Highlights from LHCb

Monica Pepe Altarelli (CERN) On behalf of the LHCb collaboration

The Status of the SM, April 7-8 2014, Warsaw

Outline

- The LHCb experiment
- Rare decays
 - B→μ⁺μ[−]
 - $B→K(*)μ+μ^-$
 - Radiative decays
- Measurement of γ
- B⁰_s mixing
 - Oscillation frequency
 - CPV in B^0_S mixing/decay ϕ_s
 - Semileptonic asymmetry a_{sl}
- Charm
 - $D^0 \overline{D}^0$ mixing
- Conclusions

Outline

- The LHCb experiment
- Rare decays
 - $B \rightarrow \mu^+ \mu^-$
 - $B \rightarrow K^{(*)} \mu^+ \mu^-$
 - Radiative decays
- Measurement of γ
- B^0 , mixing
 - Oscillation frequency
 - CPV in B_{S}^{0} mixing/dec:
 - Semileptonic asymmetry
- Charm
 - D⁰- \overline{D}^0 mixing
- Conclusions

Many other results not covered, e.g.

- CPV and rare decays
 - Charmless B decays
 - Many rare exclusive decays
 - Electroweak Physics
 - W and Z production
- Lepton flavour number violation
- pA collisions
- Production and spectroscopy
 - Fragmentation fractions
 - B_c decays and lifetimes
 - Quarkonia polarisation
 - XYZ states
 - Central exclusive production

Outline

- The LHCb experiment
 Many other results not covered, e.g.
- Rare decays

- $B \rightarrow \mu^+ \mu^-$
- $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$

- CPV and rare decays
 - Charmless B decays
 - Many rare exclusive decays

Radiative decaus

Electroweak Physics

LHCb emerging as a general purpose, high-resolution spectrometer in the forward direction

 $- D^0 - \overline{D}^0$ mixing

Conclusions

- Quarkonia polarisation
- XYZ states
- Central exclusive production

The LHCb collaboration

16 countries

E

- ~900 members from 67 universities/laboratories
- 178 publications, some of them with very high impact

LHCb detector: the essentials

- Experiment optimized for heavy-flavour physics
 - Forward acceptance
 - Efficient trigger for hadronic and leptonic modes
 - Acceptance down to low p_T
 - Precision tracking and vertexing (VELO@7 mm from beam)

Running conditions

- LHCb designed to run at lower luminosity than ATLAS/CMS
 - Tracking, PID sensitive to pile-up
 - Mean number of interactions/bunch crossing ~ 2
- pp beams displaced to reduce instantaneous luminosity
- $\mathcal{L}_{2011} \sim 2.7 \ 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- $\mathcal{L}_{2012} \sim 4.0 \ 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Huge heavy quark production cross-sections

-
$$\sigma_{\rm bb} \sim 300 \ \mu b \ @\sqrt{s} = 7-8 \ {\rm TeV} \ (\sim 1 \ {\rm nb} \ {\rm in} \ {\rm e}^+ {\rm e}^- @\ \Upsilon(4 \ {\rm s}))$$

- $\sigma_{\rm cc}$ is ~ 20 times larger!

~10¹¹ b decays/fb in acceptance ~10¹² c decays/fb

Rare decays: $B \rightarrow \mu^+ \mu^-$

- Highly suppressed in SM
 FCNC
 - Helicity suppressed $\sim (m_{\mu}/M_B)^2$
- Precisely predicted
 - $-BR(B_s \rightarrow \mu^+ \mu^-) = 3.35 \pm 0.28 \text{ x } 10^{-9}$

Buras et al, EPJ C72 (2012) 2172

- Should be corrected up by few percent since measurement is of the timeintegrated branching fraction De Bruyn, Fleischer et al, PRL 109 (2012) 041801→
- $BR(B_s \rightarrow \mu^+\mu^-) = 3.56 \pm 0.30 \text{ x } 10^{-9} \text{ using } \Delta\Gamma_s / (2\Gamma_s) = 0.0615 \pm 0.0085$
- $BR(B_{d} \rightarrow \mu^{+}\mu^{-}) = 1.07 \pm 0.10 \text{ x } 10^{-10}$
- Sensitive to NP
 - in MSSM $BR \sim \tan^6\beta$
- Very clean signature
 - studied by all high-energy hadron collider experiments

