Hidden vector Dark Matter

Thomas Hambye
Univ. of Brussels (ULB), Belgium

Dark Matter: Evidences

\Longrightarrow Existence of a neutral stable massive particle:
-At galactic scale: velocity distribution of stars
-At galaxy cluster scale: -velocity distribution of galaxies -bullet cluster
-At cosmological scales: CMB data (WMAP), supernovae,....
\longrightarrow lead consistently to:

$$
\Omega_{D M}=0.20 \pm 0.03
$$

Dark Matter: 3 main questions

-Nature of DM?
-At which scale?
-Why is it stable?

Dark Matter:WIMP mechanism

\longrightarrow Relic density from annihilation freeze out:

- Down to $T \sim m_{D M}$, DM is in thermal equilibrium: $n_{D M} \simeq n_{D M}^{E q}$
- For $T<m_{D M}: n_{D M} \propto e^{-m_{D M} / T} \leftarrow$ Boltzmann suppression
\longrightarrow freeze out of the annihilation at $T=T_{f}$ \downarrow $\Omega_{D M}\left(T<T_{f}\right) \simeq \Omega_{D M}\left(T=T_{f}\right) \propto \frac{1}{\sigma_{\text {annih. }}\left(T=T_{f}\right)}$ $\underline{\sigma_{\text {annih. }} v_{r} \simeq 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}}$
\Rightarrow If $\sigma_{\text {annih. }} \simeq g^{4} / m_{D M}^{2}$ and $g \sim 0.1-1$ one needs $\underline{m_{D M} \sim 1 \mathrm{GeV}-10 \mathrm{TeV}}$

Dark Matter: 3 main questions

-Nature of DM?
-At which scale?
-Why is it stable?

Dark Matter: 3 main questions

-Nature of DM?
-Why around electroweak scale?
-Why is it stable?

Dark Matter: 3 main questions

MSSM:
-Nature of DM?
well motivated: superpartner
-Why around electroweak scale? «well motivated: hierarchy problem...
-Why is it stable?
\longleftarrow not that well motivated:
R-parity put by hand (even
if motivated by proton decay)

Dark Matter: 3 main questions

Scalar singlet DM, inert doublet DM, fermion singlet DM,...:
\longleftarrow motivated by minimality
-Why around electroweak scale?
-Why is it stable?
\longleftarrow not motivated: Z_{2}-parity put by hand

Dark Matter: 3 main questions

$\xrightarrow{\longrightarrow}$-Nature of DM?
-Why is it stable?

Scalar singlet DM, inert doublet DM, fermion singlet DM,...:
\longleftarrow motivated by minimality
\longleftarrow put by hand at right scale
\longleftarrow not motivated: Z_{2}-parity put by hand
in contrast with all known stable particles which are stable due to a fundamental reason:

- γ : because massless (due to gauge symmetry)
- lightest ν : because lightest fermion (Lorentz sym.)
- e^{-}: because lightest charged particle under exact $U(1)_{e m}$
- p^{+}: accidental sym. due to gauge SM sym. and particle content

Justifying DM stability from gauge sym. and particle content

\longrightarrow starting point of this talk
Known examples:

- R-parity as remnant of gauge $U(I)_{B-L}$
- $\operatorname{SU}(2)$ fermion quintuplet or scalar sevenplet: no possible interaction with SM fields causing its decay with dim < 6
\Rightarrow lifetime larger than universe age if Lambda $\sim M_{\text {GUT }}$
Cirelli, Fornengo, Strumia ‘06
- fermion SM singlet charged under a $\mathrm{U}(\mathrm{I})$ (with additional scalar to break it)
\rightarrow in all cases the stability is insured by a remnant Z_{2}
\longrightarrow could we have other kinds of global symmetries???

