The Volume of the Universe after Inflation and de Sitter Entropy

Giovanni Villadoro
(CERN)

Outline

• Basics of inflation and eternal inflation

• Quantum Gravity and de Sitter space
 • Analogies and differences w/ black hole physics
 • An 'holographic' bound
 • Definition of the probability distribution of the volume

• Calculating $\rho(V)$
 • From inflation to bacteria
 • From bacteria back to inflation: a non-linear differential eq.
 • Solving the equation
 • Results, systematics and corrections

• Discussion
The Universe is accelerating today...

...and probably it did so also in the past
The Universe is accelerating today...

...and probably it did so also in the past

Standard Solution

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi G T_{\mu\nu} = \Lambda g_{\mu\nu} + \ldots \]

CC contribution dominates

\[ds^2 \simeq -dt^2 + e^{2Ht} d\bar{x}^2 \]

approx. de Sitter
Slow roll inflation...

\[\Delta t = H^{-1} \]

\[a(t) = e^{H\Delta t} = e \]
Slow roll inflation...

\[\Delta t = H^{-1} \]

every 1 e-folding

\[a(t) = e^{H\Delta t} = e \]

Hubble Expansion

\[V(t + \Delta t) = V(t)e^3 \]
Slow roll inflation...

\[\Delta t = H^{-1} \]

\[o(t) = e^{H \Delta t} = e \]

Hubble Expansion

\[V(t + \Delta t) = V(t)e^3 \]

Random Walk

\[
\frac{\partial P(\phi, t)}{\partial t} = \frac{H^3}{8\pi^2} \frac{\partial^2 P(\phi, t)}{\partial \phi^2} + \phi \frac{\partial P(\phi, t)}{\partial \phi}
\]

Quantum Fluctuations

\[\langle \delta \phi^2 \rangle = \frac{H^3}{4\pi^2} \Delta t \approx H^2 \]

Starobinsky, Linde 86

Vilenkin, Ford, Linde, Starobinsky 82
Slow roll inflation...

\[\Delta t = H^{-1} \]

\[a(t) = e^{H\Delta t} = e \]

Hubble Expansion

\[V(t + \Delta t) = V(t)e^{3} \]

Random Walk

\[\frac{\partial P(\phi, t)}{\partial t} = \frac{H^{3}}{8\pi^{2}} \frac{\partial^{2} P(\phi, t)}{\partial \phi^{2}} + \phi \frac{\partial P(\phi, t)}{\partial \phi} \]

Quantum Fluctuations

\[\langle \delta \phi^{2} \rangle = \frac{H^{3}}{4\pi^{2}} \Delta t \sim H^{2} \]

Starobinsky, Linde 86

Vilenkin, Ford, Linde, Starobinsky 82

...and Eternal Inflation

\[\delta \phi_{q} \gtrsim \delta \phi_{cl} = \dot{\phi} \Delta t = \frac{\dot{\phi}}{H} \]

\[\frac{\dot{\phi}}{H^{2}} \lesssim 1 \]

Linde, Goncharov, Mukhanov 86-87

i.e. when quantum fluctuations win against classical rolling inflation never ends globally
Slow roll, eternal inflation and de Sitter

\[\varepsilon_c \ll \varepsilon \ll 1 \]

\[\sim dS \]

\[= \text{FRW} \]

\[\varepsilon \leq \varepsilon_c \]

\[= dS \]
Slow roll, eternal inflation and de Sitter

The difference is fundamental for defining quantum gravity
Quantum Gravity is non-local at the non-perturbative level from:
metric fluctuates, Bekenstein bound, black hole physics...
(Quantum) Gravity in de Sitter space

Quantum Gravity is non-local at the non-perturbative level

from:
metric fluctuates,
Bekenstein bound,
black hole physics...

indeed known description of QG are defined on boundaries:
String Theory via S-matrix on Mink
AdS/CFT defined on the boundary of AdS
Analogies with black holes...

- **horizon physics**, finite temperature, Hawking radiation...
- and in particular a **finite Entropy** ($S=A/4$)
- Metastability (CdL, HM, Poicare recurrence)

...and differences

- de Sitter is an infinite space (finite entropy?)
- eternal inflation never ends globally
- analogue of an information paradox?
Analogies with black holes...

