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Conventions: We use late greek letters for curve space indices, i.e., pu,v.. =
0,1,2,3, early greek letters for flat space indices ie., o, (... = 0,1,2,3. In
addition we use ¢, 7, m, ... = 1,2, 3 for curve indices and a, b, ... = 1,2, 3 for flat

indices except otherwise explicitly declared. Curvature tensors and ~y algebra are

defined as
Ry = 0w, + w, ) = (p = v), (1)
R, =¢€jR,,", \R=¢'R," (2)
(Yo v8} = 20w s M = (= 4+, H)5 = +1, P =41, (3)

Gravitini are Majorana spinors and the latter satisfy

5\%1---%7&( = (—)"XYay, -+ Yoy A (4)
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I. INTRODUCTION

Although Minkowski and anti-de Sitter backgrounds are quite common in su-
pergravity, the existence of de Sitter vacua has been questioned. For example
there exists a N = 1 supergravity with a cosmological term Townsend (1977) with

lagrangian
1 1 v 2 n W
[’ — 26R o 2¢/LFM le/¢p + 669 + 2€Q¢MF’L % (5)
[t is invariant under

deth = ey, (6)

01, =2D,e + gv,e€ (7)
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From the sign of the cosmological term we see that this theory has an anti-de
Sitter vacuum. An opossite cosmological term (for a de Sitter background to
exists) will lead to inconsistencies (imaginary action, etc. )

Similarly, one may add a cosmological term in the N' = 2 theory. In this case,
insisting on the existence of a de Sitter vacuum, the bosonic part of the action

turns out to be (in the mostly-plus convention for the metric)

1 1
= _ “F, FM
L 2R + il -+ (8)

so that de Sitter local supersymmetry has vector-ghosts. On the group-theoretic
side, one may prove that there are no non-trivial representations of the de Sitter

O(3,2) algebra on a positive Hilbert space.
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This conclusion was further supported by the fact that:

higher-dimensional supergravities do not admit stable ground states with a

positive cosmological constant Gibbons, deWit et al., Maldacena-Nunez

Why looking for de Sitter vacua in first place?

For various reasons:

e The simplest model accounting for the observed accelerated expansion in-

volves backgrounds with a tiny positive cosmological constant.

e de Sitter, anti-de Sitter and Minkowski spaces are spaces of maximal symme-

try.
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e (OFT in de Sitter space has particular features not shared by QFT on Minkowski

spacetime.

e theoretical reasons

For these reasons, we see a lot of activity in searching for de Sitter (dS) vacua
in the effective four-dimensional supergravity description of string theory com-
pactifications in the N' = 1 context. Effects like gaugino condensation or back-
ground fluxes may stabilize the moduli fields. The generic vacuum is, however,
anti-de Sitter (AdS) or Minkowski space, and it appears as an exception the

non-supersymmetric dS vacua. There are various proposals for the uplifting of
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an N' = 1 4D Minskowski or AdS vacuum to a dS one, like for example in
the KKLT model where non-perturbative effects as well as D3 supersymmetry
breaking terms leads to a stable volume modulus and a fine-tuned cosmologi-

cal constant. However all these considerations have assumed vanishing fermionic

fields.

Here we would like to explore the possibility of de Sitter vacua in supergravity

when fermionic fields are turned on.
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II. N=2 SUPERGRAVITY

The simplest extended supergravity is the N/ = 2 extended model. It was con-
structed by Ferrara and van Nieuwenhuizen (1979) by coupling the (2,3/2) gravi-
ton multiplet to the (3/2,1) matter multiplet of the N' = 1 theory. Thus, it

contains:

a graviton, | a U(1) gauge field | two gravitini

9uv AII ’g/)/]“ ([ = 1 2)

[t is described by the action

e U oo T e
L = %QR@M) - 26“ : %INS%Dp(WWi - 4Fﬁy (10)
Sl e Py 4 B B0l )

44/2 7 2 v
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1
D,u(w) = a,u + SWuQﬁh/avfyﬁ] ) (12)

and F v 18 the supercovariant photon curl
2 K rgor,.J
EILV — Fw/ — ﬁe ¢[Mwy] (13)

In the 1.5 formalism, the spin connection w is not independent variable. It

contains 1-torsion and it is given by
Wiiag =Wpag +Has (14)

where

0 L, 1,
W 0= 56(1 (Qﬁﬁy — (‘L@gu) — 565 (a'ueOzV - 6V€oz,u) (15>
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is the torsion-free part of the connection and

2
/{'/ _ — —
Kyap = (Vuvetfh = Gus0s + i) (16)

is the contortion tensor. Torsion itself is easily found to be
K2 o1 el
T = Dyej, — D6, = 2¢M’yo‘¢y : (17)

This action is invariant then under the supersymmetry transformations (with

5&)#@5 = 0)

K 1.7 17
ﬁﬁ ¢/~L€ (18)

T AH
FMX)/)\—I—QGF 7A75> ¢’

563 — /{E[q/azp/{“ 0A, =

2 K
51% = KDM(W)€I+2\/§EU(
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I1I. SUPERGRAVITY IS A TELEPARALLEL THEORY

Supergravity can be formulated in such a way that it has zero curvature but non-
zero torsion. (The same as standard GR). Ferrara and van Nieuwenhuizen (1979) For

example the telleparallel action of the N = 1 supergravity is

1 vVpo rva 1 2
S = /d4 ( 26“ : %75% pwo - 8 ,uya Qw/aQM + QAI/)\ ) (19)

where

2
K% _
Q;wa - _8,ueau + aueau + 2%%% (20)

The spin connection

Wap, = 0 so that RWO‘B 0ﬂwyo‘ﬁ + wumwwﬁ (< v)=0
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(the Riemann tesnor vanish). However, torsion is not zero

2
K4 _
Ta/w — 2¢/1,/7a¢1/-

The fact hat supergravity as well as GR can be formulated in “flat” space with
zero curvature and non-zero torsion is simply a rewritting of the same theory and

it is considered as a curiosity rather a result of fundamental importance.