Custodial symmetry \Rightarrow DM stability

\longrightarrow simplest example: a gauged $\mathrm{SU}(2)+$ a scalar doublet ϕ

$$
\mathcal{L}=-\frac{1}{4} F^{\mu \nu a} F_{\mu \nu}^{a}+\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)-\mu_{\mu}^{2} \phi^{\dagger} \phi-\lambda_{\phi}\left(\phi^{\dagger} \phi\right)^{2}
$$

$$
\downarrow \quad \quad \phi=\binom{\phi^{+}}{\left(\eta+i a_{0}+v_{\phi}\right) / \sqrt{2}}
$$

ϕ gets a vev v_{ϕ}
\Rightarrow spectrum: - 3 degenerate massive gauge bosons $\mathrm{V}_{\mathrm{i}}: m_{V}=\frac{g_{\phi} v_{\phi}}{2}$

- one real scalar η : $m_{\eta}=\sqrt{2 \lambda_{\phi}} v_{\phi}$

This lagrangian has a custodial symmetry $\mathrm{SU}(2)_{\mathrm{C}}$ or equivalently a $\mathrm{SO}(3)_{\mathrm{C}}:\left(V_{1}^{\mu}, V_{2}^{\mu}, V_{3}^{\mu}\right)=$ triplet and $\eta=$ singlet
\Rightarrow the $3 \mathrm{~V}_{\mathrm{i}}$ are stable! $\leftarrow V_{i} \rightarrow \eta \eta, \ldots$ forbidden \longleftrightarrow but obviously this cannot work in the $S M \longleftarrow \leftarrow \begin{gathered}\left(S U(2)_{C} \text { assoclated to }\right. \\ \left.\text { broken by Yukawa's and } \theta_{W}\right)\end{gathered}$

Hidden sector through the Higgs portal

$\mathcal{L}=\mathcal{L}_{S M}+\mathcal{L}_{\text {Hidden }}$ Sector $+\mathcal{L}_{\text {Higgs portal }}$

$$
\begin{aligned}
& \mathcal{L}_{\text {Hidden Sector }}=-\frac{1}{4} F^{\mu \nu a} F_{\mu \nu}^{a}+\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)-\mu_{\phi}^{2} \phi^{\dagger} \phi-\lambda_{\phi}\left(\phi^{\dagger} \phi\right)^{2} \\
& \mathcal{L}_{\text {Higgs portal }}=-\lambda_{m} \phi^{\dagger} \phi H^{\dagger} H \\
& \longrightarrow \ni-\lambda_{m} v_{\phi} v h \eta \rightarrow \underline{h-\eta \text { mixing }} \\
& \downarrow \downarrow \\
& \text { doesn't spoil the stability of the } V_{i}^{\mu}
\end{aligned}
$$

Relic density

- $T \gtrsim m_{V}: V_{1,2,3}^{\mu}$ in thermal equilibrium with SM thermal bath
η with h : due to λ_{m} coupling
V_{i} with η :due to g_{ϕ} coupling
- $T<m_{V}: n_{V}^{\text {eq. }} \sim e^{-m_{V} / T} \Rightarrow$ annihilation freeze out (WIMP)

to two real η :
with at least one SM part. in final state:

with subsequent decay of η to SM particles via $h-\eta$ mixing

Relic density: additional new type of contribution

non abelian trilinear gauge couplings:

$$
F_{\mu \nu}^{a} F^{\mu \nu a} \ni \varepsilon_{i j k} \partial_{\mu} A_{i \nu}\left(A_{j}^{\mu} A_{k}^{\nu}-A_{j}^{\nu} A_{k}^{\mu}\right)
$$

do not lead to any V_{i} decay even if trilinear (carries $3 \neq$ indices)
but induces two DM to one DM particle annihilation
\neq from the Z_{2} case

\Rightarrow no dramatic effect for the freeze out (same order as other diagrams)

