An affine framework for the dynamics of charged particles

W. M. Tulczyjew Dipartimento di Matematica e Fisica Università degli Studi di Camerino I-62032 Camerino

P. Urbański Division of Mathematical Methods in Physics University of Warsaw Hoża 74, 00-682 Warszawa

11 November 1990

1 Introduction

Gauge independence of the Lagrangian formulation of dynamics of charged particles can be achieved by increasing the dimension of the configuration space of the particle. The four dimensional space-time of general relativity is replaced by the five dimensional space-timephase of Kaluza. The phase space of the particle is the cotangent bundle of the Kaluza space and the gauge independent Lagrangian is a function on the tangent bundle of the Kaluza space [1]. An alternate approach is proposed in the present note. The four dimensional space-time is used as the configuration space of the charged particle. The phase space is no longer a cotangent bundle and not even a vector bundle. It is an affine bundle modelled on the cotangent bundle of the space-time manifold. The Lagrangian is a section of an affine line bundle over the tangent bundle of the space-time manifold.

2 Affine fibrations

Let $\xi: E \to M$ be a vector fibration. An *affine fibration modelled on* ξ is a differential fibration $\eta: A \to M$ and a differentiable mapping $\rho: A \times_M A \to E$ such that

- 1. $\xi \circ \rho = \eta \times_M \eta$,
- 2. $\rho(a_3, a_2) + \rho(a_2, a_1) = \rho(a_3, a_1)$ for each triple $(a_3, a_2, a_1) \in A \times_M A \times_M A$,
- 3. for each local section $\sigma: U \to A$ of η , the mapping $\rho_{\sigma}: \eta^{-1}(U) \to \xi^{-1}(U)$ defined by

$$\rho_{\sigma}(a) = \rho(a, \sigma(\eta(a)))$$

is a diffeomorphism.

For each pair $(a_2, a_1) \in A \times_M A$ we will use the symbol $a_2 - a_1$ to denote the element $\rho(a_2, a_1) \in E$. We will write $a_2 = a_1 + e$ if $a_2 - a_1 = e$. These notational conventions are extended to local sections of A and E. If α_2 and α_1 are local sections of A over $U \subset M$ then $\alpha_2 - \alpha_1$ denotes the local section of E defined by $(\alpha_2 - \alpha_1)(m) = \alpha_2(m) - \alpha_1(m)$. We will write $\alpha_2 = \alpha_1 + \varepsilon$ if $\alpha_2 - \alpha_1 = \varepsilon$.

An affine fibration modelled on the trivial vector fibration $pr_M: M \times \mathbf{R} \to M$ is usually interpreted as a principal fibration with structure group \mathbf{R} .

3 The phase fibration and the contact fibration of a principal fibration

Let $\mathbf{Z} = (\zeta \colon Z \to M, \rho \colon Z \times_M Z \to M \times \mathbf{R})$ be an affine fibration modelled on the trivial fibration $pr_M \colon M \times \mathbf{R} \to M$. We define an equivalence relation in the set of all pairs (m, σ) , where m is a point in M and σ is a section of ζ . Two pairs (m, σ) and (m', σ') are equivalent if m' = m and $d(\sigma' - \sigma)(m) = 0$. We have identified the section $\sigma' - \sigma$ of pr_M with a function on M for the purpose of evaluating the differential $d(\sigma' - \sigma)(m)$. We denote by PZ the set of equivalence classes. The class of (m, σ) will be denoted by $d\sigma(m)$ and will be called the *differential* of σ at m. We define a mapping $P\zeta \colon PZ \to M$ by $P\zeta(d\sigma(m)) = m$. We define a mapping $P\rho \colon PZ \times_M PZ \to T^*M$ by

$$P\rho(d\sigma_2(m), d\sigma_1(m)) = d(\sigma_2 - \sigma_1)(m).$$

The pair $\mathbf{PZ} = (\mathbf{P}\zeta, \mathbf{P}\rho)$ is an affine fibration modelled on the fibration $\pi_M: \mathbf{T}^*M \to M$. This fibration is called the *phase fibration* of $\mathbf{Z} = (\zeta, \rho)$. Let φ be a section of $\mathbf{P}\zeta$ and let σ be a section of ζ . We define the *differential* $d\varphi$ of φ by $d\varphi = d(\varphi - d\sigma)$. Since for two sections σ, σ' of ζ we have $d(d\sigma - d\sigma') = dd(\sigma - \sigma') = 0$ it follows that the definition of the differential does not depend on the choice of σ .

