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Flat direction
direction in field-space,
along which the scalar
potential identically
vanishes (when all other
field VEVs=0)

general feature of
supersymmetric models

Inflation
epoch of accelerated
expansion of the Universe

Preheating
very efficient non-perturbative
particle production during
inflaton oscillations
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Toy model with a flat direction (Allahverdi, Mazumdar ’07)

V ⊃ 1
2

m2ϕ2 + Aϕ2χ2 + Bmϕχ2+Cα2χ2 (4)

α - parameterizes the flat direction

ω2
χk

= k2 + 2A 〈ϕ〉2 + 2Bm 〈ϕ〉+2C 〈α〉2 (5)
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Motivation

the challenge of constructing a consistent model of inflation
and particle production in a supersymmetric framework

generate large flat direction VEVs during inflation
create a potential for the flat direction−→ supergravity
consider classical evolution of VEVs during inflation

check the impact of large flat direction VEVs on particle
production

consider excitations around VEVs
study the evolution of the mass matrix
determine if preheating from the inflaton is possible
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Inflaton sector
M. Kawasaki, M. Yamaguchi, T. Yanagida "‘Natural Chaotic Inflation in Supergravity"’

Φ - inflaton superfield, X - auxiliary superfield

shift symmetry in the inflaton superfield in order to avoid
the eta problem

K ⊃ 1
2
(Φ + Φ†)2 + X †X , Φ = (η + iϕ)/

√
2 (6)

ϕ - inflaton field

auxiliary field X in order to obtain chaotic inflation potential
during inflaton domination

W ⊃ mXΦ (7)

V inflaton domination−→ 1
2

m2ϕ2 (8)
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Observable sector
MSSM superpotential

W ⊃ WMSSM (9)

coupling with the inflaton sector

W ⊃ 2hXHuHd (10)

Hd =
1√
2

(
χ
0

)

, Hu =
1√
2

(
0
χ

)

, χ = ceiκ (11)

representative flat direction udd

uβ
i = dγ

j = dδ
k =

1√
3
α, α = ρeiσ (12)
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Classical evolution during inflation

Initial conditions
ϕ0 ∼ 4MPl allows to study the last ∼ 100 e-folds of inflation

small initial VEVs (α0, χ0 ∼ δα, δχ ∼ H) for udd and HuHd

directions

Evolution of the inflaton

ϕ̈ + 3Hϕ̇ + V ,ϕ = 0 (15)
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Classical evolution during inflation

Spectral index
values of the spectral index 50-60 e-folds before the end of
inflation in the slow-roll approximation
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0.961

0.962
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0.966

ns

WMAP5: ns = 0.960+0.014
−0.013
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Preheating

Parameterization of excitations
consider excitations around fields belonging to
Hu, Hd , ui , dj and dk multiplets

VEV 6= 0 −→ field = (|VEV | + ξa) ei(phase(VEV )+ξb) (16)

VEV = 0 −→ field ∼ δa + iδb (17)
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Constructing the mass matrix Basbøll ’08

introduce excitations into the Lagrangian

L ⊃ 1
2
∂µΞT ∂µΞ−1

2
ΞT
(

M2
V + M2

kin

)
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M2

Ξ−Ξ̇T UΞ, Ξ = (ξi , δi)
T

(18)
where U is antisymmetric

transformation to the "‘inertial frame"’ of excitations

U = ȦT A, Ξ̃ = AΞ −→ L ⊃ 1
2
|∂µΞ̃|2 − 1

2
Ξ̃T M̃2Ξ̃ (19)

M̃2 = A
(

M2 − U2
)

AT = CM2
diagCT (20)
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2h + (a − 1) mϕ
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SUGRA



+
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3
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Toy model analogy

m2
χ = 2A 〈ϕ〉2 + 2Bm 〈ϕ〉+2C 〈α〉2 (24)
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M2 [1] ≈ g2

3
ρ2 + −m2ϕ2

2
(a − 1)

︸ ︷︷ ︸

SUGRA

+... (26)
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M2
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ξui + ξdj + ξdk

)

/
√

3

m2
abs ≈ −m2ϕ2

2
(a − 1) + f (a)

m2ϕ2

2
ρ2

︸ ︷︷ ︸

SUGRA

+... (27)

the excitation around the phase of the flat direction VEV
corresponds also to a naturally light eigenvalue

M2
1×1 [p] ≈ (1 − a)

m2ϕ2

2
+ g (a)

m2ϕ2

2
ρ2

︸ ︷︷ ︸

SUGRA

+... (28)
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Analyzing the mass matrix evolution, λα ≪ λχ ∼ 1

the time evolution of both m2
abs and M2

1×1 [p] leads to
non-perturbative particle production
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−→ melting of flat direction VEV and unblocking all other
channels of preheating
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Preheating

Analyzing the mass matrix evolution, λα ∼ λχ ∼ 1

SU(3) × SU(2) × U(1) → U(1)
an example of a naturally light eigenvalue corresponding to a
combination of excitations around VEVs of complex fields α
and χ parameterizing the (quasi) flat directions

3.´107 3.5´107 4.´107
Mt

-5.´10-12

5.´10-12

m52

−→ very efficient preheating into Higgs particles allowed from the beginning of inflaton
oscillations
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Conclusions

Achieving large flat direction VEVs through classical
evolution during inflation is natural in a supergravity
framework with non-minimal Kähler potential

Such large VEVs can block preheating from the inflaton
into certain channels

Supergravity effects and non-renormalizable terms, which
create a potential for the flat direction, are a source of light,
rapidly changing eigenvalues of the mass matrix. They
allow the non-perturbative production of particles from the
flat direction and preheating from the inflaton.

Non-perturbative particle production due to the time
evolution of the mass matrix eigenstates is not necessary
to reduce flat direction VEV and unblock preheating.

Non-perturbative particle production from the inflaton is
likely to remain the source of preheating even in the initial
presence of large flat direction VEVs.


