Preheating in supergravity and the role of flat directions

Anna Kamińska with Paweł Pachołek

arXiv:0901.0478

Institute for Theoretical Physics University of Warsaw

05.02.09

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

Preheating in supergravity and the role of flat directions

Supergravity

local supersymmetry —> promising extension of the Standard Model

Preheating in supergravity and the role of flat directions

Supergravity

local supersymmetry —> promising extension of the Standard Model

Flat direction

- direction in field-space, along which the scalar potential identically vanishes (when all other field VEVs=0)
- general feature of supersymmetric models

Preheating in supergravity and the role of flat directions

Supergravity

local supersymmetry promising extension of the Standard Model

Inflation

epoch of accelerated expansion of the Universe

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Flat direction

- direction in field-space, along which the scalar potential identically vanishes (when all other field VEVs=0)
- general feature of supersymmetric models

Preheating in supergravity and the role of flat directions

Supergravity

local supersymmetry —> promising extension of the Standard Model

Flat direction

- direction in field-space, along which the scalar potential identically vanishes (when all other field VEVs=0)
- general feature of supersymmetric models

Inflation

epoch of accelerated expansion of the Universe

Preheating

very efficient non-perturbative particle production during inflaton oscillations

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Preheating and flat directions

Toy model

$$V \supset \frac{1}{2}m^2\varphi^2 + A\varphi^2\chi^2 + Bm\varphi\chi^2 \tag{1}$$

 φ - inflaton field, χ - represents the inflaton decay products

$$\omega_{\chi_k}^2 = k^2 + 2A \langle \varphi \rangle^2 + 2Bm \langle \varphi \rangle$$
⁽²⁾

$$|\tau| \equiv \left|\frac{\dot{\omega}}{\omega^2}\right| > 1 \leftrightarrow \text{preheating}$$
 (3)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ の Q ()

Preheating and flat directions

Toy model

$$V \supset \frac{1}{2}m^2\varphi^2 + A\varphi^2\chi^2 + Bm\varphi\chi^2 \tag{1}$$

 φ - inflaton field, χ - represents the inflaton decay products

$$\omega_{\chi_{k}}^{2} = k^{2} + 2A \langle \varphi \rangle^{2} + 2Bm \langle \varphi \rangle$$
⁽²⁾

$$|\tau| \equiv \left|\frac{\dot{\omega}}{\omega^2}\right| > 1 \leftrightarrow \text{preheating}$$
 (3)

Toy model with a flat direction

(Allahverdi, Mazumdar '07)

$$V \supset \frac{1}{2}m^2\varphi^2 + A\varphi^2\chi^2 + Bm\varphi\chi^2 + C\alpha^2\chi^2$$
(4)

 α - parameterizes the flat direction

$$\omega_{\chi_k}^2 = k^2 + 2A \langle \varphi \rangle^2 + 2Bm \langle \varphi \rangle + 2C \langle \alpha \rangle^2$$
 (5)

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• generate large flat direction VEVs during inflation

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- generate large flat direction VEVs during inflation
 - create a potential for the flat direction

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

- generate large flat direction VEVs during inflation
 - $\bullet\,$ create a potential for the flat direction— supergravity

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

- generate large flat direction VEVs during inflation
 - $\bullet\,$ create a potential for the flat direction— supergravity

うつん 川 エー・エー・ エー・ ひゃう

• consider classical evolution of VEVs during inflation

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

- generate large flat direction VEVs during inflation
 - $\bullet\,$ create a potential for the flat direction— supergravity
 - consider classical evolution of VEVs during inflation
- check the impact of large flat direction VEVs on particle production

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

- generate large flat direction VEVs during inflation
 - $\bullet\,$ create a potential for the flat direction— supergravity
 - consider classical evolution of VEVs during inflation
- check the impact of large flat direction VEVs on particle production

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

consider excitations around VEVs

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

- generate large flat direction VEVs during inflation
 - create a potential for the flat direction \longrightarrow supergravity
 - consider classical evolution of VEVs during inflation
- check the impact of large flat direction VEVs on particle production