- **horizon physics**, finite temperature, Hawking radiation...
- and in particular a **finite Entropy** \(S = A/4 \)
- Metastability (CdL, HM, Poicare recurrence)

...and differences

- de Sitter is an infinite space (finite entropy?)
- eternal inflation never ends globally
- analogue of an information paradox?

Lessons from black hole physics:

- Complementarity governs the global description of black-hole geometry
- AdS/CFT says that black hole evaporation process is **unitary**
- \[\Gamma > e^{-S_{dS}} \]
- EFT have no problem in describing local physics
- but **EFT breaks down** for global **IR** quantities
 which are sensitive to **non-perturbative** effects
Applying the black hole lesson...

\[N \sim M_{Pl}^2 R_S^2 \sim S_{bh} \]

\[t \sim M_{Pl}^2 R_S^3 \sim S_{bh} R_S \]

\(N \)-point function: when non-perturbative effects become of \(O(1) \)

EFT breaks down when \# d.o.f. seen start becoming larger than \(S_{bh} \).
applying the black hole lesson...

N-point function: when non-perturbative effects become of \(O(1) \)

\[
N \sim M_{Pl}^2 R_S^2 \approx S_{bh}
\]

EFT breaks down when # d.o.f. seen start becoming larger than \(S_{bh} \)

...to de Sitter

Using inflation as a regulator of de Sitter

After inflation one observer can see \(\sim e^{3N} \) independent Hubble patches

\[
e^{3N} \text{ should be bounded by } e^{S_{dS}}
\]

\[
N \lesssim S_{dS} \quad \Rightarrow \quad t \lesssim S_{dS} H^{-1}
\]
indeed...

In any theory of inflation (satisfying the NEC)

\[\delta \phi_q \lesssim \delta \phi_{cl} \Rightarrow \frac{\dot{H} M^2_{Pl}}{H^4} \gtrsim 1 \Rightarrow \frac{dS_{ds}}{dN} \gtrsim 1 \]

\[N \lesssim S_{ds} \]

no eternal inflation

Arkani-Hamed et al. 07
In any theory of inflation (satisfying the NEC)

\[\delta \phi_q \lesssim \delta \phi_{cl} \Rightarrow \frac{\dot{H} M^2_{Pl}}{H^4} \gtrsim 1 \Rightarrow \frac{dS_{dS}}{dN} \gtrsim 1 \]

\[N \lesssim S_{dS} \]

Is there a "sharp" bound?

1) It exists a sharp bound for the phase transition to slow-roll eternal inflation

\[\Omega \equiv \frac{2\pi^2}{3} \frac{\dot{\phi}^2}{H^4} > 1 \]

\[N_c < \frac{1}{12} S_{dS} \]
1) It exists a sharp bound for the phase transition to slow-roll eternal inflation

\[\delta \phi_q \lesssim \delta \phi_{el} \Rightarrow \frac{\dot{H} M^2_{Pl}}{H^4} \gtrsim 1 \Rightarrow \frac{dS_{dS}}{dN} \gtrsim 1 \]

\[N \lesssim S_{dS} \]

Arkani-Hamed et al. 07

2) Quantum fluctuations require to look at the probability distribution of \(N \)

\[\Omega \equiv \frac{2 \pi^2}{3} \frac{\dot{\phi}^2}{H^4} > 1 \]

\[N_c < \frac{1}{12} S_{dS} \]

Creminelli et al. 08

Is there a "sharp" bound?

In any theory of inflation (satisfying the NEC)

no eternal inflation

Indeed...
The probability distribution of the Volume of the Universe after Inflation:

\[\rho(V; \phi) \]

probability that starting with the inflaton at the position \(\phi \) (and a volume \(V_0 = H^{-3} \)) the Universe will have a finite volume \(V \) at \(t \to \infty \), or equivalently that the reheating surface will have volume \(V \).
Slow Roll Inflation as a Bacteria Model

quantum fluctuations

end of inflation

random walk

dead bacteria
Slow Roll Inflation as a Bacteria Model

quantum fluctuations

end of inflation

of dead bacteria = # Hubble patches

random walk
dead bacteria
From the Bacteria to the Fokker-Planck equation

\[P(j, n + 1) = (1 - p)P(j - 1, n) + p P(j + 1, n) \]
From the Bacteria to the Fokker-Planck equation

Matching bacteria with inflaton

\[j = \frac{\phi}{\Delta \phi}, \quad n = \frac{t}{\Delta t}. \]

\[N_r = e^{3H \Delta t} \simeq 1 + 3H \Delta t \]

