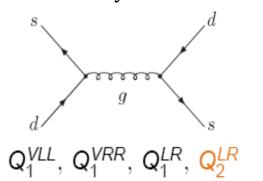

Meson Mixing: some Theoretical Aspects

Example:

$$K^0 - \bar{K}^0$$
 mixing

Standard Model

Process through boxes


action of the GIM-mechanism

Particles exchanged at tree level:

- KK gluons
- KK photons
- \rightarrow Z, Z_H, Z'

Warped Extra Dimensions

Process already at tree level

Operators involved:

$$Q_1^{VLL} = (\bar{s}\gamma_\mu P_L d) (\bar{s}\gamma_\mu P_L d)$$
 (also in the SM)

$$Q_1^{VRR} = (\bar{s}\gamma_\mu P_R d) (\bar{s}\gamma_\mu P_R d)$$

$$Q_1^{LR} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{s}\gamma_{\mu}P_Rd)$$

$$Q_2^{LR} = (\bar{s}P_L d)(\bar{s}P_R d)$$
 (only for gluons)

Operator Structure in Meson Mixing

- ◆ In the K system:
- Large chiral enhancement of $Q_2^{LR} \propto \left(\frac{m_K}{m_s + m_s}\right)^2$
- Strong RG running of Q₂^{LR}

 Q_{2}^{LR} dominates \longrightarrow contribution of the gluons is predominant

- ◆ In the B system:
- Less pronounced chiral enhancement of $Q_2^{LR} \propto \left(\frac{m_B}{m_L + m_{d,z}}\right)^2$
- A bit weaker RG running of Q₂^{LR}

Both Q_{1}^{VLL} and Q_{2}^{LR} are important \longrightarrow EW gauge bosons are competitive

(missed in the literature)

- In both systems:
- ullet Z boson not relevant: I. left-handed couplings protected by P_{LR}
 - II. right-handed couplings enter only at higher order

Our Approach to the Analysis of Meson Mixing

Previous analysis:

Csaki, Falkowski, Weiler, 0804.1954

tension between anarchic Yukawas, $\varepsilon_{_{\!\scriptscriptstyle K}}$, and a low high energy scale $M_{_{\!\scriptscriptstyle KK}}$

totally anarchic Yukawas and constraint from $\varepsilon_{_{\rm K}}$ \longrightarrow $M_{KK} \geq 20\,{\rm TeV}$

Our Approach to the Analysis of Meson Mixing

Previous analysis:

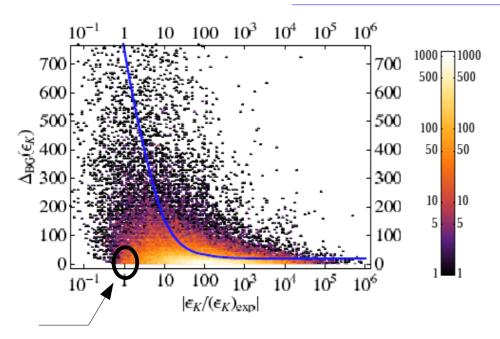
Csaki, Falkowski, Weiler, 0804.1954

tension between anarchic Yukawas, $\varepsilon_{_{K'}}$, and a low high energy scale $M_{_{KK}}$

totally anarchic Yukawas and constraint from $\varepsilon_{_{\rm K}}$ \longrightarrow $M_{KK} \geq 20\,{\rm TeV}$

Issues (ε_{κ} and beyond)

Blanke, Buras, Duling, S. G., Weiler, 0809.1073


- Consider full operator basis and NLO RG running
- Take into account also EW contributions
 - Partially give up complete anarchy of Yukawas
- Fix a high energy scale in the reach of LHC ($M_{KK} \sim (2-3) \text{ TeV}$)
 - Fit all the well measured $\Delta F=2$ observables
- Identify areas in parameter space with only moderate fine tuning
 - Make prediction for the not well measured $\Delta F=2$ observables