$B \rightarrow \mu^+ \mu^-$: Analysis features

- Use of control channels to calibrate selection avoiding dependence on simulation
- Use of multi-variant discriminants trained on data whenever possible (e.g. B candidate decay time, IP and p_T, isolation, etc)
- Use of normalisation channels with well-known BRs, same topology and/or trigger. Cancel uncertainties in ratios.
 - Normalise to large sample of $B^+ \rightarrow J/\psi K^+$ (same trigger) or $B^0 \rightarrow K^+ \pi$ (same topology)
- Full data set of 3/fb analysed
 - Main issue is rejection of background, dominated by $B \rightarrow \mu^+ X$, $B \rightarrow \mu^- X$ decays
 - Mass resolution crucial ($\sigma_B \sim 23 \text{ MeV}$ for LHCb)
 - CMS: σ_B from ~32 MeV for $\eta_{\mu\mu}$ ~0 to ~75 MeV for $|\eta_{\mu\mu}|$ >1.8

$B \rightarrow \mu^+ \mu^-$: First evidence

• Background to $B_d \rightarrow K\pi$ with double misID relevant for $B_d \rightarrow \mu^+\mu^-$

$B \rightarrow \mu^+ \mu^-$: First evidence

- From theory : BRs known to ~10% (can be improved with refined lattice QCD calculations)
- Additional handle on NP through $B_s \rightarrow \mu^+ \mu^-$ effective lifetime (i.e. fitting a single exponential to this rate) feasible at upgrades of LHC detectors Buras, Fleischer et al

arXiv:1303.3820

FCNC $b \rightarrow s$ transitions: $B^0 \rightarrow K^{*0} (\rightarrow K^+\pi^-) \mu^+\mu^-$

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ is a FCNC decay that only proceed via loops and boxes
- Rich phenomenology, plethora of observables
- NP can enter at the same level as the SM processes

- Theoretical framework via an "effective Ham"iltonian :
 - Wilson coefficients (C_i) describing short distance interactions, sensitive to NP
 - Operators (O_i) describing long distance interactions

$$H_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} (C_i^{SM} + \Delta C_i^{NP}) O_i$$

- In SM, leading contributions from O_7 , O_9 , O_{10}

FCNC $b \rightarrow s$ transitions: $B^0 \rightarrow K^{*0} (\rightarrow K^+\pi^-) \mu^+\mu^-$

- Rates, angular distributions and asymmetries sensitive to NP
- Kinematics described by three angles and $q^2 = m (\mu^+ \mu^-)^2$
 - dB/dq^2 : differential branching fraction
 - A_{FB} : $\mu^+\mu^-$ forward-backward asymmetry (flavour self-tagged through K charge)

- Large theory uncertainties in part due to large contributions from hadronic form factors
- In SM, A_{FB} changes sign at a very well defined value of q^2 , q_0^2
- First measurement of q_0^2 , consistent with SM

Form-factor independent observables in $B^0 \rightarrow K^{*0}\mu^+\mu^-$

- Combinations of observables with reduced form-factor uncertainties at large recoil (low-q²) proposed by several authors
 - combinations of F_L and S_i (bilinear combinations of K^{*0} decay amplitudes, F_L is K^{*0} longitudinal polarisation fraction) $P'_{i=4,5,6,8} = \frac{S_{i=4,5,6,8}}{\sqrt{F_L(1-F_L)}}$ (Matias et al, arXiv: 1303.5794)
 - 'Folding technique' used by LHCb to simplify differential decay rate without losing experimental sensitivity
- P'_{6} and P'_{8} close to SM predictions (close to zero) over full q² range

- Across 24 bins, significance drops to 2.8 σ
- Most likely scenario: statistical fluctuation or underestimated theory uncertainties (see e.g. Jäger & Camalich, JHEP 05 (2013) 043)

Form-factor independent observables in $B^0 \rightarrow K^{*0}\mu^+\mu^-$

- Interest from theory community as NP contributing to C₉ could provide a better fit to the data, and still be compatible with other measurements
 - $C_9 = C_9^{SM} + C_9^{NP}$, where $C_9^{SM} \sim 4$ and $C_9^{NP} \sim -1.5$
- Smaller value of C₉ Wilson coefficient through a Z' of few TeV ?

