5th Workshop on PARTICLE PHYSICS AND COSMOLOGY - Warsaw - Feb. 4 -7, 2009

The Volume of the Universe after Inflation and de Sitter Entropy

Giovanni Villadoro (CERN)

0812.2246 [hep-th] - with S. Dubovsky and L. Senatore

Outline

- Basics of inflation and eternal inflation
- Quantum Gravity and de Sitter space
 - Analogies and differences w/ black hole physics
 - An 'holographic' bound
 - Definition of the probability distribution of the volume

• Calculating $\rho(V)$

- From inflation to bacteria
- From bacteria back to inflation: a non-linear differential eq.
- Solving the equation
- Results, systematics and corrections

Discussion

$$\Delta t = H^{-1}$$
 every 1 *e*-folding $a(t) = e^{H\Delta t} = e$

$$\Delta t = H^{-1}$$
 every 1 *e*-folding
 $a(t) = e^{H\Delta t} = e$
Hubble Expansion
 $V(t + \Delta t) = V(t)e^{3}$

...and Eternal Inflation

i.e. when quantum fluctuations win against classical rolling inflation never ends globally

Linde, Goncharov, Mukhanov 86-87

$$\delta \phi_q \gtrsim \delta \phi_{cl} = \dot{\phi} \Delta t = \frac{\dot{\phi}}{H}$$

(Quantum) Gravity in de Sitter space

Quantum Gravity is non-local at the non-perturbative level

from:

metric fluctuates, Bekenstein bound, black hole physics...

(Quantum) Gravity in de Sitter space

Quantum Gravity is non-local at the non-perturbative level

from: metric fluctuates, Bekenstein bound, black hole physics...

indeed known description of QG are defined on boundaries: String Theory via S-matrix on Mink AdS/CFT defined on the boundary of AdS

Troubles with de Sitter

Analogies with black holes...

- horizon physics, finite temperature, Hawking radiation...
- and in particular a **finite Entropy (***S***=***A*/**4)**
- Metastability (CdL, HM, Poicare recurrence)

...and differences

- de Sitter is an infinite space (finite entropy?)
- eternal inflation never ends globally
- analogue of an information paradox?

$$\Gamma > e^{-S_{dS}}$$

Troubles with de Sitter

Analogies with black holes...

- horizon physics, finite temperature, Hawking radiation...
- and in particular a finite Entropy (S=A/4)
- Metastability (CdL, HM, Poicare recurrence)

...and differences

- de Sitter is an infinite space (finite entropy?)
- eternal inflation never ends globally
- analogue of an information paradox?

Lessons from black hole physics:

- Complementarity governs the global description of black-hole geometry
- AdS/CFT says that black hole evaporation process is unitary
- \Rightarrow it must be non local
- EFT have no problem in describing local physics
- but EFT breaks down for global IR quantities which are sensitive to *non-perturbative* effects

$$\Gamma > e^{-S_{dS}}$$

applying the black hole lesson...

indeed...

In any theory of inflation (satisfying the NEC)

no eternal inflation
$$\delta \phi_q \lesssim \delta \phi_{cl} \Rightarrow \frac{\dot{H}M_{Pl}^2}{H^4} \gtrsim 1 \Rightarrow \frac{dS_{dS}}{dN} \gtrsim 1$$
Arkani-Hamed et al. 07 $N \lesssim S_{dS}$

indeed...

In any theory of inflation (satisfying the NEC)

1) It exists a sharp bound for the phase transition to slow-roll eternal inflation

Creminelli et al. 08

$$\Omega \equiv \frac{2\pi^2}{3} \frac{\dot{\phi}^2}{H^4} > 1$$

$$N_c < \frac{1}{12} S_{dS}$$

indeed...

