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Introduction

The WMAP results show that the primordial density perturbations are
coherent, predominantly adiabatic and generated on superhorizon scales.

Why is the PPS PR (k) important?

It can discriminate between models of inflation.

Cosmological parameter estimation depends on the PPS (e.g. an EdeS
model can fit the WMAP data if there is a ‘bump’ in the PPS Hunt &
Sarkar 2007, 2008).

Usually the PPS is assumed to be a power-law with PR (k) ∝ kns−1.

However, inflationary models involving abnormal initial conditions (e.g.
Brandenberger and Martin 2001), interruptions to slow-roll evolution
(Starobinsky 1992, 1998) or additional dynamical degrees of freedom (e.g.
Salopek, Bond and Bardeen 1989) produce a wide variety of spectra.

Given our ignorance of the physics behind inflation a model-independent
method of estimating the PPS is necessary.
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Maximum likelihood approach

Usually the PPS is given a simple parameterisation and fitted to the data,
together with the background cosmology, using MCMC likelihood analysis.

The PPS has been described using

bins in wavenumber Wang and Mathews 2002, Bridle et al. 2003,
Hannestad 2004, Bridges, Lasenby and Hobson 2006, Bridges et al. 2008

wavelets Mukherjee and Wang 2003, 2005

principal components Leach 2006

smoothing splines Sealfon, Verde and Jimenez 2005, Verde and Peiris
2008.

However, the recovered PPS has a limited resolution.

Paul Hunt Deconvoluting CMB (and other data sets)



Maximum likelihood approach

Usually the PPS is given a simple parameterisation and fitted to the data,
together with the background cosmology, using MCMC likelihood analysis.
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However, the recovered PPS has a limited resolution.
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Deconvolution approach

By contrast, deconvolution methods assume the background cosmology
(usually the concordance ΛCDM model) so that the transfer function is known,
and then invert the data to find the PPS.

Methods that have been used are

Richardson-Lucy deconvolution Shafieloo et al. 2007, Shafieloo and
Souradeep 2004, 2007

’Cosmic inversion’ Matsumiya, Sasaki and Yokoyama 2002, 2003, Kogo,
Matsumiya, Sasaki and Yokoyama 2004, Kogo, Sasaki and Yokoyama
2004, 2005, Nagata and Yokoyama 2008

Tikhonov regularisation Tegmark and Zaldarriaga 2002,
Tocchini-Valentini, Douspis and Silk 2005, Tocchini-Valentini, Hoffman
and Silk 2006

The number of PPS parameters is often greater than the number of data
points.
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By contrast, deconvolution methods assume the background cosmology
(usually the concordance ΛCDM model) so that the transfer function is known,
and then invert the data to find the PPS.
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The number of PPS parameters is often greater than the number of data
points.

Nagata and Yokoyama 2008
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Parameter estimation by deconvolution

Let us assume there are a number of data sets d
(1), d

(2), . . . , which satisfy

d
(I )
a =

X

i

W
(I )
ai (θ) si + c

(I )
a (θ) + n

(I )
a . (1)

θ ≡ {Ωb, Ωc , h, . . . }
si ≡ PR (ki )

N(I ) = 〈n(I )
n

(I )t〉

How can θ and the PPS s be determined from the data?

Clearly this cannot be done using one data set alone.

However, suppose we can obtain an estimate ŝ
(I ) from the data set d

(I ) by
deconvolution.

Only for the true θ will all the estimates agree Tegmark & Zaldarriaga 2002.

Then use a deconvolution method to obtain an estimate ŝ from all the data
sets.

Paul Hunt Deconvoluting CMB (and other data sets)



Deconvolution as an ill-posed problem

The data points of CMB anisotropy, galaxy clustering, Lyman α forest, cluster
abundance or weak lensing measurements can be written as

d
(I )
a =

Z

∞

0

K
(I )
a (k)PR (k) dk + n

(I )
a . (2)

Discretising the integral produces eq.(1).

The convolution with K
(I )
a (k) acts as a smoothing operation.

Conversely, noise in the data is amplified in the reconstructed PR (k).

Therefore the inverse problem of recovering the PPS has no unique stable
solution and is ill-posed according to the definition of Hadamard.

This is reflected in the matrices W(I )tW(I ) for example, which are usually

singular or ill-conditioned.
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Regularisation

Regularisation schemes can be used to obtain approximate solutions to ill-posed
problems, usually by employing prior information.

Bayes’ theorem states
P (s|d) ∝ P (d|s)P (s) .

Posterior

distribution Likelihood

function

Prior

distribution

Take the maximum a posteriori vector ŝ as our estimate of s.

If P (s) ∝ exp [−λR (s) /2] then maximising P (s|d) is equivalent to minimising

Q (s) = L (s) + λR (s) ,

where L (s) ≡ −2 lnP (d|s).

The regularization parameter λ balances L (s) and R (s).

Paul Hunt Deconvoluting CMB (and other data sets)



Choice of penalty function

From our knowledge of inflation the PPS is expected to be ‘smooth’ ⇒ choose
R (s) to enforce smoothness.

Zeroth-order Tikhonov regularisation:

R (s) = (s − s0)
t (s − s0) .

Here f is an initial guess for s.

nth-order Tikhonov regularisation:

R (s) = s
t Lt

nLn s ∝

Z
„

dnPR

d ln kn

«2
dk

k
,

where Ln is a discrete approximation to the nth-order derivative operator.