Random Walk + Drift

\[(1 - 2p) \frac{\Delta \phi}{\Delta t} = \dot{\phi} \quad \Rightarrow \quad p = \frac{1}{2} + \sqrt{6\pi^2 \Omega \frac{\Delta \phi}{H}}, \]

\[P(j, n + 1) = (1 - p)P(j - 1, n) + p P(j + 1, n) \]
From the Bacteria to the Fokker-Planck equation

Matching bacteria with inflaton

\[j = \frac{\phi}{\Delta \phi}, \quad n = \frac{t}{\Delta t}. \]

\[N_r = e^{3H\Delta t} \approx 1 + 3H\Delta t \]

Random Walk + Drift

\[(1 - 2p) \frac{\Delta \phi}{\Delta t} = \dot{\phi} \quad \Rightarrow \quad p = \frac{1}{2} + \sqrt{\frac{6\pi^2 \Omega}{H}} \]

Taking the Continuum Limit

\[(\Delta \phi)^2 = \frac{H^3}{4\pi^2 \Delta t} \]

\[\frac{4\pi^2}{H^3} \partial_t P(\bar{\phi}, t) = \frac{1}{2} \partial_{\bar{\phi}}^2 P(\bar{\phi}, t) + \frac{2\sqrt{6\pi^2 \Omega}}{H} \partial_{\bar{\phi}} P(\bar{\phi}, r), \]
...taking into account the replication: the generating function

\[f^{(n)}_i(s_j) = \sum_{k_1 \ldots k_L} p^{(n)}_{i;k_0 \ldots k_L} s_0^{k_0} \cdots s_L^{k_L} \]

probability to have after \(n \)-steps

\(k_0 \) bact. in site 0

\(k_1 \) bact. in site 1

e tc..

starting from site \(i \)
...taking into account the replication: the generating function

\[f_i^{(n)}(s_j) = \sum_{k_1...k_L} p_{i,k_0...k_L}^{(n)} s_0^{k_0} \cdots s_L^{k_L}, \]

where \(i \) is the starting point.

Probability to have after \(n \)-steps:
- \(k_0 \) bact. in site 0
- \(k_1 \) bact. in site 1
- etc..

Starting from site \(i \)

1-step generating function:

\[
\begin{align*}
 f_0^{(1)}(s_0, \ldots, s_L) &= s_0, \\
 f_1^{(1)}(s_0, \ldots, s_L) &= (1 - p)s_2 + p s_0)^N, \\
 & \vdots \\
 f_i^{(1)}(s_0, \ldots, s_L) &= (1 - p)s_{i+1} + p s_{i-1})^N, \\
 & \vdots \\
 f_L^{(1)}(s_0, \ldots, s_L) &= (1 - p)s_L + p s_{L-1})^N,
\end{align*}
\]
...taking into account the replication: the generating function

\[f_i^{(n)}(s_j) = \sum_{k_1 \ldots k_L} p_i^{(n)}_{k_1 \ldots k_L} s_0^{k_0} \ldots s_L^{k_L} , \]

where:
- \(i \) – starting point
- \(n \) steps
- \(s_0 \) bact. in site 0
- \(s_1 \) bact. in site 1
- etc..

1-step generating function

\[
\begin{align*}
 f_0^{(1)}(s_0, \ldots, s_L) &= s_0, \\
 f_1^{(1)}(s_0, \ldots, s_L) &= ((1 - p)s_2 + p s_0)^{N_r}, \\
 &\vdots \\
 f_i^{(1)}(s_0, \ldots, s_L) &= ((1 - p)s_{i+1} + p s_{i-1})^{N_r}, \\
 &\vdots \\
 f_L^{(1)}(s_0, \ldots, s_L) &= ((1 - p)s_L + p s_{L-1})^{N_r}.
\end{align*}
\]

Iterating \(n \)-times

\[F_{n+1} = F_1(F_n) . \]

\(n \rightarrow \infty \) limit

\[F_1(F_\infty) = F_\infty . \]