Let (ζ, ρ) be again an affine fibration modelled on the trivial fibration $pr_M : M \times \mathbf{R} \to M$. We define an equivalence relation in the set of all pairs (m, σ) , where m is a point in M and σ is a section of ζ . Two pairs (m, σ) and $(m, , \sigma')$ are equivalent if $m = m', (\sigma' - \sigma)(m) = 0$ and $d(\sigma' - \sigma)(m) = 0$. We denote by CZ the set of equivalence classes. The class of (m, σ) will be denoted by $C\sigma(m)$ and will be called the *contact element* of σ at m. We define a mapping $C\zeta: CZ \to M$ by $C\zeta(C\sigma(m) = m$. We define a mapping $C\rho: CZ \times_M CZ \to T^*M \times \mathbf{R}$ by

$$C\rho(C\sigma_2(m), C\sigma_1(m)) = ((\sigma_2 - \sigma_1)(m), d(\sigma_2 - \sigma_1)(m).$$

The pair $(C\zeta, C\rho)$ is an affine fibration modelled on the vector fibration $T^*M \times \mathbf{R} \to M$. There is a natural morphism $\gamma_{\mathbf{Z}}$ between CZ and PZ defined by

$$\gamma_{\mathbf{Z}}(\mathbf{C}\sigma(m)) = \mathrm{d}\sigma(m).$$

The pair $(\gamma_{\mathbf{Z}}, \tilde{C}\rho)$ where $\tilde{C}\rho$ denotes the mapping $C\rho$ restricted to $CZ \times_{PZ} CZ$ is an affine fibration modelled on the trivial fibration $PZ \times \mathbf{R} \to PZ$. This fibration will be called the *contact fibration* of (ζ, ρ) and will be denoted $C\mathbf{Z}$. The fibration $C\mathbf{Z}$ is a pull-back of the fibration (ζ, ρ) with respect to the mapping $d\zeta$.

4 The symplectic structure of the phase fibration

Let $(\eta: A \to M, \rho: A \times_M A \to T^*M)$ be an affine fibration modelled on the cotangent fibration $\pi_M: T^*M \to M$. We define an equivalence relation between triples (a, φ, ψ) where ais a point in A, φ is a section of η and ψ is a section of the cotangent fibration $\pi_A: T^*A \to A$. Two triples (a, φ, ψ) and (a', φ', ψ') are equivalent if a = a' and $(\eta^*(\varphi - \varphi'))(a) = (\psi' - \psi)(a)$. We denote by η^*A the set of equivalence classes. We define a mapping $\rho^*: \eta^*A \times \eta^*A \to T^*A$ by

$$\rho^*([(a,\varphi,\psi)], [(a,\varphi',\psi')]) = \eta^*(\varphi-\varphi)(a) + (\psi-\psi')(a).$$

The pair (η^*, ρ^*) is an affine fibration modelled on the vector fibration π_A . We define a section $\vartheta_{\mathbf{A}}$ of η^* by $\vartheta_{\mathbf{A}}(a) = [(a, \varphi, 0)]$ where φ is such that $\varphi(\eta(a)) = a$. The section $\vartheta_{\mathbf{A}}$ will be called the *Liouville section* of \mathbf{A} . For a section φ of η we define a section $\eta^*\varphi$ of the fibration (η^*, ρ^*) by $\eta^*\varphi(a) = [(a, \varphi, 0)]$. We observe that for two sections φ and φ' of η we have $\eta^*\varphi - \eta^*\varphi' = \eta^*(\varphi - \varphi')$.

