Hidden vector Dark Matter

Thomas Hambye Univ. of Brussels (ULB), Belgium

Based on: arXiv:08110172 [hep-ph], JHEP01 (2009) 028

Dark Matter: Evidences

Existence of a neutral stable massive particle:

-At galactic scale: velocity distribution of stars

-At galaxy cluster scale: -velocity distribution of galaxies -bullet cluster

-At cosmological scales: CMB data (WMAP), supernovae,....

$$\Omega_{DM} = 0.20 \pm 0.03$$

-Nature of DM?

-At which scale?

-Why is it stable?

• Down to $T \sim m_{DM}$, DM is in thermal equilibrium: $n_{DM} \simeq n_{DM}^{Eq}$

-Nature of DM?

-At which scale?

-Why is it stable?

-Why around electroweak scale?

-Why is it stable?

Nature of DM?

well motivated: superpartner

- -Why around electroweak scale?

 -Why is it stable?
 -Why is it s
 - if motivated by proton decay)

Nature of DM?

Scalar singlet DM, inert doublet DM, fermion singlet DM,...:

— motivated by minimality

-Why around electroweak scale?

 -Why is it stable?
 -Why is it stable?
 -Why is it stable?
 -Why is it stable?
 -Why is it stable?

Nature of DM?

Scalar singlet DM, inert doublet DM, fermion singlet DM,...:

— motivated by minimality

-Why is it stable? \leftarrow not motivated: Z₂-parity put by hand

in contrast with all known stable particles which are stable due to a fundamental reason:

- γ : because massless (due to gauge symmetry)
- lightest \mathcal{V} : because lightest fermion (Lorentz sym.)
- e^- : because lightest charged particle under exact $U(1)_{em}$
- p^+ : accidental sym. due to gauge SM sym. and particle content

Known examples:

- R-parity as remnant of gauge $U(I)_{B-L}$
- SU(2)_L fermion quintuplet or scalar sevenplet: no possible interaction with SM fields causing its decay with dim < 6
 ⇒ lifetime larger than universe age if Lambda ~ M_{GUT} Cirelli, Fornengo, Strumia '06
- fermion SM singlet charged under a U(I)
 (with additional scalar to break it) Pospelov, Ritz, Voloshin '06

in all cases the stability is insured by a remnant Z₂
could we have other kinds of global symmetries???

Custodial symmetry \Rightarrow DM stability

→ simplest example: a gauged SU(2) + a scalar doublet ϕ

 \Rightarrow spectrum: - 3 degenerate massive gauge bosons V_{i} : $m_{V} = \frac{g_{\phi}v_{\phi}}{2}$ - one real scalar η : $m_{\eta} = \sqrt{2\lambda_{\phi}} v_{\phi}$

This lagrangian has a custodial symmetry SU(2)_C or equivalently a SO(3)_C: $(V_1^{\mu}, V_2^{\mu}, V_3^{\mu}) =$ triplet and $\eta =$ singlet

Hidden sector through the Higgs portal

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Hidden \, Sector} + \mathcal{L}_{Higgs \, portal}$$

$$\mathcal{L}_{Hidden \, Sector} = -\frac{1}{4} F^{\mu\nu a} F^{a}_{\mu\nu} + (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) - \mu^{2}_{\phi}\phi^{\dagger}\phi - \lambda_{\phi}(\phi^{\dagger}\phi)^{2}$$

$$\mathcal{L}_{Higgs \, portal} = -\lambda_{m}\phi^{\dagger}\phi H^{\dagger} H$$

$$\mathcal{D} = -\lambda_{m}v_{\phi}v h \eta \rightarrow h - \eta \text{ mixing}$$

$$\mathbf{U}$$

$$doesn't \text{ spoil the stability of the } V^{\mu}_{i}$$

Relic density

• $T \gtrsim m_V : V_{1,2,3}^{\mu}$ in thermal equilibrium with SM thermal bath $\Rightarrow \begin{array}{l} \eta \text{ with } h : \text{due to } \lambda_m \text{ coupling} \\ V_i \text{ with } \eta : \text{due to } g_\phi \text{ coupling} \end{array}$ • $T < m_V : n_V^{eq.} \sim e^{-m_V/T} \implies$ annihilation freeze out (WIMP) to two real η : with at least one SM part. in final state: $g_{\phi}(+\lambda_{\phi})$ $\lambda_m, g_\phi, ...$ η, h η,h η V_i - η^{\prime} h, η_{V_i} h, η h, η V_i with subsequent decay of η to SM particles via $h - \eta$ mixing