Asymptotic equations

\[
\begin{align*}
 f_0^{(\infty)}(s_0) &= s_0, \\
 &\vdots \\
 f_i^{(\infty)}(s_0) &= \left((1 - p)f_{i+1}^{(\infty)}(s_0) + p f_{i-1}^{(\infty)}(s_0) \right)^{N_r}, \\
 &\vdots \\
 f_L^{(\infty)}(s_0) &= \left((1 - p)f_L^{(\infty)}(s_0) + p f_{L-1}^{(\infty)}(s_0) \right)^{N_r}.
\end{align*}
\]
...performing the continuum limit

\[
\frac{1}{2} \frac{\partial^2}{\partial \phi^2} f^{(\infty)}(\phi; s_0) - \frac{2\pi \sqrt{6} \Omega}{H} \frac{\partial}{\partial \phi} f^{(\infty)}(\phi; s_0) + \frac{12\pi^2}{H^2} f^{(\infty)}(\phi; s_0) \log [f^{(\infty)}(\phi; s_0)] = 0 ,
\]

\[
f^{(\infty)}(0; s_0) = s_0 ,
\]

\[
\frac{\partial}{\partial \phi} f^{(\infty)}(\phi; s_0) \bigg|_{\phi_b} = 0 .
\]
...performing the continuum limit

\[
\frac{1}{2} \frac{\partial^2}{\partial \phi^2} f^{(\infty)}(\phi; s_0) - \frac{2\pi \sqrt{6\Omega}}{H} \frac{\partial}{\partial \phi} f^{(\infty)}(\phi; s_0) + \frac{12\pi^2}{H^2} f^{(\infty)}(\phi; s_0) \log \left[f^{(\infty)}(\phi; s_0) \right] = 0 ,
\]

\[
f^{(\infty)}(0; s_0) = s_0 ,
\]

\[
\left. \frac{\partial}{\partial \phi} f^{(\infty)}(\phi; s_0) \right|_{\phi_b} = 0 .
\]

\[
f_j^{(\infty)}(s_0) = \sum_{k=0}^{\infty} p_{j,k} s_0^k .
\]

\[
f^{(\infty)}(\phi; s_0) = \int_0^{\infty} dV \rho(\phi, V) s_0^V .
\]

\[
\rho(\phi, V) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} d(-\log(s_0)) f^{(\infty)}(\phi; s_0) e^{-V \log(s_0)}
\]

\(k\) dead bacteria \(\Leftrightarrow\) reheating volume \(V\)
\[f(\tau; z) \equiv f^{(\infty)}(\phi; s_0), \]
\[\tau \equiv 2\pi \sqrt{\frac{6}{H}} = 6\sqrt{\Omega} N_c, \]
\[z \equiv -\log(s_0), \]

\[\ddot{f}(\tau; z) - 2\sqrt{\Omega} \dot{f}(\tau; z) + f(\tau; z) \log[f(\tau; z)] = 0, \]

\[f(0; z) = s_0 = e^{-z}, \]
\[\dot{f}(\tau_b; z) = 0, \]
The Mechanical Problem

\[f(\tau; z) \equiv f^{(\infty)}(\phi; s_0), \]
\[\tau \equiv 2\pi \sqrt{\frac{6}{H}} = 6 \sqrt{\Omega N_c}, \]
\[z \equiv -\log(s_0), \]

\[\ddot{f}(\tau; z) - 2\sqrt{\Omega} \dot{f}(\tau; z) + f(\tau; z) \log[f(\tau; z)] = 0, \]

\[f(0; z) = s_0 = e^{-z}, \]
\[\dot{f}(\tau_b; z) = 0, \]

\[U(f) = \frac{f^2}{4} \left(\log f^2 - 1 \right) \]

\[\rho(V, \tau) = \frac{1}{2\pi i} \int_{0+2\pi i}^{0+i\infty} dz f(\tau; z) e^{zV}, \]
Extinction Probability and Eternal Transition

\[P_{\text{ext}} \equiv \int_0^\infty dV \rho(V, \tau) = f(\tau; 0). \]
Extinction Probability and Eternal Transition

\[
P_{\text{ext}} \equiv \int_0^\infty dV \rho(V, \tau) = f(\tau; 0).
\]

\[
\ddot{f} - 2\sqrt{\Omega} \dot{f} + f - 1 = 0,
\]

linearized approx.

\[
f = 1 - e^{\sqrt{\Omega} \tau} \left(Ae^{\sqrt{\Omega - 1} \tau} + Be^{-\sqrt{\Omega - 1} \tau} \right).
\]
Extinction Probability and Eternal Transition

\[P_{\text{ext}} \equiv \int_0^\infty dV \rho(V, \tau) = f(\tau; 0). \]

\[f(\tau; z) \]

\[\dot{f} - 2\sqrt{\Omega} \frac{df}{d\tau} + f - 1 = 0, \]

linearized approx.