In any theory of inflation (satisfying the NEC)

1) It exists a sharp bound for the phase transition to slow-roll eternal inflation

Creminelli et al. 08

$$\Omega \equiv \frac{2\pi^2}{3} \frac{\dot{\phi}^2}{H^4} > 1$$

$$N_c < \frac{1}{12} S_{dS}$$

2) Quantum fluctuations require to look at the probability distribution of N

The probability distribution of the Volume of the Universe after Inflation:

$\rho(V;\phi)$

probability that starting with the inflaton at the position ϕ (and a volume $V_0 = H^{-3}$) the Universe will have a finite volume V at $t \rightarrow \infty$, or equivalently that the reheating surface will have volume V

Slow Roll Inflation as a Bacteria Model

Slow Roll Inflation as a Bacteria Model

From the Bacteria to the Fokker-Planck equation

$$P(j, n+1) = (1-p)P(j-1, n) + p P(j+1, n)$$

From the Bacteria to the Fokker-Planck equation

$$P(j, n+1) = (1-p)P(j-1, n) + p P(j+1, n)$$

Matching bacteria with inflaton

$$j = \frac{\phi}{\Delta \phi}$$
, $n = \frac{t}{\Delta t}$

$$N_r = e^{3H\Delta t} \simeq 1 + 3H\Delta t$$

Random Walk + Drift

$$(1-2p)\frac{\Delta\phi}{\Delta t} = \dot{\phi} \quad \Rightarrow \quad p = \frac{1}{2} + \sqrt{6\pi^2\Omega}\frac{\Delta\phi}{H} ,$$

From the Bacteria to the Fokker-Planck equation

$$P(j, n+1) = (1-p)P(j-1, n) + p P(j+1, n)$$

Matching bacteria with inflaton

$$j = \frac{\phi}{\Delta \phi}$$
, $n = \frac{t}{\Delta t}$

$$N_r = e^{3H\Delta t} \simeq 1 + 3H\Delta t$$

$$(1-2p)\frac{\Delta\phi}{\Delta t} = \dot{\phi} \quad \Rightarrow \quad p = \frac{1}{2} + \sqrt{6\pi^2\Omega} \frac{\Delta\phi}{H} ,$$

Taking the Continuum Limit

$$(\Delta\phi)^2 = \frac{H^3}{4\pi^2}\Delta t$$

$$\frac{4\pi^2}{H^3}\partial_t P(\bar{\phi},t) = \frac{1}{2}\partial_{\bar{\phi}}^2 P(\bar{\phi},t) + \frac{2\sqrt{6\pi^2\Omega}}{H}\partial_{\bar{\phi}} P(\bar{\phi},r) \,,$$

...taking into account the replication: the generating function

...taking into account the replication: the generating function

...taking into account the replication: the generating function

...performing the continuum limit

$$\frac{1}{2}\frac{\partial^2}{\partial\phi^2}f^{(\infty)}(\phi;s_0) - \frac{2\pi\sqrt{6\Omega}}{H}\frac{\partial}{\partial\phi}f^{(\infty)}(\phi;s_0) + \frac{12\pi^2}{H^2}f^{(\infty)}(\phi;s_0)\log\left[f^{(\infty)}(\phi;s_0)\right] = 0,$$

$$\begin{cases} f^{(\infty)}(0;s_0) &= s_0, \\ \frac{\partial}{\partial\phi}f^{(\infty)}(\phi;s_0)\Big|_{\phi_b} &= 0. \end{cases}$$

...performing the continuum limit

$$\frac{1}{2}\frac{\partial^2}{\partial\phi^2}f^{(\infty)}(\phi;s_0) - \frac{2\pi\sqrt{6\Omega}}{H}\frac{\partial}{\partial\phi}f^{(\infty)}(\phi;s_0) + \frac{12\pi^2}{H^2}f^{(\infty)}(\phi;s_0)\log\left[f^{(\infty)}(\phi;s_0)\right] = 0,$$