Let $(\zeta: Z \to M, \rho: Z \times_M Z \to M \times \mathbf{R})$ be an affine fibration modelled on the trivial fibration $pr_M: M \times \mathbf{R} \to M$. Let φ be a section of the affine fibration $((\mathbf{P}\zeta)^*, (\mathbf{P}\rho)^*)$. We define a 2-form $d\varphi$ on $\mathbf{P}Z$ by $d\varphi = d(\varphi - (\mathbf{P}\zeta)^* d\sigma)$ where σ is a section of ζ . The definition does not depend on the choice of a section σ because for two sections σ and σ' of ζ we have $d(\mathbf{P}\zeta^*d\sigma - \mathbf{P}\zeta^*d\sigma') = d(\mathbf{P}\zeta^*(d\sigma - d\sigma')) = (\mathbf{P}\zeta^*dd(\sigma - \sigma')) = 0.$

PROPOSITION 4.1 The differential ω_{PZ} of the Liouville section ϑ_{PZ} is a symplectic form on PZ.

Proof. It is enough to observe that for a section σ of ζ the 1-form $\vartheta_{P\mathbf{Z}} - P\zeta^* d\sigma$ on PZis ϑ on T^*M is the pull-back of the canonical 1-form on T^*M with respect to a mapping $P\rho_{\sigma}: PZ \to T^*M$ defined by $P\rho_{\sigma}(a) = a - d\sigma(a)$. \Box

Thus we have shown that PZ has the canonical structure of a symplectic manifold.

5 The structure of the contact fibration

Let $\mathbf{Z} = (\zeta : Z \to M, \rho : Z \times_M Z \to M \times \mathbf{R})$ be an affine fibration modelled on the trivial fibration $pr_M : M \times \mathbf{R} \to M$.

PROPOSITION 5.1 There is a canonical isomorphism of affine fibrations PCZ and $((P\zeta)^*, (P\rho)^*)$.

Proof. Let us choose a section σ of ζ . We define a section $\tilde{\sigma}$ of $\gamma_{\mathbf{Z}}$ by

$$\tilde{\sigma}(d) = \left[(\mathbf{P}\zeta(d), \sigma) \right] + (d - \mathrm{d}\sigma(\mathbf{P}\zeta(d), 0).$$

A mapping $\Phi_{\sigma}: \mathrm{PC}Z \to \mathrm{T}^*\mathrm{P}Z$ defined by

$$\Phi_{\sigma}(a) = a - \mathrm{d}\tilde{\sigma}(\mathrm{P}\gamma_{\mathbf{Z}}(a))$$

is an isomorphism of affine fibrations. A mapping $\Psi_{\sigma}: (\mathbf{P}\zeta)^* \to \mathbf{T}^*\mathbf{P}Z$ defined by $\Psi_{\sigma}(b) = d\psi(a)$ where $b = [(a, d\sigma, \psi)]$ is also an isomorphism of affine fibrations. We observe, that for two sections σ and σ' of ζ we have $\Phi_{\sigma}(d) = \Phi_{\sigma'}(d) + (\mathbf{P}\zeta)^* d(\sigma - \sigma')(\gamma_{\mathbf{Z}}(b))$ and $\Psi_{\sigma}(b) = \Phi_{\sigma'}(d) + (\mathbf{P}\zeta)^* d(\sigma - \sigma')(\gamma_{\mathbf{Z}}(b))$

 $\Psi'_{\sigma}(b) + (P\zeta)^* d(\sigma - \sigma')(\gamma_{\mathbf{Z}}(b))$. It follows that $(\Phi_{\sigma})^{-1} \circ \Psi_{\sigma}$ does not depend on the choice of σ and defines a canonical isomorphism of $P\tau(\zeta)$ and $(P\zeta)^*$. \Box

We define a canonical section $\vartheta_{\mathbf{Z}}$ of $P\gamma_{\mathbf{Z}}$ as $\vartheta_{P\mathbf{Z}}$ transported by the isomorphism introduced in the proposition. We observe that $d\vartheta_{\mathbf{Z}} = d\vartheta_{P\mathbf{Z}}$. We refer to $\vartheta_{\mathbf{Z}}$ as a connection in the fibration $\gamma_{\mathbf{Z}}$ and to the symplectic form $d\vartheta_{\mathbf{Z}} = \omega_{P\mathbf{Z}}$ as the curvature form of this connection.