\[f = 1 - e^{\sqrt{\Omega}\tau}\left(Ae^{\sqrt{\Omega-1}\tau} + Be^{-\sqrt{\Omega-1}\tau}\right). \]
Calculating the Moments of the distribution

\[
\langle V^n \rangle = \int_0^\infty dV \, V^n \rho(V, \tau) = (-1)^n \frac{\partial^n f(\tau; z)}{\partial z^n} \bigg|_{z=0}
\]
Calculating the Moments of the distribution

\[
\langle V^n \rangle = \int_0^\infty dV \, V^n \rho(V, \tau) = (-1)^n \left. \frac{\partial^n f(\tau; z)}{\partial z^n} \right|_{z=0}
\]

\[
\ddot{f}' - 2\sqrt{\Omega} \dot{f}' + f' + f' \log f = 0,
\]

\[
f_0'(0) = -1, \quad \dot{f}_0'(\tau_b) = 0.
\]
Calculating the Moments of the distribution

\[\langle V^n \rangle = \int_0^\infty dV \ V^n \rho(V, \tau) = (-1)^n \frac{\partial^n f(\tau; z)}{\partial z^n} \bigg|_{z=0} \]

\[\ddot{f'} - 2\sqrt{\Omega} \dot{f'} + f' + f' \log f = 0, \quad f'_0(0) = -1, \quad \dot{f'}_0(\tau_0) = 0. \]

\[\omega_\pm \equiv \sqrt{\Omega} \pm \sqrt{\Omega - 1} \]

\[\langle V \rangle = -f'_0(\tau) = \frac{e^{\omega_+ \tau + \omega_- \tau_0} - \omega_+^2 e^{\omega_+ \tau + \omega_+ \tau_0}}{e^{\omega_- \tau_0} - \omega_-^2 e^{\omega_+ \tau_0}} \]

\[\lim_{\tau_0 \to -\infty} \langle V \rangle = e^{\omega_0 - \tau_0} = e^{3Nc \frac{2}{1 + \sqrt{1 - 1/\Omega}}}. \]

\[<V> \]

\[e^{6Nc} \]

\[e^{3Nc} \]

\[0 \]

\[\Omega \]
\[
\langle V^2 \rangle = f''_0(\tau) = \frac{\omega_+^6 e^{2\tau + 2\tau_b \omega_+}}{(\omega_+^2 - 2) (e^{\tau_b/\omega_+} - e^{\tau_b \omega_+ + \omega_+^2})^2} - \frac{2\omega_+^4 e^{2\tau_b \omega_+} \left(e^{\frac{\tau_b}{\omega_+} + \tau \omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+ + \omega_+^2} \right)}{(\omega_+^2 - 2) (e^{\tau_b/\omega_+} - e^{\tau_b \omega_+ + \omega_+^2})^3} \\
+ \frac{4\omega_+^2 e^{\omega_+ + \tau_b + \frac{\tau_b}{\omega_+}} \left(e^{\frac{\tau_b}{\omega_+} + \tau \omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+ + \omega_+^2} \right)}{(e^{\tau_b/\omega_+} - e^{\tau_b \omega_+ + \omega_+^2})^3} + \frac{2\omega_+^2 e^{2\tau_b + \frac{2\tau_b}{\omega_+}} \left(e^{\tau \omega_+} - e^{\tau/\omega_+} \right) (\omega_+^2 - 1)^2 (\omega_+^2 + 1)}{(e^{\tau_b/\omega_+} - e^{\tau_b \omega_+ + \omega_+^2})^3 (2\omega_+^4 - 5\omega_+^2 + 2)} \\
- \frac{2\tau_b}{e^{\omega_+ + 2\tau \omega_+}} \frac{2\omega_+^2}{(2\omega_+^2 - 1) (e^{\tau_b/\omega_+} - e^{\tau_b \omega_+ + \omega_+^2})^2},
\]
\[\langle V^2 \rangle = f''(\tau) = \frac{\omega_+^6 e^{2\tau_0 + 2\tau_+}}{(\omega_+^2 - 2) (e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2})^2} - \frac{2\omega_+^4 e^{2\tau_0 \omega_+} \left(e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2} \right)}{(\omega_+^2 - 2) (e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2})^3} \]