$$f^{(\infty)}(0;s_0) = s_0,$$

$$\frac{\partial}{\partial\phi}f^{(\infty)}(\phi;s_0)\Big|_{\phi_b} = 0.$$

$$f^{(\infty)}_j(s_0) = \sum_{k=0}^{\infty} p_{j,k}s_0^k.$$

$$f^{(\infty)}(\phi;s_0) = \int_0^{\infty} dV\rho(\phi,V)s_0^V.$$

$$k \text{ dead bacteria}$$

$$reheating \text{ volume } V$$

$$\rho(\phi, V) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} d\left(-\log(s_0)\right) f^{(\infty)}(\phi; s_0) e^{-V \log(s_0)}$$

$$f(\tau; z) \equiv f^{(\infty)}(\phi; s_0),$$

$$\tau \equiv 2\pi\sqrt{6}\frac{\phi}{H} = 6\sqrt{\Omega}N_c,$$

$$z \equiv -\log(s_0),$$

The Mechanical Problem

$$\ddot{f}(\tau;z) - 2\sqrt{\Omega}\dot{f}(\tau;z) + f(\tau;z)\log[f(\tau;z)] = 0,$$

$$f(0; z) = s_0 = e^{-z},$$

 $\dot{f}(\tau_b; z) = 0,$

$$f(\tau; z) \equiv f^{(\infty)}(\phi; s_0),$$

$$\tau \equiv 2\pi\sqrt{6}\frac{\phi}{H} = 6\sqrt{\Omega}N_c,$$

$$z \equiv -\log(s_0),$$

$$\ddot{f}(\tau; z) - 2\sqrt{\Omega}\dot{f}(\tau; z) + f(\tau; z) \log(t)$$

The Mechanical Problem

Extinction Probability and Eternal Transition

$$P_{\rm ext} \equiv \int_0^\infty dV \rho(V,\tau) = f(\tau;0) \,. \label{eq:Pext}$$

Extinction Probability and Eternal Transition

.

$$f = 1 - e^{\sqrt{\Omega}\tau} \left(A e^{\sqrt{\Omega - 1}\tau} + B e^{-\sqrt{\Omega - 1}\tau} \right)$$

Extinction Probability and Eternal Transition

Calculating the Moments of the distribution

$$\langle V^n \rangle = \int_0^\infty dV \, V^n \rho(V,\tau) = (-1)^n \left. \frac{\partial^n f(\tau;z)}{\partial z^n} \right|_{z=0}$$

Calculating the Moments of the distribution

$$\langle V^n \rangle = \int_0^\infty dV \, V^n \rho(V,\tau) = (-1)^n \left. \frac{\partial^n f(\tau;z)}{\partial z^n} \right|_{z=0}$$

$$\ddot{f}' - 2\sqrt{\Omega}\dot{f}' + f' + f'\log f = 0, \qquad f'_0(0) = -1, \qquad \dot{f}'_0(\tau_b) = 0.$$

Calculating the Moments of the distribution

$$\left| \langle V^n \rangle = \int_0^\infty dV \, V^n \rho(V, \tau) = (-1)^n \left. \frac{\partial^n f(\tau; z)}{\partial z^n} \right|_{z=0}$$

$$\ddot{f}' - 2\sqrt{\Omega}\dot{f}' + f' + f'\log f = 0, \qquad f_0'(0) = -1, \qquad \dot{f}_0'(\tau_b) = 0.$$
$$\omega_{\pm} \equiv \sqrt{\Omega} \pm \sqrt{\Omega - 1}$$

$$\langle V \rangle = -f_0'(\tau) = \frac{e^{\omega_+ \tau + \omega_- \tau_b} - \omega_+^2 e^{\omega_- \tau + \omega_+ \tau_b}}{e^{\omega_- \tau_b} - \omega_+^2 e^{\omega_+ \tau_b}}$$

$$\lim_{\tau_b \to \infty} \langle V \rangle = e^{\omega_{-}\tau} = e^{3N_c \frac{2}{1+\sqrt{1-1/\Omega}}} \,.$$