6 The reduced tangent fibration

Let $\mathbf{Z} = (\zeta : Z \to M, \rho : Z \times_M Z \to M \times \mathbf{R})$ be an affine fibration modelled on the trivial fibration $pr_M : M \times \mathbf{R} \to M$. We introduce an equivalence relation in the set of triples (v, a, r) where v is an element of the tangent fibration $\tau_M : TM \to M$, a is an element of the phase fibration $\mathcal{P}\zeta$ such that $\tau_M(v) = \mathcal{P}\zeta(a)$ and r is a real number. Two such triples (v, a, r) and (v', a', r') are equivalent if and only if v = v' and $\langle v, a - a' \rangle = r' - r$. We denote by $\widetilde{T}Z$ the set of equivalence classes. The class of (v, a, 0) will be denoted by $\langle v, a \rangle$ and will be called the *evaluation* of a on v. We define a mapping $\widetilde{\tau} : \widetilde{T}Z \to TM$ by $\widetilde{T}\zeta([(v, a, r)] = v$ and a mapping $\widetilde{T}\rho : \widetilde{T}Z \times_{TM} \widetilde{T}Z \to TM \times \mathbf{R}$ by

$$\widetilde{\Gamma}\rho([(v,a,r)],[(v,a',r')]) = (v,r-r' + \langle v,a-a' \rangle).$$

The affine fibration $\widetilde{T}\mathbf{Z} = (\widetilde{T}\zeta, \widetilde{T}\rho)$ will be called the *reduced tangent fibration* of \mathbf{Z} .

For two triples (v, a, r) and (v', a', r') such that $\tau_M(v) = \tau_M(v')$ we introduce the sum

$$[(v, a, r)] + [(v', a', r')] = [(v + v', a, r + r' + \langle v', a' - a \rangle)]$$

For a number s and a triple (v, a, r) we introduce the product

$$s[(v, a, r)] = [(sv, a, sr)].$$

With this operations the fibration $\tau_Z : \widetilde{T}Z \to M$ is a vector fibration.

Let σ be a section of ζ . We define a section $T\sigma$ of $T\zeta$ by

$$\mathbf{T}\sigma(v) = [(v, \mathrm{d}\sigma(\tau_M v), 0)] = \langle v, \mathrm{d}\sigma \rangle.$$

7 The definition of α_z

Let $\mathbf{A} = (\eta: A \to M, \rho: A \times_M A \to E)$ be an affine fibration modelled on the vector fibration $\xi: E \to M$. The tangent fibration $(T\eta, T\rho)$ is an affine fibration modelled on the vector fibration $T\xi: TE \to TM$. The tangent fibration will be denoted $T\mathbf{A}$

Let $\mathbf{Z} = (\zeta : Z \to M, \rho : Z \times_M Z \to M \times \mathbf{R})$ be an affine fibration modelled on the trivial fibration $pr_M : M \times \mathbf{R} \to M$.

PROPOSITION 7.1 There is a canonical isomorphism of affine fibrations TPZ and PTZ.

Proof. The affine fibration TPZ is modelled on the vector fibration $T\pi_M: TT^* \to TM$. The affine fibration \widetilde{PTZ} is modelled on the vector fibration $\pi_{TM}: T^*TM \to TM$. There is a canonical isomorphism of vector fibrations $\alpha_M: T\pi_M \to \pi_{TM}$ with the property that for a function f on $M \ \alpha_M(Tdf) = d\widetilde{T}f$. Let σ be a section of ζ , then $Td\sigma$ is a section of $T\pi$ and $d\widetilde{T}\sigma$ is a section of π_{TM} . We define a mapping $\alpha_{\mathbf{Z},\sigma}: TPZ \to \widetilde{PTZ}$ by

$$\alpha_{\mathbf{Z},\sigma}(w) = \mathrm{d}\mathbf{T}\sigma + \alpha_M(w - \mathrm{T}\mathrm{d}\sigma(\mathrm{TP}\zeta(w)).$$

For two sections σ and σ' of ζ we have

$$\alpha_M(\mathrm{Td}\sigma) - \alpha_M(\mathrm{Td}\sigma') = \alpha_M(\mathrm{Td}(\sigma - \sigma')) = \mathrm{d}\widetilde{T}(\sigma - \sigma') = \mathrm{d}\widetilde{T}\sigma - \mathrm{d}\widetilde{T}\sigma'.$$

It follows that the mapping $\alpha_{\mathbf{Z},\sigma}$ does not depend on the choice of σ . It follows also that it is an isomorphism of affine fibrations. \Box

Let φ be a section of the fibration $P\zeta$. We define a section $i_T\varphi$ of $T\zeta$ by $i_T\varphi(v) = \langle v, \varphi(\tau_M(v)) \rangle$. The section $\alpha_{\mathbf{Z}} \circ T\varphi$ of $PT\zeta$ will be denoted $d_T\varphi$.