\[+ \frac{4\omega_+^2 e^{\omega_+ + \tau_0 + \tau_+} \left(e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2} \right)}{(e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2})^3} \]

\[+ \frac{8\omega_+^2 e^{2\omega_+ \tau_0 + 2\tau_0} (e^{\tau_0 / \omega_+} - e^{\tau_0 / \omega_+}) (\omega_+^2 - 1)^2 (\omega_+^2 + 1)}{(e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2}) (2\omega_+^4 - 5\omega_+^2 + 2)} + \frac{2\omega_+^2 e^{\omega_+ + \tau_0 + \tau_0 + \tau_0} \left(e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2} \right)}{(e^{\tau_0 / \omega_+} - e^{\tau_0 \omega_+ + \omega_+^2})^2} \]

\[\langle V^2 \rangle \xrightarrow{\tau_0 \gg 1} \frac{\omega_+^2}{\omega_+^2 - 2} \left(1 - 2 \frac{e^{\omega_+ - \tau_0}}{\omega_+^2} \right) e^{2\omega_+ - \tau_0} + \frac{8(\omega_+^2 - 1)^2 (\omega_+^2 + 1)}{\omega_+^4 (2\omega_+ - 1)(2 - \omega_+^2)} e^{-(\omega_+^2 - 2)\omega_+ - \tau_0 + \omega_+ + \tau_0} \]

...analogously for higher moments

for \(\tau_0 \to \infty \) the \(n \)-th moment diverges at

\[\Omega = \frac{(n + 1)^2}{4n} \]
Reconstructing $\rho(\phi;V)$

$\Omega > 1$ case

\[f \approx f_g = e^{-\frac{(\tau + \tau_1)^2}{4}}, \]

\[f_{\text{lin}} \approx 1 - e^{\omega_-(\tau + \tau_0)}. \]
Reconstructing $\rho(\phi;V)$

$\Omega > 1$ case

\[f \approx f_g = e^{-\frac{(\tau+\tau_1)^2}{4}}, \]

\[f_{\text{lin}} \approx 1 - e^{\omega_-(\tau+\tau_0)}. \]

\[\rho(V, \tau) \approx \mathcal{N}e^{-\frac{1}{4}\Omega \left(1 + \sqrt{1 - \frac{1}{\Omega}}\right)^2 \left[\log\left(\frac{V}{\mathcal{V}}\right)\right]^2} = \mathcal{N}e^{-\Omega \left[\frac{3N}{2} \left(1 + \sqrt{1 - \frac{1}{\Omega}}\right) - 3N\right]^2}, \quad V \lesssim \mathcal{V} \]

for $V \gtrsim \mathcal{V}^{\frac{\omega_+}{\omega_-}}$
Reconstructing $\rho(\phi;V)$: $\Omega = 1-\epsilon$ case, the phase transition

$$f_{\text{lin}}(\tau; z) = 1 - \sigma e^{\sqrt{\Omega}(\tau + \tau_0)} \cos \left(\sqrt{\Omega - 1}(\tau + \tau_0) \right) \approx 1 - \sigma e^{\tau + \tau_0} \cos \left(\sqrt{\epsilon}(\tau + \tau_0) \right)$$
Reconstructing $\rho(\phi;V)$: $\Omega = 1 - \epsilon$ case, the phase transition

\[f_{\text{lin}}(\tau; z) = 1 - \sigma e^{\sqrt{\Omega(\tau + \tau_0)}} \cos \left(\frac{\sqrt{\Omega - 1(\tau + \tau_0)}}{\sqrt{\epsilon(\tau + \tau_0)}} \right) \approx 1 - \sigma e^{\tau + \tau_0} \cos \left(\sqrt{\epsilon(\tau + \tau_0)} \right) \]

\[V_{\epsilon} \equiv e^{\frac{\pi}{2\sqrt{\epsilon}}} \]

\[1 < \Omega \lesssim 1 - \left(\frac{\pi}{6N} \right)^2 \]

\[\Omega = 1 - \epsilon \quad (V_{\epsilon} > \bar{V}) \]

\[V > V_{\epsilon} \quad V_{<\epsilon} < V \leq \bar{V} \]

\[z_{\text{cut}} \sim -\frac{\sigma \sqrt{\epsilon}}{e V_{\epsilon}} \]