...analogously for higher moments

$$\begin{split} \langle V^2 \rangle &= f_0''(\tau) = \frac{\omega_+^6 e^{\frac{2\tau}{\omega_+} + 2\tau_b \omega_+}}{(\omega_+^2 - 2) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^2} - \frac{2\omega_+^4 e^{2\tau_b\omega_+} \left(e^{\frac{\tau_b}{\omega_+} + \tau\omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+} \omega_+^2 \right)}{(\omega_+^2 - 2) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^3} \\ &- \frac{4\omega_+^2 e^{\omega_+ \tau_b + \frac{\tau_b}{\omega_+}} \left(e^{\frac{\tau_b}{\omega_+} + \tau\omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+} \omega_+^2 \right)}{(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2)^3} + \frac{2\omega_+^2 e^{\frac{2\tau_b}{\omega_+}} \left(e^{\frac{\tau_b}{\omega_+} + \tau\omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+} \omega_+^2 \right)}{(2\omega_+^2 - 1) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^3} + \frac{8\omega_+^2 e^{2\omega_+ \tau_b + \frac{2\tau_b}{\omega_+}} \left(e^{\tau\omega_+} - e^{\tau/\omega_+} \right) \left(\omega_+^2 - 1 \right)^2 \left(\omega_+^2 + 1 \right)}{(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2)^2} + \frac{2\omega_+^2 e^{\omega_+ \tau + \frac{\tau}{\omega_+} + \tau_b\omega_+} + \frac{\tau_b}{\omega_+}}{(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2)^2} - \frac{e^{\frac{2\tau_b}{\omega_+} + 2\tau\omega_+}}{(2\omega_+^2 - 1) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^2}, \end{split}$$

...analogously for higher moments

$$\begin{split} \langle V^2 \rangle &= f_0''(\tau) = \frac{\omega_+^6 e^{\frac{2\tau}{\omega_+} + 2\tau_b \omega_+}}{(\omega_+^2 - 2) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^2} - \frac{2\omega_+^4 e^{2\tau_b\omega_+} \left(e^{\frac{\tau_b}{\omega_+} + \tau\omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+} \omega_+^2 \right)}{(\omega_+^2 - 2) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^3} \\ &- \frac{4\omega_+^2 e^{\omega_+ \tau_b + \frac{\tau_b}{\omega_+}} \left(e^{\frac{\tau_b}{\omega_+} + \tau\omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+} \omega_+^2 \right)}{(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2)^3} + \frac{2\omega_+^2 e^{\frac{2\tau_b}{\omega_+}} \left(e^{\frac{\tau_b}{\omega_+} + \tau\omega_+} - e^{\frac{\tau}{\omega_+} + \tau_b \omega_+} \omega_+^2 \right)}{(2\omega_+^2 - 1) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^3} + \frac{8\omega_+^2 e^{2\omega_+ \tau_b + \frac{2\tau_b}{\omega_+}} \left(e^{\tau\omega_+} - e^{\tau/\omega_+} \right) \left(\omega_+^2 - 1 \right)^2 \left(\omega_+^2 + 1 \right)}{(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2)^2} + \frac{2\omega_+^2 e^{\omega_+ \tau + \frac{\tau}{\omega_+} + \tau_b\omega_+} + \frac{\tau_b}{\omega_+}}{(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2)^2} - \frac{e^{\frac{2\tau_b}{\omega_+} + 2\tau\omega_+}}{(2\omega_+^2 - 1) \left(e^{\tau_b/\omega_+} - e^{\tau_b\omega_+} \omega_+^2 \right)^2}, \end{split}$$

$$\langle V^2 \rangle \xrightarrow{\tau_b \gg 1} \frac{\omega_+^2}{\omega_+^2 - 2} \left(1 - 2 \frac{e^{-\omega_- \tau}}{\omega_+^2} \right) e^{2\omega_- \tau} + \frac{8(\omega_+^2 - 1)^2(\omega_+^2 + 1)}{\omega_+^4(2\omega_+ - 1)(2 - \omega_+^2)} e^{-(\omega_+^2 - 2)\omega_- \tau_b + \omega_+ \tau}$$

for
$$\tau_{b} \rightarrow \infty$$
 the *n*-th moment diverges at $\Omega = \frac{(n+1)^2}{4n}$