Gauld et al arXiv:1308.1959 Buras et al arXiv:1309.2466

Next steps: - Analyse full data set (3/fb analysis in preparation)
 - Provide complementary constraints (e.g. B_s→φμ+μ⁻, B→Kμ+μ⁻)

Other $B \rightarrow K\mu^+\mu^-$ decays

arXiv:1403.8045

- Angular analysis of $B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$ and $B \rightarrow K^{0}_{s} \mu^{+} \mu^{-}$ decays
- Able to isolate clean signal events in full q² (3/fb)
 - ~4750 B[±] \rightarrow K[±] μ ⁺ μ ⁻
 - ~180 $B^0 \rightarrow K_{s}^0 \mu^+ \mu^- (\epsilon_{rec} \sim 0.2\%)$
- Results expressed in terms of A_{FB} and F_{H}
 - e.g., for the B[±] $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{3}{4}(1 F_H)(1 \cos^2\theta_l) + \frac{1}{2}F_H + A_{FB}\cos\theta_l$
- SM: $A_{FB} \approx 0$, $F_H \approx 0$ in in every q^2 bin but could be enhanced by new (pseudo)scalar or tensor couplings contributions

\rightarrow No evidence for new (pseudo)scalar or tensor couplings

Isospin asymmetry in $B \rightarrow K^{(*)} \mu^+ \mu^-$

• The isospin asymmetry A_I of $B \rightarrow K^{(*)} \mu^+ \mu^-$ is defined as:

$$A_{I} = \frac{\Gamma(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) - \Gamma(B^{\pm} \to K^{(*)\pm} \mu^{+} \mu^{-})}{\Gamma(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) + \Gamma(B^{\pm} \to K^{(*)\pm} \mu^{+} \mu^{-})} = \frac{B(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) - \frac{\tau_{0}}{\tau_{+}} B(B^{\pm} \to K^{(*)\pm} \mu^{+} \mu^{-})}{B(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) - \frac{\tau_{0}}{\tau_{+}} B(B^{\pm} \to K^{(*)\pm} \mu^{+} \mu^{-})}$$

- A_I more precisely predicted than branching fractions; expected close to zero in SM
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^0 \rightarrow K^0_{S} \mu^+ \mu^-$
 - $B^+ \rightarrow K^{*+} (\rightarrow K^0_S \pi^+) \mu^+ \mu^-, B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$
- A_I results based on 3/fb consistent with SM (arXiv:1403.8044)
 - Analysis of 1fb⁻¹ (2011): A_I for K^{*} modes consistent with zero, for K modes 4.4 σ from zero! [JHEP 07 (2012) 133]

Differential Branching Fractions in $B \rightarrow K^{(*)}\mu^+\mu^-$

- Each mode normalised wrt its corresponding $B \rightarrow J/\psi K^{(*)}$ channel
- Although consistent with SM, results tend to be below theory
- Extrapolate underneath charmonium resonances assuming q² distribution from [Ali et al., Phys. Rev. D61 (2000) 074024]→
 - − B(B⁺→K⁺ μ ⁺ μ ⁻) = (4.29 ± 0.07 ± 0.21) 10⁻⁷

$$27 \pm 0.07 \pm 0.21$$
) 10

$$- B(B^{0} \rightarrow K^{0}{}_{S}\mu^{+}\mu^{-}) = (3.27 \pm 0.34 \pm 0.17) \ 10^{-7}$$

$$- B(B^+ \rightarrow K^{*+} \mu^+ \mu^-) = (9.24 \pm 0.93 \pm 0.67)10^{-7}$$

Lattice predictions : [C. Bouchard et al., Phys. Rev. D88 (2013) 054509; R. R. Horgan et al., arXiv:1310.3722]

arXiv:1403.8044, 3/fb

Theory predictions: [Ball, Zwicky Phys. Rev. D71 (2005) 014029; A. Khodjamirian et al., JHEP 09(2010) 089, M. Beneke et al., Nucl. Phys. B612 (2001) 25, Eur. Phys. J. C41 (2005) 173; C. Bobeth et al., JHEP 12(2007) 040, B. Grinstein and D. Pirjol, Phys. Rev. D70 (2004) 114005, U. Egede et al., JHEP 11 (2008) 032]

Branching Fractions at high q^2

- High-q² branching fraction measurements are below the latest lattice SM predictions
- Better consistency with C_9^{NP} =-1.5 suggested by (low q²) anomalous angular data
- Stat. fluctuations, experimental or theory problems?