But why -torsion may allow for dS solution?

It is a possible as may be seen by considering Raychaudhuri equation For example,
in the case of a timelike geodesic congruence, Raychaudhuri equation reads

: 1
= —392 — 0+ w? — Ryu™u’



where

02 =00 >0 (0ap shear)
w2 = wuw™ >0 (wap Vorticity)
0 = V,u" (expansion)

In the presence of torsion Raychaudhuri equation turns out to be

: 1
0 = —392 —o* +w? = Ryuu’ + S(o,w,T)

XIV
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IV. SOLUTIONS OF THE N=2 SUPERGRAVITY

Question: Are there solutions where not only gravity but also gravitini are

turned on?
Answer: Yes by ensuring that the graviphoton A,, can consistently set to zero.
This is possible for example if the gravitini satisfy

el =0, (21)

70, (Pl e 0. 2)

In this case we can consistently set the graviphoton field

A, =0
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as this choice satisfies its equation of motion. Then the rest of the field equations

for gravity and gravitini fields are

Gt = e D 2
"5, Dty = 0 (24)

where
GV = Ro(e,w) — ;e§R<e, W) (25)

is the Einstein tensor. It should be stressed that the Einstein tensor in eqs.(23,25)
is calculated with the spin-connection w in eq.(14) which contains torsion terms as

well. Thus, it is not symmetric as the right hand side of eq.(23) is not symmetric
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either. In standard GR for example we have the Bianchi identities

GV/)(THiR/I,VpU — 0 (26)

R“V[H)\;a] =0 (27)

However, in supergravity, due to t-torsion, the Riemann tensor R*,,, is not
totally antisymmetric in its three lower indices but rather satisfies the Bianchi

identity

2 —

TR g = o G DA (28)

from where we find that

G[M} = R[A/@] = (DHT)/\LH + DATZLIE + Duﬂi\) (29)

1
2



GRAVITINO DRESSED BACKGROUNDS

Our aim here is to solve the supergravity equations

Go = —;KQE“”’)"%%%D/)#
6“”’)‘775%Dpw£ =0
We will assume a background metric of the form

ds® = —dt* + a(t)? (dmf + das + d:c%)

and time depended gravitino fields

XVIII

(30)

(31)

(32)

(33)
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By making the ansatz

@DS:@W wqjlzfyiqvbv
where
w - (Ul, Uz, Uy, UQ) 3 0 = (_ula Ug, —Uy, u2) (35)

one may easily check that eq.(22) is satisfied for anticommuting (Grassmann)
uy, uo. We will satisfy eq.(22) in a moment consistently with a vanishing gravipho-

ton field. Then, the only non-zero components of the torsion (17) are

T = 4K*a(t)uus 6 (36)



On the other hand, in the orthonormal frame
) =dt, e =a(t)dz,

we find that the spin connection w is given by

a a
Woa = — ( - H) 5abeb7 Wa0 — ( — H) 5ab€b
a a
where
H = 4rk%a(t)*usuy
The gravitini equations are written as
1 1

at(%’¢> = éwmbg a%, at(%'e) — §wiabo_ ab@

XX

(37)

(38)

(39)



which turns out to be

dy(ar) + g (Z - H) Yoy =0,

O¢(ab) + ;L (a — H) Yl =0

a

It follows from the equations above that

(0)

where u;’ = const. and

H = 4k*a(t)*usu; = 4/{2ugo)u§0)

XXI

(40)

(41)

(42)

(43)

is also constant. It is easy to verify then that (41) satifies eq.(22) justifying that
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we have consistently set the graviphoton field to zero. The Einstein equations

turned then out to be
G(w) =0. (44)

Since for the solution (42), the spin connection w = 0 and clearly eq.(44) is

satisfied. The solution to eq.(42) is
a(t) = e’ (45)
so that the background metric turns out to be the de Sitter metric

ds® = —dt* + ! <d:v% + dx3 + d:c%) : (46)
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Isometries

It should be noted that the introduction of a non-zero gravitino fields as in eq.(33)
are not consistent with the symmetries of the background. The background (46)

has an SO(1,4) symmetry generated by the 10 Killing vectors {5 with

5?0) =1, f(kb) = —Hz", 5?&) =0, & =0, f&) =0, & =é"ya',

ks 2 6_2Ht k s
O | re — — 2"

0 _ .5 ko _
g(s) =T, 5(9) =H 2 ) (47)

where (k= 1,2,3) , (aa =1,2,3), (A =4,5,6) and (s = 7,8,9). Then, for the

Killing vectors (47) and the gravitini in eq.(33,34), we find that,

55Aw;[; — Emwi — Dueﬁl (48)
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where € is the field depended supersymmetry parameter

ex = Eivy (49)

and £ denotes the Lie derivative. As a result, the gravitino is invariant under

the SO(1,4) de Sitter group up to a sypersymmetry transformation.
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CONCLUSIONS

e There are unexploited issues in supergravity theory

e Fermionic dressed backgrounds might be interesting in cosmology

e Supersymmetry breaking

e Torsion: non-vanising gravitino leads in general to non-zero torsion. Can we

measure the the latter?