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- consider excitations around VEVs
- study the evolution of the mass matrix

• the challenge of constructing a consistent model of inflation and particle production in a supersymmetric framework

- generate large flat direction VEVs during inflation
 - create a potential for the flat direction \longrightarrow supergravity
 - consider classical evolution of VEVs during inflation
- check the impact of large flat direction VEVs on particle production
 - consider excitations around VEVs
 - study the evolution of the mass matrix
 - determine if preheating from the inflaton is possible

Inflaton sector

M. Kawasaki, M. Yamaguchi, T. Yanagida "Natural Chaotic Inflation in Supergravity"

 Φ - inflaton superfield, X - auxiliary superfield

Inflaton sector

M. Kawasaki, M. Yamaguchi, T. Yanagida "Natural Chaotic Inflation in Supergravity" Φ - inflaton superfield, X - auxiliary superfield

• shift symmetry in the inflaton superfield in order to avoid the eta problem

$$K \supset \frac{1}{2} (\Phi + \Phi^{\dagger})^2 + X^{\dagger} X, \quad \Phi = (\eta + i \varphi) / \sqrt{2}$$
 (6)

 φ - inflaton field

Inflaton sector

M. Kawasaki, M. Yamaguchi, T. Yanagida "Natural Chaotic Inflation in Supergravity" Φ - inflaton superfield, X - auxiliary superfield

• shift symmetry in the inflaton superfield in order to avoid the eta problem

$$K \supset \frac{1}{2}(\Phi + \Phi^{\dagger})^2 + X^{\dagger}X, \quad \Phi = (\eta + i\varphi)/\sqrt{2}$$
 (6)

 φ - inflaton field

• auxiliary field X in order to obtain chaotic inflation potential during inflaton domination

$$W \supset mX\Phi$$
 (7)

$$V \stackrel{inflaton \ domination}{\longrightarrow} \frac{1}{2} m^2 \varphi^2 \tag{8}$$

Observable sector

MSSM superpotential

$$W \supset W_{MSSM}$$
 (9)

Observable sector

MSSM superpotential

$$W \supset W_{MSSM}$$
 (9)

coupling with the inflaton sector

$$W \supset 2hXH_uH_d \tag{10}$$

$$H_d = rac{1}{\sqrt{2}} \left(egin{array}{c} \chi \\ 0 \end{array}
ight), \quad H_u = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \\ \chi \end{array}
ight), \quad \chi = c e^{i\kappa}$$
 (11)

Observable sector

MSSM superpotential

$$W \supset W_{MSSM}$$
 (9)

coupling with the inflaton sector

$$W \supset 2hXH_uH_d \tag{10}$$

nac

$$H_d = rac{1}{\sqrt{2}} \left(egin{array}{c} \chi \\ 0 \end{array}
ight), \quad H_u = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \\ \chi \end{array}
ight), \quad \chi = c e^{i\kappa}$$
 (11)

• representative flat direction udd

$$u_i^{\beta} = d_j^{\gamma} = d_k^{\delta} = \frac{1}{\sqrt{3}}\alpha, \quad \alpha = \rho e^{i\sigma}$$
 (12)

Observable sector

• non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right)$$
(13)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Observable sector

non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right)$$
(13)

Observable sector

• non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right)$$
(13)

Observable sector

non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right)$$
(13)

• non-renormalisable terms

$$W \supset \frac{\lambda_{\chi}}{M_{Pl}} \left(H_u \cdot H_d \right)^2 + \frac{3\sqrt{3}\lambda_{\alpha}}{M_{Pl}} \left(u_i d_j d_k \nu_R \right)$$
(14)