FCNC in radiative decays

 W^{-}

20

- $b \rightarrow s \gamma$ transition, through a penguin diagram
- In SM photon left-handed, but could acquire right-handed components through NP
- Photon polarisation λ_{γ} as test of SM
- Measure λ_{γ} from decay :

 $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma ~(\sim 10^{-5} BF)$

Count γ emitted above/below plane defined by momenta of final-state hadrons in their centre-of-mass frame

$$A_{ud} = \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta}} \propto \lambda_{\gamma} \xrightarrow{\vec{p}_{\pi,\text{fast}}} \vec{p}_{\pi,\text{fast}}$$

Radiative decays - results

• Full data set of 3/fb analysed

arXiv:1402.6852

- Use 4 independent measurements up-down asymmetries to extract combined significance wrt $\lambda_{\gamma}=0$ scenario
- Up-down asymmetry different from zero at 5.2σ
- First observation of photon polarization in b \rightarrow s γ transitions!
- Each resonance contributes differently and one needs to resolve them to turn the observation into a measurement of λ_{γ}
- More work is needed from theory and experiment!

γ : State of the art

- Very precise picture of CKM parameters has emerged (see e.g. Utfit, CKMfitter)
- $\gamma = \arg(-V_{ud}V_{ub}^* / V_{cd}V_{cb}^*)$ is least well measured angle
- γ measurable in both tree-level processes and ones with loops

- Tree level decays are good test of SM and are robust to NP
- Theoretically very clean: $\delta \gamma / \gamma \sim 10^{-7}$ (Brod & Zupan, arXiv:1308.5663)
- BUT.. measuring γ at tree level is hard: for $B^{\pm} \rightarrow Dh^{\pm}$, small BFs
- Combining measurements is key to precise determination of γ

Measurement of γ from $B^{\pm} \rightarrow D^{0}K^{\pm}$

 Sensitivity to γ through final states accessible to both D⁰ and D⁰ leading to interference

- D decays to CP eigenstates, e.g. π⁺π⁻, K⁺K⁻ ("Gronau London Wyler")
 - Large rate, small interference
- D decays to flavour specific states, e.g. K⁺π⁻ ("Atwood Dunietz Soni")
 - Reverse suppression between B and D decays results in comparable interfering amplitudes → Lower rate, but high sensitivity to γ
- D decays to common multi-body decay, e.g. K_sK⁺K⁻, K_sπ⁺π⁻ (Giri Grossman Soffer Zupan)
 - Requires Dalitz analysis

γ: Results

- Updates including this result:
 - CKMFitter $\gamma = 68.0^{+8.0}_{-8.5}$ ° (FPCP 2013)
 - $\gamma = 70.1 \pm 7.1^{\circ} (EPS \ 2013)$ UTFit
- Anticipated LHCb sensitivity by $2018 \sim 4^{\circ}$

B⁰_s mixing – Oscillation frequency

- $B_{S}^{0} \overline{B}_{S}^{0}$ mixing highly sensitive to NP
- On average, B⁰_S changes its flavour nine times between production and decay → measuring oscillation frequency is an experimental challenge
- LHCb average decay time resolution :
 ~ 44 fs << 350 fs, B⁰_S oscillation period
- Use $B_{S}^{0} \rightarrow D_{S}^{-} \pi^{+}$, to tag flavour at decay time
 - Flavour specific decay, i.e. B⁰_S flavour given by charges of final state particles
- Tagging identifies flavour at production
 - Both Opposite side (exploits b and b pair production) and Same side (exploits hadronization → extra s-quark often leading to charged K):
 - $(2.6\pm0.4)\%$ tagging power OST
 - $(1.2\pm0.3)\%$ tagging power SST

New J. Phys. 15 (2013) 053021

B⁰_s mixing – Oscillation frequency

 $B_s^0 \rightarrow D_s^- \pi^+$

with $D_s^- \rightarrow \phi(K^+K^-)\pi^-, K^{*0}(K^+\pi^-)K^-, K^+K^-\pi^-, K^-\pi^+\pi^-, \pi^-\pi^+\pi^-$

different flavour at decay and production same flavour at decay and production

CPV in B_{s}^{0} mixing/decay

- Phase ϕ_s arises from interference between B_{S}^{0} decays with and without mixing
- Measurement of B_{s}^{0} - B_{s}^{0} mixing phase ϕ_{s} sensitive to NP effects in mixing
- Golden channel: $B_s^0 \rightarrow J/\psi \phi$

$$\phi_s = \phi_s^{SM} + \phi_s^{NP}$$

 ϕ_{dec}

 $\overline{\mathsf{B}^0_{\mathsf{s}}}$

CPV in B_{S}^{0} mixing/decay

- Mixing phase ϕ_s measured in
 - $B_s^0 \rightarrow J/\psi \phi \text{ (PRD 87 (2013) 112010)}$
 - Superposition of CP-even and CP-odd states → Needs flavour-tagged, timedependent angular analysis
 - Same final state can also be produced with K⁺K[−] in S-wave → both P- and S-wave decays explicitly included