Small Higgs portal regime

$\longrightarrow \lambda_{m} \lesssim 10^{-3} \longleftarrow$ (but larger than $\sim 10^{-7}$ to have thermalization with the SM bath) $\longrightarrow V_{i} V_{i} \rightarrow \eta \eta, V_{i} V_{j} \rightarrow V_{k} \eta$ dominant \longrightarrow depend only on $g_{\phi}, v_{\phi}, \lambda_{\phi}$ with $m_{V}=\frac{g_{\phi} v_{\phi}}{2}, m_{\eta} \simeq \sqrt{2 \lambda_{\phi}} v_{\phi}$
\Rightarrow if λ_{ϕ} also small:

$$
\begin{gathered}
\sigma_{\text {annih }} \sim \frac{g_{\phi}^{4}}{m_{V}^{2}} \sim \frac{g_{\phi}^{2}}{v_{\phi}^{2}} \\
\downarrow \\
m_{V} \propto g_{\phi}^{2} \quad\left(\propto v_{\phi}^{2}\right)
\end{gathered}
$$

$\Rightarrow 1 \mathrm{MeV} \lesssim m_{D M} \lesssim 50 \mathrm{TeV}$

Small Higgs portal regime

$\longrightarrow \lambda_{m} \lesssim 10^{-3} \longleftarrow$ (but larger than $\sim 10^{-7}$ to have thermalization with the SM bath)
$\longrightarrow V_{i} V_{i} \rightarrow \eta \eta, V_{i} V_{j} \rightarrow V_{k} \eta$ dominant \longrightarrow depend only on $g_{\phi}, v_{\phi}, \lambda_{\phi}$ with $m_{V}=\frac{g_{\phi} v_{\phi}}{2}, m_{\eta} \simeq \sqrt{2 \lambda_{\phi}} v_{\phi}$
\Rightarrow if λ_{ϕ} large:

Small Higgs portal regime

$\left(\lambda_{m} \lesssim 10^{-3} \longleftarrow\right.$ (but larger than $\sim 10^{-7}$ to have thermalization with the SM bath) $\longrightarrow V_{i} V_{i} \rightarrow \eta \eta, V_{i} V_{j} \rightarrow V_{k} \eta$ dominant \longrightarrow depend only on $g_{\phi}, v_{\phi}, \lambda_{\phi}$ with $m_{V}=\frac{g_{\phi} v_{\phi}}{2}, m_{\eta} \simeq \sqrt{2 \lambda_{\phi}} v_{\phi}$

\Rightarrow works very fine but

 difficult to test (if λ_{m} tiny)but for example for $\lambda_{m}=10^{-3}$ the direct detection rate can be of order the experim. bound

$$
m_{V}(\mathrm{c}
$$

$$
\longrightarrow \sigma(V N \rightarrow V N) \sim 10^{-44} \mathrm{~cm}^{2}
$$

Large Higgs portal regime

$\longrightarrow \lambda_{m} \gtrsim 10^{-3} \Rightarrow$ large $\eta-h$ mixing \Rightarrow large hidden sec\longrightarrow can lead to the right $\Omega_{D M}$ even for maximal mixing

\Downarrow production at LHC of η just as for the Higgs in the SM but with possibly a larger mass

\Downarrow

T parameter constraint:

$$
\begin{aligned}
& \text { if } m_{\eta}=m_{h} \Rightarrow m_{h}=m_{\eta}<154 \mathrm{GeV}(3 \sigma) \\
& \text { if } m_{h}=120 \mathrm{GeV} \Rightarrow m_{\substack{\text { or larger if non } \\
\text { maximal mixing }}}^{m_{\eta}<\sim 240 \mathrm{GeV}(3 \sigma)}
\end{aligned}
$$

Large Higgs portal regime: direct detection

\Rightarrow can saturate the experimental bound for $m_{V} \lesssim 300 \mathrm{GeV}$
\Rightarrow large Higgs portal regime: very rich phenomenology

Pamela??? (the song of the siren)

observed excess of $10-100 \mathrm{GeV}$ cosmic positrons
requires an annihilation to positron: $\sigma v_{r} \simeq 3 \cdot 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$

\Rightarrow need for a $10^{3}-10^{4}$ boost of positron production: unlikely (\Rightarrow pulsars??)
\longrightarrow but if one tries: - astrophysics: a factor 10 boost at most

- particle physics: Sommerfeld enhancement
\Downarrow
from attractive long range force

First step: if boost large enough can we reproduce the Pamela spectrum?