Observable sector

on non-minimal Kähler

$$K \supset \left(1 + \frac{a}{M_4^2} X^{\dagger} X\right) \left(H_u^{\dagger} H_u + H_d^{\dagger} H_d + u_i^{\dagger} u_i + d_j^{\dagger} d_j + d_k^{\dagger} d_k\right)$$
(13)

non-renormalisable terms

$$W \supset \frac{\lambda_{\chi}}{M_{Pl}} \left(H_u \cdot H_d \right)^2 + \frac{3\sqrt{3}\lambda_{\alpha}}{M_{Pl}} \left(u_i d_j d_k \nu_R \right)$$
(14)

Initial conditions

- $\varphi_0 \sim 4 M_{Pl}$ allows to study the last ~ 100 e-folds of inflation
- small initial VEVs (α₀, χ₀ ~ δα, δχ ~ H) for udd and H_uH_d directions

Initial conditions

- $\varphi_0 \sim 4 M_{Pl}$ allows to study the last ~ 100 e-folds of inflation
- small initial VEVs (α₀, χ₀ ~ δα, δχ ~ H) for udd and H_uH_d directions

Evolution of the inflaton

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0 \tag{15}$$

Initial conditions

- $\varphi_0 \sim 4 M_{Pl}$ allows to study the last ~ 100 e-folds of inflation
- small initial VEVs (α₀, χ₀ ~ δα, δχ ~ H) for udd and H_uH_d directions

Evolution of the inflaton

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0 \tag{15}$$

Initial conditions

- $\varphi_0 \sim 4 M_{Pl}$ allows to study the last \sim 100 e-folds of inflation
- small initial VEVs (α₀, χ₀ ~ δα, δχ ~ H) for udd and H_uH_d directions

Evolution of the inflaton

udd flat direction, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

▲ロト ▲理ト ▲理ト → 理 → のへで

udd flat direction, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

udd flat direction, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

▲ロト ▲理ト ▲理ト → 理 → のへで

$H_u H_d$ direction, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

▲日 → ▲聞 → ▲目 → ▲目 → ● ● ● ● ● ●

udd flat direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

udd flat direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

udd flat direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

udd flat direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

◆ロト ◆聞 ト ◆注 ト ◆注 ト ─ 注 ─

$H_u H_d$ direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

$H_u H_d$ direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

◆ロト ◆聞 ト ◆注 ト ◆注 ト ─ 注 ─

$H_u H_d$ direction, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

ヘロト 人間 とくほ とくほ とう

Ð.

Spectral index

values of the spectral index 50-60 e-folds before the end of inflation in the slow-roll approximation

Parameterization of excitations

consider excitations around fields belonging to *H_u*, *H_d*, *u_i*, *d_j* and *d_k* multiplets

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Parameterization of excitations

 consider excitations around fields belonging to *H_u*, *H_d*, *u_i*, *d_j* and *d_k* multiplets

$$VEV \neq 0 \longrightarrow field = (|VEV| + \xi_a) e^{i(phase(VEV) + \xi_b)}$$
 (16)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Parameterization of excitations

 consider excitations around fields belonging to *H_u*, *H_d*, *u_i*, *d_j* and *d_k* multiplets

$$VEV
eq 0 \longrightarrow field = (|VEV| + \xi_a) e^{i(phase(VEV) + \xi_b)}$$
 (16)

$$VEV = 0 \longrightarrow field \sim \delta_a + i\delta_b$$
 (17)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Constructing the mass matrix

Basbøll '08

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

introduce excitations into the Lagrangian

$$L \supset \frac{1}{2} \partial_{\mu} \Xi^{T} \partial^{\mu} \Xi - \frac{1}{2} \Xi^{T} \underbrace{\left(M_{V}^{2} + M_{kin}^{2} \right)}_{M^{2}} \Xi - \dot{\Xi}^{T} U \Xi, \ \Xi = \left(\xi_{i}, \ \delta_{i} \right)^{T}$$
(18)