• 27617 events selected with 1
$$fb^{-1}$$

$$\phi_s = 0.07 \pm 0.09 \pm 0.01 \text{ rad}$$

$$\Gamma_s = (\Gamma_L + \Gamma_H) / 2 = 0.663 \pm 0.005 \pm 0.006 \text{ ps}^{-1}$$

$$\Gamma_s = \Gamma_L - \Gamma_H = 0.100 \pm 0.0016 \pm 0.003 \text{ ps}^{-1}$$

$$\operatorname{CP} \left| \mathbf{J}/\boldsymbol{\psi} \; \boldsymbol{\phi} \right\rangle = \; (-1)^l \; \left| \mathbf{J}/\boldsymbol{\psi} \; \boldsymbol{\phi} \right\rangle \qquad l = 0, 1, 2$$

-
$$B_{s}^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$$
 (PLB 713 (2012) 378,
updated in PRD 87 (2013) 112010)

- CP-odd fraction >97.7%
- 2936 events selected with 1 fb⁻¹

$$\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01 \text{ rad}$$

CPV in B_{s}^{0} mixing/decay

Flavour-specific CPV asymmetry in B⁰_s decays

- a_{sl} : CP asymmetry in flavour specific (semileptonic) decays
- Final state : $D_{s}^{+}\mu^{-}\overline{\nu}X$ and $D_{s}^{-}\mu^{+}\nu X$, with $D_{s}^{\pm} \rightarrow \phi\pi^{\pm}$

•
$$a_{sl} = \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to \overline{f})}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to \overline{f})} \approx \frac{\Delta\Gamma}{\Delta M} \tan \phi_{12}, \text{ with } \phi_{12} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$
 Nierste 2009
arXiv:0904.1869

$$a_{sl}^{s,SM} = (1.9 \pm 0.3) \cdot 10^{-5}$$
 Lenz & Nierste 2011
 $a_{sl}^{d,SM} = -(4.1 \pm 0.6) \cdot 10^{-4}$ arXiv:1102.4274v1

$$A_{\text{meas}} \equiv \frac{\Gamma[D_s^-\mu^+] - \Gamma[D_s^+\mu^-]}{\Gamma[D_s^-\mu^+] + \Gamma[D_s^+\mu^-]} = \frac{a_{\text{sl}}^s}{2} + \left[a_{\text{P}} - \frac{a_{\text{sl}}^s}{2}\right] \frac{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cos(\Delta M_s t) \epsilon(t) dt}{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cosh(\frac{\Delta \Gamma_s t}{2}) \epsilon(t) dt}$$

$$= \text{Effect of } a_p \text{ reduced to } \sim 10^{-4} \text{ level for } B_{\text{S}}$$

$$= \text{Target precision} \sim 10^{-3}$$

$$A_{meas} = \frac{a_{sl}^s}{2}$$

$$= \frac{N(B) - N(\overline{B})}{N(B) + N(\overline{B})} \text{ at most a few percent}$$

$$30$$

Flavour-specific CPV asymmetry in B⁰_s decays

- Result based on 1 fb^{-1} $a_{sl}^s = (-0.06 \pm 0.50 \pm 0.36)\%$ (PLB 728C (2014) 607)
- In agreement with SM
- $\sim 3\sigma$ tension of D0 result not confirmed or excluded

Measurement of $D^0 - \overline{D}^0$ mixing & CPV

- Extremely small level of CPV expected in charm mixing and in decays offers the opportunity for very sensitive null tests of CKM
- Mixing dominated by long-distance effects not easily calculable
 - Charm as a discovery tool, not as a precision probe!
- Reconstruct neutral D in $K\pi$ mode
- Classify as RS or WS using $D^{*\pm}$ to identify flavour at production
 - **RS**: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$
 - (Cabibbo favoured 54M events in 3 fb⁻¹)
 - WS: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^+ \pi^-) \pi^+$
 - (DCS, mixing + CF 0.23M events in 3 fb⁻¹)
- WS/RS vs time separates suppressed decay from oscillation