\longrightarrow yes easily: one example:

First step: if boost large enough can we reproduce the Pamela spectrum?

yes easily: 2nd example:

Second step: can we get a large enough Sommerfeld boost?

\rightarrow
η mediated between $2 \mathrm{~V}_{\mathrm{i}}$ is attractive:
\Downarrow
Sommerfeld boost

Corelli, Struma, Tamburini ‘07

(in agreement with $\Omega_{D M}$ which fixes the Sommerfeld coupling)
\Rightarrow apparently the boost is large enough \Downarrow
explicit realization of ArkaniHated, Weiner et al mechanism

What about the non-perturbative regime of this model?

T.H., M. Tytgat, arXiv:0902?
$\mathrm{SU}(2)_{\text {Hidden Sect. }}$ confines automatically if $\Lambda_{S U(2)} \gg v_{\phi}$

but the custodial symmetry remains exact in this case too
't Hooft '98
$\Rightarrow \phi$ confines: boundstates are eigenstates of the custodial sym.:

- scalar state: $S \equiv \phi^{\dagger} \phi$ singlet of $\mathrm{SO}(3)$ expected the lightest
- "charged" vector state: $V_{\mu}^{+} \equiv \phi^{\dagger} D_{\mu} \tilde{\phi}$

$$
V_{\mu}^{-} \equiv \tilde{\phi}^{\dagger} D_{\mu} \phi
$$

$\mathrm{SO}(3)$ triplet

- "neutral" vector state: $\left.V_{\mu}^{0} \equiv \frac{\phi^{\dagger} D_{\mu} \phi-\tilde{\phi}^{\dagger} D_{\mu} \tilde{\phi}}{\sqrt{2}}\right\}$

Relic density in the confined regime

strongly interactive massive particle (SIMP)
annihilation cross section cannot be calculated perturbatively
$\downarrow \downarrow$
expected do-
minant channel:

\rightarrow if $S-h$ mixing is large (for large λ_{m})
$\sigma_{\text {annih. }} \sim \frac{A}{\Lambda_{S U(2)}^{2}} \stackrel{\downarrow}{\Rightarrow} \underline{m_{D M} \simeq 20-200 \mathrm{TeV}}$
\Rightarrow confining non-abelian hidden sector coupled to the SM through the Higgs portal: perfectly viable DM candidate

Higher dimensional operator effects

no possible dim-5 (gauge invar.) operators destabilizing the vector DM particles: only dim-6 operators

$$
\begin{gathered}
\Downarrow \\
\frac{D^{\mu} \phi^{\dagger} F_{\mu \nu} D^{\nu} \phi}{\Lambda^{2}}, \ldots
\end{gathered}
$$

\Rightarrow for $m_{V} \simeq 1 \mathrm{TeV}$ it leads to $\tau_{V}>\tau_{\text {Universe }}$ for $\Lambda \gtrsim 10^{13} \mathrm{GeV}$

$$
m_{V} \simeq 1 \mathrm{GeV}
$$

$\Lambda \gtrsim 10^{9} \mathrm{GeV}$

Summary

If one tries to justify DM stability from gauge symmetry and particle content (as in the SM) a very simple non Z_{2} possibility which emerges is by means of the custodial symmetry:
a hidden sector non-abelian gauge communicating with the SM through the Higgs portal

field with a scalar in the fundamental

\Rightarrow viable DM candidate within a large parameter range
either in the perturbative regime: DM = gauge bosons

$$
1 \mathrm{MeV} \lesssim m_{D M} \lesssim 50 \mathrm{TeV}
$$

\longrightarrow or in the confined regime: DM = vector boundstate in the adjoint

$$
m_{D M} \simeq 20-200 \mathrm{TeV}
$$

\Rightarrow rich phenomenology: direct detection, LHC (if $h-\eta$ mixing large), Pamela,...