Maximum entropy regularisation:

R (s) =
X

i

„

si ln
si

fi
− si + fi

«

.
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Errors and bias

To characterise the error in the estimate for the PPS we use two covariance
matrices ΣB and ΣF which have Bayesian and frequentist motivations.

For most data sets P (s|d) is approximately gaussian ⇒ 〈s〉 = ŝ and

ΣB ≡ 〈(s − 〈s〉) (s − 〈s〉)t〉 = H−1 (ŝ) .

In the frequentist approach we imagine an ensemble of observers, each
measuring the data and estimating the PPS in the same way.

It can be shown that

ŝ (d1) = M (d1 − d2) + ŝ (d2) , Mia ≡ −
“

H
−1

C
”

ia
, Cia ≡ 2

∂2Q

∂si∂da

.

Hence
ΣF ≡ 〈(ŝ − 〈ŝ〉) (ŝ − 〈ŝ〉)t〉 = MNMt .

The bias of ŝ relative to the true PPS sT is b ≡ 〈ŝ〉− sT which has the estimate

b̂ = M
“

d̂ − d

”

, 〈b̂b̂
t〉 = (MW − I) ΣF (MW − I)t .

Paul Hunt Deconvoluting CMB (and other data sets)



Numerical minimisation

If

L (s) =
X

I

“

W(I )
s − d

(I )
”t “

N(I )
”

−1 “

W(I )
s − d

(I )
”

,

then for nth-order Tikhonov regularisation

ŝ = ΣB

X

I

W(I )t
“

N(I )
”

−1

d
(I ),

where

Σ−1
B = λLt

nLn +
X

I

W(I )t
“

N(I )
”−1

W(I ).

However, in general ∂Q/∂s = 0 must be solved numerically to obtain ŝ.

For Tikhonov regularisation use Newton-Raphson method as in
Tocchini-Valentini et al. 2006:

s
m+1
i = s

m
i −

1

2

X

j

H
−1
ij

∂Q

∂sj

, Hij ≡
1

2

∂2Q

∂si∂sj

.
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Results from WMAP5 TT spectrum alone
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We use 1st-order Tikhonov regularisation and choose λ so that χ2 = Ndata.

Paul Hunt Deconvoluting CMB (and other data sets)



Results from WMAP5 TT spectrum alone
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The fit to the unbinned WMAP data.
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Results from WMAP5 TT spectrum alone
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Estimate of bias of recovered PPS.
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Results from all data sets
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PPS from WMAP TT and TE, ACBAR, Boomerang, CBI, VSA and SDSS
LRG data using 1st-order Tikhonov regularisation.
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Results from all data sets
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The fit to the TT data.
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Results from all data sets
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The fit to the TE data.
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Results from all data sets
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The fit to the EE data.
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Results from all data sets
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The fit to the SDSS LRG data with bLRG = 1.9.
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Conclusions

We have developed a method which produces a high resolution reconstruction
of the PPS from multiple noisy data sets.

The method has a Bayesian interpretation and gives well defined error
estimates.

The recovered PPS show interesting features on large scales.

It should be possible to extend our method to isocurvature perturbations and
nonlinear data sets.

Our ultimate goal is to determine the cosmological parameters independently of
the PPS.
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BSI spectra

Interest in BSI spectra was stimulated by the WMAP-1 data which showed a
lack of power on large scales in CTT

ℓ reminiscent of an infrared cutoff in PR (k)
near the horizon scale.

The quadrupole is still anomalously low in the 5-year data (213+465
−135 µK2 cf.

1300 µK2 for power-law ΛCDM) and ‘glitches’ persist around ℓ = 22 and
ℓ = 40.

Motivated by these anomalies many BSI models of inflation have been
compared with the data e.g. Contaldi et al. 2003, Cline, Crotty and
Lesgourgues 2003, Feng and Zhang 2003, Kawasaki, Takahashi and Takahashi
2004, Gong 2005, Covi et al. 2006, Hunt and Sarkar 2004, 2007.
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CMB bandpowers

Due to incomplete sky coverage weighted averages of multipoles known as
bandpowers are ususally measured,

Ca =
X

ℓ,XX

W
XX
aℓ C

XX
ℓ .

Thus we have

Ca =
X

i

Wai si , Wai ≡
X

i,XX

W
XX
aℓ W

XX
ℓi .

ACBAR W TT
aℓ
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CMB likelihood functions

At high ℓ the likelihood function has an offset log-normal distribution Bond,
Jaffe and Knox 1998

L (s) =
X

ab

“

z
th

a − z
ob

a

”

(da + Na) N
−1
ab (db + Nb)

“

z
th

b − z
ob

b

”

+ ln detN,

where
z
th

a ≡ ln (Ca + Na) , z
ob

a ≡ ln (da + Na) .

This is sometimes approximated by a Gaussian distribution,

L (s) =
X

ab

(Ca − da) N
−1
ab (Cb − db) + ln detN.

The likelihood functions of some CMB experiments are

ACBAR, VSA: offset log-normal.

CBI, Boomerang: offset log-normal in some bandpowers, Gaussian in
others.

WMAP TT: hybrid Gaussian and offset log-normal at high ℓ, Gibbs
sampler at low ℓ.

WMAP TE/EE: Gaussian at high ℓ, pixel-based likelihood at low ℓ.
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CMB calibration and beam errors

Calibration error

Beam error

Take these errors into account by modifiying the covariance matrix

Nab → Nab + σ2
cCaCb + 4θ ∆θℓ2

aℓ
2
bCaCb .

For a Gaussian likelihood this is equivalent to analytic marginalisation over the
errors Bond et al. 2002
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