 $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = \frac{N_{WS}(t)}{N_{RS}(t)}$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_D + \sqrt{R_D} y't + \frac{1}{4} (x'^2 + y'^2) \cdot t^2$ $R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = \frac{N_{WS}(t)}{N_{RS}(t)}$ $R(t) = \frac{N_{WS}(t)}{N_{WS}(t)}$ $R(t) = \frac{N_{WS}(t)}{N_{WS}(t)}$ R(

$$K^{-}\pi^{+}$$
 $K^{+}\pi^{-}$

 $x = \Delta m / \Gamma, y = \Delta \Gamma / 2\Gamma$

$$\left(R^{+}, R^{-}, A_{D} = \frac{R^{+} - R^{-}}{R^{+} + R^{-}}\right)$$

Fit D^0 / D^0 time evolution independently to search for CPV

Measurement of $D^0 - \overline{D}^0$ mixing & CPV

– First single-experiment measurement $>5 \sigma$ significance

Effective-lifetime asymmetry

• Study of indirect CP asymmetry in $D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$ via flavour-tagged lifetime asymmetry $\hat{\Gamma} = \hat{\Gamma} / (\Lambda + \Lambda)$

$$A_{\Gamma} \equiv \frac{\Gamma - \Gamma}{\hat{\Gamma} + \hat{\Gamma}} \approx \eta_{CP} \left(\frac{A_m + A_d}{2} y \cos \phi - x \sin \phi \right)$$
$$A_m = \frac{\left| q/p \right|^2 - \left| p/q \right|^2}{\left| q/p \right|^2 + \left| p/q \right|^2} , A_d = \frac{\left| A_f \right|^2 - \left| \overline{A}_f \right|^2}{\left| A_f \right|^2 + \left| \overline{A}_f \right|^2}, \lambda_f = \frac{q \overline{A}_f}{p A_f} = -\eta_{CP} \frac{q}{p} \left| \frac{\overline{A}_f}{A_f} \right| e^{i\phi}$$

- Non-zero if CPV in mixing occurs (A_d small for current precision)
- D^* to tag D flavour at production; measure D and \overline{D} yields as function of decay-time
- Acceptance vs decay-time for each candidate taken from data
 Slide each decay along D flight path to determine the pattern of accepted/rejected times for that decay
- >90% pure samples of 3M D⁰ \rightarrow KK and 1M D⁰ $\rightarrow \pi \pi (1 \text{ fb}^{-1})$

 $A_{\Gamma}(K^{+}K^{-}) = (-0.35 \pm 0.62 \pm 0.12) \times 10^{-3}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (0.33 \pm 1.06 \pm 0.14) \times 10^{-3}$

PRL 112 (2014) 041801

World's best result with 1/3 of the statistics!

Impact

Impact

Search for direct CPV in $D^0 \rightarrow K^+K^$ and $D^0 \rightarrow \pi^+\pi^-$ decays (ΔA_{CP})

- Intriguingly large difference in CP asymmetry between D⁰ decays to K⁺K⁻ and π⁺π⁻, at odds with expectations
 - $\Delta A_{CP} \equiv A_{CP}(KK) A_{CP}(\pi \pi)$
- Two methods:
 - Use $D^{*+} \rightarrow D^0 \pi^+$ as source of D^0 samples, flavour tagged by the emitted pion
 - PRL 108 (2012) 111602
 - LHCb-CONF-2013-003 (1fb⁻¹)
 - Use D⁰ produced in semileptonic b-hadron decays, flavour tagged by accompanying charged lepton
 - PLB 723 (2013) 33 (1fb⁻¹)
- Experimental and theoretical picture still blurry
- Measurement with full LHCb data set in progress (semileptonic analysis already passed Collaboration-wide review)

Looking forward: LHCb upgrade

- By the end of Run2, LHCb will have accumulated $\sim >8 \text{fb}^{-1}$ (at $\mathcal{L} = 4.10^{32} \text{cm}^{-2} \text{s}^{-1}$)
- Without modifications data doubling time after Long Shutdown 2 (LS2) would become too long → need significant increase in instantaneous luminosity.
- LHCb will be upgraded during LS2 to run at higher luminosity ($\mathcal{L} \ge 10^{33} \text{cm}^{-2} \text{s}^{-1}$)