where U is antisymmetric

Constructing the mass matrix

Basbøll '08

introduce excitations into the Lagrangian

$$L \supset \frac{1}{2} \partial_{\mu} \Xi^{T} \partial^{\mu} \Xi - \frac{1}{2} \Xi^{T} \underbrace{\left(M_{V}^{2} + M_{kin}^{2} \right)}_{M^{2}} \Xi - \dot{\Xi}^{T} U \Xi, \ \Xi = \left(\xi_{i}, \ \delta_{i} \right)^{T}$$
(18)

where U is antisymmetric

transformation to the "'inertial frame" of excitations

$$U = \dot{A}^{T} A, \ \tilde{\Xi} = A \Xi \longrightarrow L \supset \frac{1}{2} |\partial_{\mu} \tilde{\Xi}|^{2} - \frac{1}{2} \tilde{\Xi}^{T} \tilde{M}^{2} \tilde{\Xi}$$
(19)

$$\tilde{M}^2 = A \left(M^2 - U^2 \right) A^T = C M_{diag}^2 C^T$$
(20)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

$$\tilde{M}^{2} = \begin{pmatrix} M_{8\times8}^{2} [H_{u}H_{d}] & 0\\ 0 & M_{10\times10}^{2} [udd] \end{pmatrix}$$
(21)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\gamma} \sim 1$

$$\tilde{M}^{2} = \begin{pmatrix} M_{8\times8}^{2} [H_{u}H_{d}] & 0\\ 0 & M_{10\times10}^{2} [udd] \end{pmatrix}$$
(21)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $M_{8\times8}^2 [H_u H_d]$ has two different eigenvalues

$$m_1^2 \approx -\frac{m\varphi}{2} \left(2\sqrt{2}h + (a-1)m\varphi \right) + \frac{Y^2}{3}\rho^2 + \dots$$
(22)
$$m_2^2 \approx -\frac{m\varphi}{2} \left(-2\sqrt{2}h + \underbrace{(a-1)m\varphi}_{SUGRA} \right) + \frac{Y^2}{3}\rho^2 + \dots$$
(23)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\gamma} \sim 1$

$$\tilde{M}^{2} = \begin{pmatrix} M_{8\times8}^{2} [H_{u}H_{d}] & 0\\ 0 & M_{10\times10}^{2} [udd] \end{pmatrix}$$
(21)

 $M_{8\times8}^2 [H_u H_d]$ has two different eigenvalues

$$m_1^2 \approx -\frac{m\varphi}{2} \left(2\sqrt{2}h + (a-1)m\varphi \right) + \frac{Y^2}{3}\rho^2 + \dots$$
 (22)

$$m_2^2 \approx -\frac{m\varphi}{2} \left(-2\sqrt{2}h + \underbrace{(a-1)m\varphi}_{SUGRA} \right) + \frac{Y^2}{3}\rho^2 + \dots$$
 (23)

Toy model analogy

$$m_{\chi}^{2} = 2A \langle \varphi \rangle^{2} + 2Bm \langle \varphi \rangle + 2C \langle \alpha \rangle^{2}$$
(24)

・ロト・日本・エリト ヨー もくの

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\gamma} \sim 1$ $SU(3) \times U(1) \rightarrow U(1)$ $M^{2}[udd] = \begin{pmatrix} M_{1\times1}^{2}[p] & & \\ & M_{3\times3}^{2}[f] & & \\ & & M_{1\times1}^{2}[1] & \\ & & & & \\ & & & & M_{1\times1}^{2}[6] \end{pmatrix}$ (2) (25) $M^{2}[1] \approx \frac{g^{2}}{3}\rho^{2} + \underbrace{-\frac{m^{2}\varphi^{2}}{2}(a-1) + ...}_{2}$ (26)SUGRA