\[\rho(V) \sim \frac{\bar{V}}{V^2} \quad \bar{V} < V < V_{\epsilon} \]

\[\rho(V) \sim \frac{\bar{V}}{V_{\epsilon} V} e^{z_{\text{cut}} V} = \frac{\bar{V}}{V_{\epsilon} V} e^{-\frac{\sigma}{\epsilon} \sqrt{\epsilon V/V_{\epsilon}}} \quad V_{\epsilon} < V \]
\(\Omega = 1 - \varepsilon \) case: inside eternal inflation

\[\rho(V, \tau) \approx N e^{-\frac{1}{4} \left(\frac{\tau - \frac{\pi}{2 \sqrt{c}}}{2 \sqrt{c}} \right)^2 - \varepsilon \sqrt{c} V/V_\varepsilon}, \quad V \gtrsim V_\varepsilon, \]
Special limits and cross-checks

The Classical Limit: $\Omega >> 1$

\[\tau = 2\sqrt{\Omega \tilde{\tau}} \]
\[\tilde{\tau} = 3N_c \]

\[\frac{1}{4\Omega} \frac{\partial^2 f}{\partial \tau^2} - \frac{1}{\tilde{\tau}} \frac{\partial f}{\partial \tilde{\tau}} + f \log f = 0 \]

\[f = e^{-z} e^{\theta} \]

\[\rho(V, \tau) = \delta(V - e^{3N_c}) \]
Special limits and cross-checks

The Classical Limit: $\Omega >> 1$

$$\tau = 2\sqrt{\Omega \tilde{\tau}}$$
$$\tilde{\tau} = 3N_c$$

$$\frac{1}{4\Omega} \frac{\partial^2 f}{\partial \tau^2} - \frac{\partial f}{\partial \tau} + f \log f = 0$$

$$f = e^{-z} e^\tau$$

$$\rho(V, \tau) = \delta(V - e^{3N_c})$$

Deep inside Eternal Inflation: $\Omega \rightarrow 0$

$$f(\tau; z) = e^{\frac{1}{2} - \frac{1}{4} (\tau + \sqrt{2 + 4z})^2}$$

$$\rho(V, \tau) = \frac{\tau}{\sqrt{4\pi (V-1)^{3/2}}} e^{-\frac{V-1}{2} - \frac{V}{V-1} \frac{\pi^2}{4}}$$

$$\int_0^\infty dV \rho(V, \tau) = e^{-\frac{\tau^2}{4} - \frac{\tau}{\sqrt{2}}} = f(\tau; 0)$$
Approximations, corrections and other effects

Finite Barrier Effects

a) Suppression of the large volume tail

\[\rho(V) \propto \frac{1}{V\omega^2 + 1} \rightarrow e^{2cutV} \]
Approximations, corrections and other effects

Finite Barrier Effects

a) Suppression of the large volume tail

\[\rho(V) \propto \frac{1}{V \omega^2 + 1} \to e^{2cutV} \]

w/o barrier \hspace{1cm} \text{w/ barrier}

b) Shift of the phase transition point

\[T = \frac{2\pi}{\sqrt{1 - \Omega}} \]

\[\tau_b < T/4 \]

\[\tau_b = \frac{\pi}{2\sqrt{1 - \Omega_c}} \Rightarrow \Omega_c = 1 - \left(\frac{\pi}{2\tau_b}\right)^2 \]
Approximations, corrections and other effects

Finite Barrier Effects

a) Suppression of the large volume tail

\[\rho(V) \propto \frac{1}{V^{\omega^2+1}} \rightarrow e^{2\text{cut}V} \]

b) Shift of the phase transition point

\[T = \frac{2\pi}{\sqrt{1-\Omega}} \quad \Rightarrow \quad \Omega_c = 1 - \left(\frac{\pi}{2\tau_b}\right)^2 \]

\[\tau_b = \frac{\pi}{2\sqrt{1-\Omega_c}} \]

Slow-Roll corrections

Slow-roll parameter

\[\frac{\dot{H}}{H^2} \sim \Omega \frac{H^2}{M_{\text{Pl}}^2} \rightarrow 0 \]