→ non abelian trilinear gauge couplings:

$$F_{\mu\nu}^{a}F^{\mu\nu a} \ni \varepsilon_{ijk}\partial_{\mu}A_{i\nu}(A_{j}^{\mu}A_{k}^{\nu} - A_{j}^{\nu}A_{k}^{\mu})$$
do not lead to any V_i
decay even if trilinear
(carries 3 \neq indices)
$$\neq \text{ from the } Z_{2} \text{ case}$$

$$but induces two DM to one
DM particle annihilation
$$V_{i}$$

$$V_{k}$$

$$V_{k}$$

$$V_{i}$$

$$V_{k}$$

$$V_{i}$$

$$V_{k}$$

$$V_{i}$$

$$V_{k}$$

$$V_{k}$$

$$V_{i}$$

$$V_{k}$$

$$V_{i}$$

$$V_{k}$$

$$V_{$$$$

 \Rightarrow no dramatic effect for the freeze out (same order as other diagrams)

Small Higgs portal regime

Small Higgs portal regime

Small Higgs portal regime

Large Higgs portal regime

large hidden sec- $\lambda_m \gtrsim 10^{-3} \implies \text{large } \eta - h \text{ mixing } \Rightarrow$ tor - SM mixing \rightarrow can lead to the right Ω_{DM} even for maximal mixing $m_{\eta} \,({\rm GeV})$ Large λ_m regime production at LHC of η just 500 as for the Higgs in the SM but 400 with possibly a larger mass m_η (GeV) 300 200 T parameter constraint: 100 if $m_{\eta} = m_h \Rightarrow m_h = m_{\eta} < 154 \text{ GeV}(3\sigma)$ 200 400 600 800 1000 m_A (GeV) $m_V \,({\rm GeV})$ if $m_h = 120 \,\mathrm{GeV} \implies m_\eta < \sim 240 \,\mathrm{GeV} \,(3\sigma)$ maximal mixing

Large Higgs portal regime: direct detection

⇒ can saturate the experimental bound for $m_V \lesssim 300 \,\text{GeV}$ ⇒ large Higgs portal regime: very rich phenomenology

Pamela??? (the song of the siren)

observed excess of 10-100 GeV cosmic positrons

→ requires an annihilation to positron: $\sigma v_r \simeq 3 \cdot 10^{-23} \text{ cm}^3/sec$ ↓ Λ $\sigma_{annih.} v_r \simeq 10^{-26} \text{ cm}^3/sec$ ↓ to get the right Ω_{DM}

need for a 10³ – 10⁴ boost of positron production: unlikely (⇒ pulsars??)
but if one tries: - astrophysics: a factor 10 boost at most
- particle physics: Sommerfeld enhancement
from attractive long range force

First step: if boost large enough can we reproduce the Pamela spectrum?

First step: if boost large enough can we reproduce the Pamela spectrum?

yes easily: 2nd example:

Second step: can we get a large enough Sommerfeld boost?

Cirelli, Strumia, Tamburini '07

where we are for example with: $m_V = 500 \text{ GeV}, m_\eta = 100 \text{ MeV}$ apparently the boost is large enough explicit realization of Arkani-Hamed, Weiner et al mechanism

 $\Rightarrow \phi$ confines: boundstates are eigenstates of the custodial sym.:

- scalar state: $S \equiv \phi^{\dagger} \phi$ singlet of SO(3) expected the lightest

Relic density in the confined regime

confining non-abelian hidden sector coupled to the SM through the Higgs portal: perfectly viable DM candidate

Higher dimensional operator effects

no possible dim-5 (gauge invar.) operators destabilizing the vector DM particles: only dim-6 operators

 $\frac{\oint}{D^{\mu}\phi^{\dagger}F_{\mu\nu}D^{\nu}\phi}{\Lambda^{2}}, \dots$

⇒ for $m_V \simeq 1 \,\text{TeV}$ it leads to $\tau_V > \tau_{\text{Universe}}$ for $\Lambda \gtrsim 10^{13} \,\text{GeV}$ $m_V \simeq 1 \,\text{GeV}$ $\Lambda \gtrsim 10^9 \,\text{GeV}$

Summary

If one tries to justify DM stability from gauge symmetry and particle content (as in the SM) a very simple non Z_2 possibility which emerges is by means of the custodial symmetry:

a hidden sector non-abelian gauge field with a scalar in the fundamental

communicating with the SM through the Higgs portal

⇒ viable DM candidate within a large parameter range → either in the perturbative regime: DM = gauge bosons $1 \text{ MeV} \lesssim m_{DM} \lesssim 50 \text{ TeV}$ → or in the confined regime: DM = vector boundstate in the adjoint $m_{DM} \simeq 20 - 200 \text{ TeV}$

 \Rightarrow rich phenomenology: direct detection, LHC (if $h - \eta$ mixing large), Pamela,...