	R	un 1	LS1	Run 2	LS2		
Start-u	p 2010 20)11 2012 2	013 2014 20	015 2016 2017	<mark>20</mark> 18 2019 .	20xx	
√s (TeV):	0.9 - 7	- 8	-	13 -14	LHCb Upgrade		
\mathcal{L} (cm ⁻² s ⁻¹):	10^{32}	3-4x10 ³²		$4x10^{32}$	10 –	$20 \text{ x} 10^{32}$	
∫Ĺdt	3	3 fb ⁻¹		8 (=3+5)	fb ⁻¹ > 5	$> 50 \text{ fb}^{-1}$	

- Read-out whole detector at every bunch-crossing (40 MHz)
- Move to fully software-based flexible trigger (factor ~2 gain for hadronic triggers)
- The upgraded experiment is expected to collect > 50 fb^{-1} (~ 5 fb^{-1} /year)
- Detector TDRs being submitted to LHC Experiments Committee

Looking forward: LHCb upgrade

- By the end of Run2, LHCb will have accumulated $\sim >8 \text{fb}^{-1}$ (at $\mathcal{L} = 4 \ 10^{32} \text{cm}^{-2} \text{s}^{-1}$)
- Without modifications data doubling time <u>after Long Shutdown 2 (LS2</u>) would

- The upgraded experiment is expected to collect > 50 fb⁻¹ (~5 fb⁻¹/year)
- Detector TDRs being submitted to LHC Experiments Committee

Sensitivities to key observabls

LHCb-PUB-2013-015

		End of Run2					
-	-	$\int \mathbf{L} dt = 3 \mathrm{fb}^{-1}$	$\int \mathbf{L} dt = 8 \mathrm{fb}^{-1}$	$\int \mathbf{L} dt = 50 \mathrm{fb}^{-1}$			
Туре	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory		
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003		
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$	0.09	0.05	0.016	~ 0.01		
	$A_{ m sl}(B^0_s)~(10^{-3})$	2.8	1.4	0.5	0.03		
Gluonic	$\phi^{ ext{eff}}_s(B^0_s o\phi\phi) \ (ext{rad})$	0.18	0.12	0.026	0.02		
penguin	$\phi_s^{\text{eff}}(B^0_s \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02		
	$2\beta^{\mathrm{eff}}(B^0 o \phi K^0_S) \ \mathrm{(rad)}$	0.30	0.20	0.04	0.02		
Right-handed	$\phi_s^{ m eff}(B^0_s o \phi \gamma)$	0.20	0.13	0.030	< 0.01		
currents	$ au^{ m eff}(B^0_s o \phi\gamma)/ au_{B^0_s}$	5%	3.2%	0.8%	0.2%		
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02		
penguin	$q_0^2 A_{ m FB}(B^0 ightarrow K^{st 0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$		
	$A_{ m I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.14	0.07	0.024	~ 0.02		
	$\mathcal{B}(B^+ ightarrow \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ ightarrow K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$		
Higgs	${\cal B}(B^0_s o\mu^+\mu^-)~(10^{-9})$	1.0	0.5	0.19	0.3		
penguin	${\cal B}(B^0 o \mu^+ \mu^-)/{\cal B}(B^0_s o \mu^+ \mu^-)$	220%	110%	40%	$\sim 5 \%$		
Unitarity	$\gamma(B o D^{(*)}K^{(*)})$	7 °	4°	1.1°	negligible		
triangle	$\gamma(B^0_s o D^{\mp}_s K^{\pm})$	17°	11°	2.4°	negligible		
angles	$eta(B^0 o J/\psi K^0_S)$	1.7°	0.8°	0.31°	negligible		
Charm	$A_{\Gamma}(D^0 ightarrow K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	_		
$C\!P$ violation	$\Delta A_{CP}~(10^{-3})$	0.8	0.5	0.12	_		

Conclusions

- Wealth of LHCb results with the first 3/fb collected at "CERN's flavour factory"
 - Everything worked beautifully (LHC, luminosity leveling, detector, trigger, collaboration, data analysis, ..)
 - Many world record results. For some topics we are moving from exploration to precision measurements.
 - Many other analyses ongoing on full data set (not only in b and c physics) ...
- Some new territory already explored but SM still depressingly uncracked
- We'll keep on looking....
- Working hard to prepare for the future (LHCb Upgrade)