Friedman equation

\[M_{\text{Pl}}^2 H \Delta H \sim V' \Delta \phi \]

\[\frac{\Delta H}{H} \sim \frac{V' \Delta \phi}{M_{\text{Pl}}^2 H^2} \sim \Omega \frac{H^2}{M_{\text{Pl}}^2} N_c \ll 1 \]

\[\tau = 6 \int \sqrt{\Omega} dN_c \]

\[\lim_{\tau_b \to \infty} \langle V \rangle = e^{\int \omega_- d\tau} \]

\[3N = \int \omega_- d\tau \quad \Rightarrow \quad \partial_\tau \Omega \ll \Omega \]
Summarizing the $\rho(V)$ shape

- Gaussian
- Power-law
- Exponential tail

V_ϵ, \bar{V}, V_b, $e^{S_{as}}$, V
Summarizing the $\rho(V)$ shape

from gaussian distribution of random walk eq. at small times

$$e^{-\frac{(\phi - \bar{\phi})^2}{2\sigma^2}} \sim e^{-k(N - \overline{N})^2}$$
Summarizing the $\rho(V)$ shape

From Gaussian distribution of random walk eq. at small times:

$$e^{-\frac{(\phi-\bar{\phi})^2}{2\sigma^2}} \sim e^{-k(N-\bar{N})^2}$$

From exponential distribution of random walk eq. at large times:

$$e^{-k\frac{(\phi-\bar{\phi})^2}{\Delta\phi}} \sim e^{-k(N-\bar{N})}$$
Summarizing the $\rho(V)$ shape

- For small times, the distribution is from a Gaussian distribution of random walk equation:
 \[e^{-\frac{(\phi - \bar{\phi})^2}{2\sigma^2}} \sim e^{-k(N - \bar{N})^2} \]

- For large times, the distribution is from an exponential distribution of random walk equation:
 \[e^{-k\frac{\Delta\phi}{\Delta \phi}} \sim e^{-k(N - \bar{N})} \]

- The curve shows a power-law behavior in the middle range.

- The distribution has an exponential tail at large values of V.

- The barrier cut-off is denoted by V_b.
Summarizing the $\rho(V)$ shape

From Gaussian distribution of random walk eq. at small times:

$$e^{-(\phi-\bar{\phi})^2/2\sigma^2} \sim e^{-k(N-\bar{N})^2}$$

From exponential distribution of random walk eq. at large times:

$$e^{-k(\phi-\bar{\phi})^2/\Delta\phi} \sim e^{-k(N-\bar{N})}$$

Exp. suppressed prob. from barrier cut-off:

$$e^{-kV/V_b}$$

Exp. suppressed in eternal inflation regime.
Summarizing the $\rho(V)$ shape

From Gaussian distribution of random walk eq. at small times:
$$e^{-k\frac{(\phi - \bar{\phi})^2}{\Delta\phi^2}} \sim e^{-k(N - \bar{N})^2}$$

Power-law from exponential distribution of random walk eq. at large times:
$$e^{-k\frac{(\phi - \bar{\phi})^2}{\Delta\phi^2}} \sim e^{-k(N - \bar{N})}$$

Exp. suppressed prob. from barrier cut-off:
$$e^{-kV/V_b}$$

Exp. suppressed in eternal inflation regime:
$$V_b = e^{3N_b} < e^{S_{dS}/2}$$
Discussion

Two main results:

1) The probability distribution itself; non trivial informations on the phase transition to eternal inflation.

2) Confirmation of the bound at the quantum level; the bound can be made 'sharp' in the following sense:

The probability for slow-roll inflation to produce a finite volume larger than $e^{S_{\text{ds}}/2}$, where S_{ds} is de Sitter entropy at the end of the inflationary stage, is suppressed below the uncertainty due to non-perturbative quantum gravity effects.
Discussion

Two main results:

1) The probability distribution itself; non trivial informations on the phase transition to eternal inflation.

2) Confirmation of the bound at the quantum level; the bound can be made 'sharp' in the following sense:

The probability for slow-roll inflation to produce a finite volume larger than $e^{S_{\text{dS}}/2}$, where S_{dS} is de Sitter entropy at the end of the inflationary stage, is suppressed below the uncertainty due to non-perturbative quantum gravity effects.

Open problems and further extensions:

- Does the value "½" posses a deeper meaning (e.g. as the ½ in the Page argument for black holes), is it universal?
- Is the result robust against modification of the setting: - multi field inflation (more species) - non slow-roll inflation - different number of dimensions - etc...
- Is the bound associated with complementarity? How?