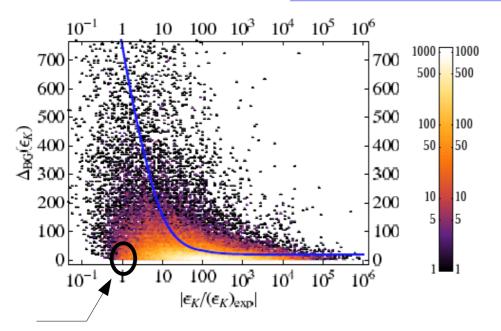
ε_κ: the most Challenging Observable

Our definition of fine tuning:

$$\left(\frac{1}{t}\right)_{BG} = max_i \frac{d \log(Obs.)}{d \log(x_i)} = max_i \frac{x_i}{Obs.} \frac{dObs.}{dx_i}$$

Barbieri, Giudice Nucl.Phys.B306:63

fitting SM quark masses and CKM elements within 20

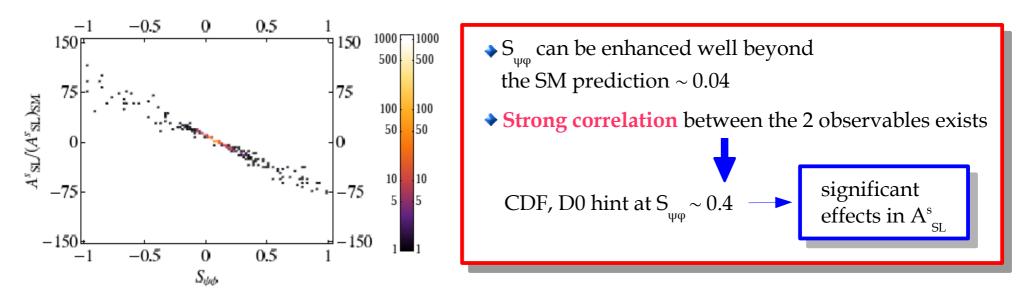

- Generically $\varepsilon_{K} \sim 10^{2} \varepsilon_{K}^{\text{exp}}$
- Average of the fine tuning decreases with increasing $\mathcal{E}_{_{K}}$
- Parameter sets with moderate fine tuning and ε_K ~ ε_K exist

ε_κ: the most Challenging Observable

Our definition of fine tuning:

$$\left(\frac{1}{t}\right)_{BG} = max_i \frac{d \log(Obs.)}{d \log(x_i)} = max_i \frac{x_i}{Obs.} \frac{dObs.}{dx_i}$$

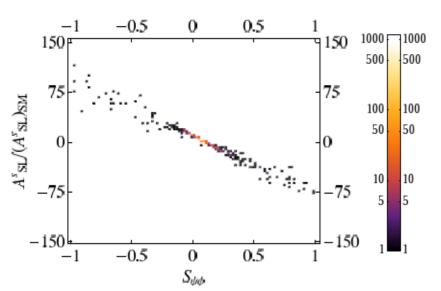
Barbieri, Giudice Nucl.Phys.B306:63



fitting SM quark masses and CKM elements within 20

- Generically $\varepsilon_{_{\rm K}} \sim 10^2 \varepsilon_{_{\rm K}}^{\rm exp}$
- Average of the fine tuning decreases with increasing $\mathcal{E}_{_{\mathbf{K}}}$
- Parameter sets with moderate fine tuning and ε_K ~ ε_K exist

No problem in fitting all the other well measured ΔF =2 observables ($\Delta M_{K'}$, $\Delta M_{d'}$, $\Delta M_{s'}$, $S_{\psi Ks}$) with small fine tuning


Predictions for Observables not Measured yet

fitting SM quark masses and CKM elements within 20 &

fitting all the well measured ΔF =2 observables, with small fine tuning (\leq 20)

Predictions for Observables not Measured yet

- $\blacktriangleright S_{\psi\phi}$ can be enhanced well beyond the SM prediction ~ 0.04
- ◆ Strong correlation between the 2 observables exists

CDF, D0 hint at $S_{\psi\phi} \sim 0.4$ — significant effects in A_{SL}^s

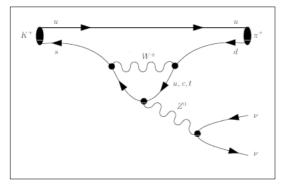
fitting SM quark masses and CKM elements within $2\sigma\,$

&

fitting all the well measured $\Delta F=2$ observables, with small fine tuning (≤ 20)

Small summary of the results in meson mixing:

It is possible to:


- ◆ Fit SM quark masses and CKM mixings
- Address the tension with $\epsilon_{_{\!K}}$ even with a low KK scale
- Fit all the precisely measured $\Delta F=2$ observables
- lacktriangle Obtain large deviations from the SM of the not yet measured observables ($S_{\psi\phi}$)

Rare Decays: some Theoretical Aspects

Example:

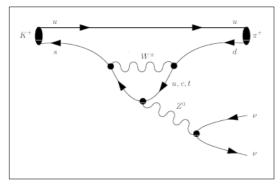
$$K^+ \rightarrow \pi^+ \nu \, \overline{\nu}$$

Standard Model

first at one loop level

I. The effective Hamiltonian:

$$\mathcal{H}_{eff}^{SM} \propto V_{ts}^* V_{td} X_{SM} \left(\bar{s} \gamma_{\mu} P_L d \right) \left(\bar{\nu} \gamma_{\mu} P_L \nu \right)$$

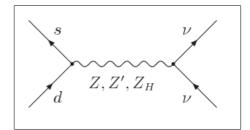

Only operator involved

Rare Decays: some Theoretical Aspects

Example:

$$K^+ \!\! \to \!\! \pi^+ \nu \, \bar{\nu}$$

Standard Model


first at one loop level

I. The effective Hamiltonian:

$$\mathcal{H}_{eff}^{SM} \propto V_{ts}^* V_{td} X_{SM} \left(\bar{s} \gamma_{\mu} P_L d \right) \left(\bar{\nu} \gamma_{\mu} P_L \nu \right)$$

Only operator involved

Warped Extra Dimensions

additional diagrams at tree level

- I. Modification of the coefficient of the SM operator
- II. New operator is induced:

$$\mathcal{H}_{eff}^{new} \propto V_{ts}^* V_{td} X^V \left(\bar{s} \gamma_{\mu} d \right) \left(\bar{\nu} \gamma_{\mu} P_L \nu \right)$$

III. Main contributions from the coupling of Z to *right handed* down quarks

Rare Decays: K physics vs B physics

$$s \rightarrow d \, \overline{\nu} \, \nu \quad vs \quad (b \rightarrow d \, \overline{\nu} \, \nu \, \lor \, b \rightarrow s \, \overline{\nu} \, \nu)$$

Effective Hamiltonian:

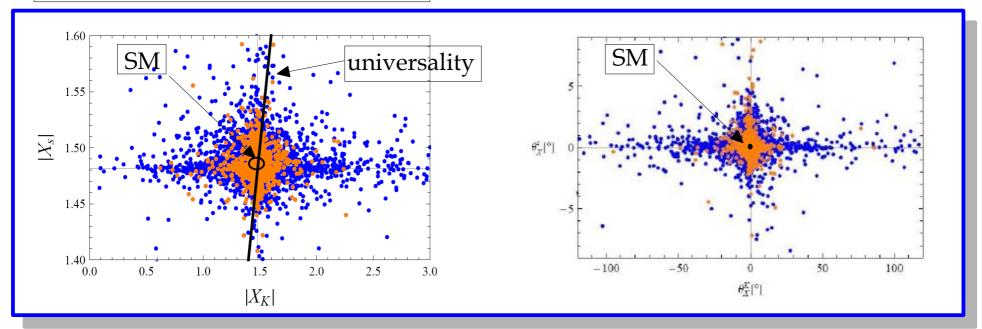
$$\mathcal{H}_{eff}^{tot} \propto V_{tq_1}^* V_{tq_2} \left(X_{SM} + X_{q_1,q_2}^{V-A} \right) \left(\bar{q}_1 \gamma_{\mu} \left(1 - \gamma_5 \right) q_2 \right) \left(\bar{\nu} \gamma_{\mu} \left(1 - \gamma_5 \right) \nu \right) + V_{tq_1}^* V_{tq_2} X_{q_1,q_2}^V \left(\bar{q}_1 \gamma_{\mu} q_2 \right) \left(\bar{\nu} \gamma_{\mu} \left(1 - \gamma_5 \right) \nu \right)$$

$$q_1 \rightarrow q_2 \bar{\nu} \nu$$

• where the new functions:

$$X_{q_1,q_2}^{V-A,V} \propto \frac{1}{\lambda_t^{(q)}} F^{V-A,V} \left(\Delta_L^{\nu\nu}, \Delta_{L,R}^{q_1,q_2} \right)$$