Reconstructing $\rho(\phi; V)$: $\Omega = 1-\varepsilon$ case, the phase transition

$$f_{\rm lin}(\tau;z) = 1 - \sigma e^{\sqrt{\Omega}(\tau+\tau_0)} \cos\left(\sqrt{\Omega-1}(\tau+\tau_0)\right) \approx 1 - \sigma e^{\tau+\tau_0} \cos\left(\sqrt{\epsilon}(\tau+\tau_0)\right)$$

Reconstructing $\rho(\phi; V)$: $\Omega = 1-\varepsilon$ case, the phase transition

$$\rho(V) \sim \frac{\overline{V}}{V_{\epsilon}} \frac{1}{V} e^{z_{\rm cut}V} = \frac{\overline{V}}{V_{\epsilon}} \frac{1}{V} e^{-\frac{\sigma}{e}\sqrt{\epsilon}V/V_{\epsilon}} \qquad V_{\epsilon} < V$$

$\Omega = 1 - \varepsilon$ case: inside eternal inflation

Special limits and cross-checks

The Classical Limit: Ω>>1

Special limits and cross-checks

The Classical Limit: Ω>>1

$$\tau = 2\sqrt{\Omega}\tilde{\tau}$$

$$\tilde{\tau} = 3N_c$$

$$f = e^{-z e^{\tilde{\tau}}}$$

$$f = e^{-z e^{\tilde{\tau}}}$$

$$\rho(V, \tau) = \delta(V - e^{3N_c})$$

Deep inside Eternal Inflation: $\Omega \rightarrow 0$

$$f(\tau; z) = e^{\frac{1}{2} - \frac{1}{4} \left(\tau + \sqrt{2 + 4z}\right)^2}$$

$$\rho(V,\tau) = \frac{1}{2\pi} \int_{0^+ - i\infty}^{0^+ + i\infty} dz \, e^{\frac{1}{2} - \frac{1}{4} \left(\tau + \sqrt{2 + 4z}\right)^2 + zV}$$

$$\rho(V,\tau) = \frac{\tau}{\sqrt{4\pi}(V-1)^{3/2}} e^{-\frac{V-1}{2} - \frac{V}{(V-1)}\frac{\tau^2}{4}}$$

$$\int_0^\infty dV \rho(V,\tau) = e^{-\frac{\tau^2}{4} - \frac{\tau}{\sqrt{2}}} = f(\tau;0)$$

Approximations, corrections and other effects

Finite Barrier Effects

a) Suppression of the large volume tail

Approximations, corrections and other effects

Finite Barrier Effects

a) Suppression of the large volume tail

Approximations, corrections and other effects

Finite Barrier Effects

Discussion

Two main results:

1) The probability distribution itself; non trivial informations on the phase transition to eternal inflation.

2) Confirmation of the bound at the quantum level; the bound can be made 'sharp' in the following sense:

The probability for slow-roll inflation to produce a finite volume larger than $e^{S_{dS}/2}$, where S_{dS} is de Sitter entropy at the end of the inflationary stage, is suppressed below the uncertainty due to non-perturbative quantum gravity effects.

Discussion

Two main results:

1) The probability distribution itself; non trivial informations on the phase transition to eternal inflation.

2) Confirmation of the bound at the quantum level; the bound can be made 'sharp' in the following sense:

The probability for slow-roll inflation to produce a finite volume larger than $e^{S_{dS}/2}$, where S_{dS} is de Sitter entropy at the end of the inflationary stage, is suppressed below the uncertainty due to non-perturbative quantum gravity effects.

Open problems and further extensions:

- Does the value "¹/₂" posses a deeper meaning (e.g. as the ¹/₂ in the Page argument for black holes), is it universal?
- Is the result robust against modification of the setting:
 - -multi field inflation (more species)
 - -non slow-roll inflation
 - -different number of dimensions
 - -etc...
- Is the bound associated with complementarity? How?