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

 $M_{3\times3}^2[f]$ has two heavy eigenvalues

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$ $M_{3\times3}^2[f]$ has two heavy eigenvalues and one naturally light eigenvalue corresponding to $(\xi_{u_i} + \xi_{d_j} + \xi_{d_k})/\sqrt{3}$

$$m_{abs}^2 \approx \underbrace{-\frac{m^2 \varphi^2}{2} (a-1) + f(a) \frac{m^2 \varphi^2}{2} \rho^2}_{\text{SUGRA}} + \dots$$
 (27)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$ $M_{3\times3}^2[f]$ has two heavy eigenvalues and one naturally light eigenvalue corresponding to $(\xi_{u_i} + \xi_{d_j} + \xi_{d_k})/\sqrt{3}$

$$m_{abs}^2 \approx \underbrace{-\frac{m^2 \varphi^2}{2} (a-1) + f(a) \frac{m^2 \varphi^2}{2} \rho^2}_{SUGRA} + \dots$$
 (27)

the excitation around the phase of the flat direction VEV corresponds also to a naturally light eigenvalue

$$M_{1\times 1}^{2}[p] \approx \underbrace{(1-a)\frac{m^{2}\varphi^{2}}{2} + g(a)\frac{m^{2}\varphi^{2}}{2}\rho^{2}}_{SUGRA} + \dots$$
(28)

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

the time evolution of both m_{abs}^2 and $M_{1\times 1}^2[p]$ leads to non-perturbative particle production

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$

the time evolution of both m_{abs}^2 and $M_{1\times 1}^2[p]$ leads to non-perturbative particle production

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\chi} \sim 1$ the time evolution of both m_{abs}^2 and $M_{1\times 1}^2[p]$ leads to non-perturbative particle production

Analyzing the mass matrix evolution, $\lambda_{\alpha} \ll \lambda_{\gamma} \sim 1$ the time evolution of both m_{abs}^2 and $M_{1\times 1}^2$ [p] leads to non-perturbative particle production 6×10^7 8×10^7 1×10^8 1.2×10^8 1.4×1 -1.0-2.0-2.5 -3.0channels of preheating

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Analyzing the mass matrix evolution, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$ $SU(3) \times SU(2) \times U(1) \rightarrow U(1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

Analyzing the mass matrix evolution, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

 $SU(3) \times SU(2) \times U(1) \rightarrow U(1)$

an example of a naturally light eigenvalue corresponding to a combination of excitations around VEVs of complex fields α and χ parameterizing the (quasi) flat directions

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Analyzing the mass matrix evolution, $\lambda_{\alpha} \sim \lambda_{\chi} \sim 1$

 $SU(3) \times SU(2) \times U(1) \rightarrow U(1)$

an example of a naturally light eigenvalue corresponding to a combination of excitations around VEVs of complex fields α and χ parameterizing the (quasi) flat directions

 \longrightarrow very efficient preheating into Higgs particles allowed from the beginning of inflaton oscillations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential
- Such large VEVs can block preheating from the inflaton into certain channels

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential
- Such large VEVs can block preheating from the inflaton into certain channels
- Supergravity effects and non-renormalizable terms, which create a potential for the flat direction, are a source of light, rapidly changing eigenvalues of the mass matrix. They allow the non-perturbative production of particles from the flat direction and preheating from the inflaton.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential
- Such large VEVs can block preheating from the inflaton into certain channels
- Supergravity effects and non-renormalizable terms, which create a potential for the flat direction, are a source of light, rapidly changing eigenvalues of the mass matrix. They allow the non-perturbative production of particles from the flat direction and preheating from the inflaton.
- Non-perturbative particle production due to the time evolution of the mass matrix eigenstates is not necessary to reduce flat direction VEV and unblock preheating.

- Achieving large flat direction VEVs through classical evolution during inflation is natural in a supergravity framework with non-minimal Kähler potential
- Such large VEVs can block preheating from the inflaton into certain channels
- Supergravity effects and non-renormalizable terms, which create a potential for the flat direction, are a source of light, rapidly changing eigenvalues of the mass matrix. They allow the non-perturbative production of particles from the flat direction and preheating from the inflaton.
- Non-perturbative particle production due to the time evolution of the mass matrix eigenstates is not necessary to reduce flat direction VEV and unblock preheating.
- Non-perturbative particle production from the inflaton is likely to remain the source of preheating even in the initial presence of large flat direction VEVs.