K meson:
$$\lambda_t^{(q)} = V_{ts}^* V_{td} \approx 4 \cdot 10^{-4}$$


B mesons:
$$\lambda_t^{(q)} = V_{tb}^* V_{tq} \approx 10^{-2}$$
, $q = d, s$

- Main Messages:
 - I. Non universalities
- II. Expected: bigger contributions of the new physics in the K sector

Non universality & New Sources of CP Violation

- 1) Points which satisfy all the ΔF =2 constraints;
- 2) Also small fine tuning is required (ε_{K})

real function $X_K = X_{SM} + X_{sd}^{V-A} + X_{sd}^V = |X_K| e^{i\theta_X^K}$ $X_s = X_{SM} + X_{bs}^{V-A} + X_{bs}^V = |X_s| e^{i\theta_X^S}$

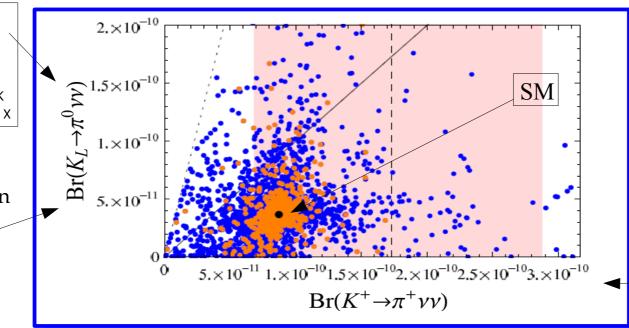
I. Deviation from the universality:

$$|X_K| \neq |X_s|$$

vs models with CMFV

II. Bigger new physics contribution in X_{κ}

I. New phases:


new sources of CP violation

II. Bigger contribution in θ_{X}^{K}

Rare Decays of K mesons...

Theoretically very clean and very sensitive to θ_{x}^{K}

Possible deviation of 500% from the SM

Possible deviation of 200% from the SM

Values predicted by the SM:

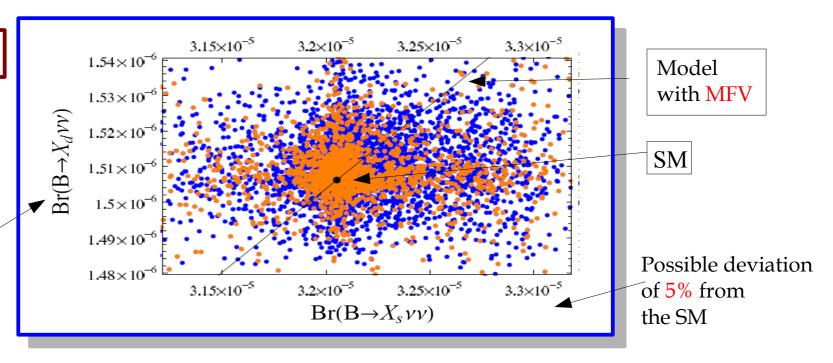
$$Br(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 0.8) \, 10^{-11}$$

 $Br(K_L \to \pi^0 \nu \bar{\nu}) = (2.9 \pm 0.4) \, 10^{-11}$

◆ Experimental bounds:

$$Br\left(K^{+} \to \pi^{+} \nu \bar{\nu}\right) = \left(17.3^{+11.5}_{-10.5}\right) 10^{-11}$$

 $Br\left(K_{L} \to \pi^{0} \nu \bar{\nu}\right) < 2.1 \cdot 10^{-7} \quad (90\% CL)$


- **◆** Some Observations:
 - I. It is possible to have **simultaneously big contributions** for both the branching ratios
 - II. The most part of the points stays in the experimental range for $K^+ \to \pi^+ \nu \bar{\nu}$

...and Rare Decays of B mesons

Inclusive Decay

Possible deviation of 3% from the SM

B decays not so sensitive to new physics

Values predicted by the SM:

$$Br(B \to X_s \nu \bar{\nu}) \approx 3.2 \cdot 10^{-5}$$

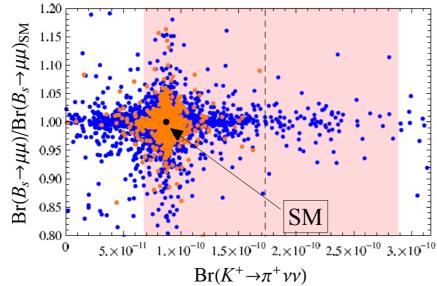
$$Br(B \to X_d \nu \bar{\nu}) \approx 1.5 \cdot 10^{-6}$$

◆ Experimental bounds:

$$Br(B \to X_s \nu \bar{\nu}) < 64 \cdot 10^{-5}$$

$$Br(B \to X_d \nu \bar{\nu}) < ??$$

Some Observations:


I. In general:
$$\frac{Br(B \to X_d \nu \bar{\nu})}{Br(B \to X_s \nu \bar{\nu})} = \frac{|V_{td}|^2}{|V_{ts}|^2} P \quad \text{where} \quad P \equiv \frac{\left|X_d^{V-A} + X_d^V/2\right|^2 + \left|X_d^{V}/2\right|^2}{\left|X_s^{V-A} + X_s^{V}/2\right|^2 + \left|X_s^{V}/2\right|^2}$$

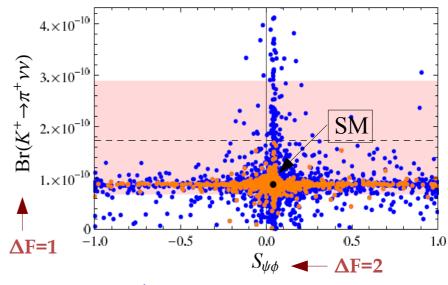
I. Very clean correlation between the two observables in models with MFV:

P=1 (universality); in WED we have deviations

Correlations

I. SM prediction

$$Br\left(B_s \to \mu^+ \mu^-\right) = (3.35 \pm 0.32) \cdot 10^{-9}$$


II. Measurement

$$Br(B_s \to \mu^+\mu^-) < 4.7 \cdot 10^{-8}$$

For the two decays:

Possible deviations of 15% in the B system; Possible deviations of 200% in the K system

$\Delta F=1$ vs $\Delta F=2$ observables

I. SM prediction

$$S_{\psi\phi} \approx 0.04$$
, $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 0.8) \, 10^{-11}$

II. Measurements

$$S_{\psi\phi} \approx 0.4$$
, $Br\left(K^{+} \to \pi^{+} \nu \bar{\nu}\right) = \left(17.3^{+11.5}_{-10.5}\right) 10^{-11}$

Difficult to obtain simultaneously large deviations from the SM for both observables

Conclusions

Warped Extra Dimension with custodial Protection shows:

- Elegant addressing of:
- I. Gauge Hierarchy Problem;
- II. Flavour Problem;

III. ...

Testability at LHC since $M_{KK} \approx (2-3) TeV$

- ◆ In the Flavour Sector:
- I. Existence of regions of parameter space which:
- Fit masses of SM quarks and CKM elements
- Reproduce all the well measured ΔF=2 observables ($ε_{K'}$ ΔM_{K'} ΔM_{d'} ΔM_{s'}, S_{wKs})
- Have a small amount of fine tuning on the observables \longrightarrow Address the problem with ε_{K}
- Can predict possible large deviations from the SM of observables not measured yet ($S_{\psi\phi}$, A_{SL}^s)

Conclusions

Warped Extra Dimension with custodial Protection shows:

- Elegant addressing of:
- I. Gauge Hierarchy Problem;
- II. Flavour Problem;

III. ...

Testability at LHC since $M_{KK} \approx (2-3) \, TeV$

- ◆ In the Flavour Sector:
- I. Existence of regions of parameter space which:
- Fit masses of SM quarks and CKM elements
- Reproduce all the well measured ΔF=2 observables ($ε_{K'}$ ΔM_{K'} ΔM_{d'} ΔM_{s'}, S_{wKs})
- Have a small amount of fine tuning on the observables \longrightarrow Address the problem with ε_{K}
- Can predict possible large deviations from the SM of observables not measured yet ($S_{\psi\phi}$, A_{SL}^{s})

- II. Restricting to these regions: If future measurements of $S_{\psi\phi}$ are:
 - <u>large:</u> Branching ratios of K meson decays are small, SM like
- <u>small:</u> Room for <u>large deviations of K</u> meson decays from SM

In any case B meson decays deviate slightly from the SM

Predictions of the theory