PROPOSITION 7.2 Let φ be a section of $P\zeta$. Then $d_T\varphi = di_T\varphi + i_T d\varphi$.

Proof. We know ([?, ?]) that for a section σ of ζ we have

$$d_{\mathrm{T}}(\varphi - \mathrm{d}\sigma) = \mathrm{di}_{\mathrm{T}}(\varphi - \mathrm{d}\sigma) + \mathrm{i}_{\mathrm{T}}\mathrm{d}(\varphi - \mathrm{d}\sigma).$$

From the definition of $\alpha_{\mathbf{Z}}$ it follows that $d_T d\sigma = di_T d\sigma + i_T dd\sigma$. Thus $d_T \varphi = di_T \varphi + i_T d\varphi$ for every section φ . \Box

8 The definition of $\hat{\alpha}_z$

We already know from Section ?? that the fibration CZ is a pull-back of the fibration (ζ, ρ) with respect to the mapping P ζ . It follows that the fibration $\gamma_{\widetilde{T}Z}$ is a pull-back of the fibration $\widetilde{T}\zeta$ with respect to the mapping $\widetilde{PT}\zeta: \widetilde{PT}Z \to TZ$.

PROPOSITION 8.1 The fibration $\widetilde{T}C\zeta$ is a pull-back of the fibration $\widetilde{T}\zeta$ with respect to the mapping $TP\zeta : TPZ \to TM$.

Proof. Let σ be a section of ζ and let $\tilde{\sigma}$ be its pull-back to a section of $\gamma_{\mathbf{Z}}$. We define a mapping from $\widetilde{\mathrm{TC}Z}$ to $\widetilde{\mathrm{T}Z}$ by $[(w, a, r)] \mapsto [(v, \mathrm{d}\sigma(\tau_M v), r + \langle w, a - \mathrm{d}\tilde{\sigma} \rangle)]$ where $w \in \mathrm{TP}Z$, $v = \mathrm{TP}\zeta w$ and $a \in \mathrm{PC}Z$. For two sections σ and σ' of ζ we have $\langle w, \mathrm{d}\tilde{\sigma} - \mathrm{d}\tilde{\sigma'} \rangle = \langle v, \mathrm{d}(\sigma - \sigma') \rangle$. It follows that the triples $(v, \mathrm{d}\sigma(\tau_M v), r + \langle w, a - \mathrm{d}\tilde{\sigma} \rangle)$ and $(v, \mathrm{d}\sigma'(\tau_M v), r + \langle w, a - \mathrm{d}\tilde{\sigma'} \rangle)$ define the same element of $\widetilde{\mathrm{T}Z}$. Thus the introduced mapping does not depend on the choice of σ and, consequently, the fibration $\widetilde{\mathrm{TC}}\zeta$ is a pull-back of the fibration $\widetilde{\mathrm{T}}\zeta$ with respect to the mapping $\mathrm{TP}\zeta : \mathrm{TP}Z \to \mathrm{T}M$. \Box

Since both fibrations $\widetilde{T}C\zeta$ and $\widetilde{CT}\zeta$ are pull-backs of the same fibration it follows that $\alpha_{\mathbf{Z}}$ has a natural extension $\widetilde{\alpha}_{\mathbf{Z}}$ to the isomorphism of fibrations $\widetilde{T}\gamma_{\mathbf{Z}}$ and $\gamma_{\widetilde{T}\mathbf{Z}}$. It is also an isomorphism of affine fibrations $\widetilde{T}C\mathbf{Z}$ and $\widetilde{CT}\mathbf{Z}$.

Let us apply the isomorphism of affine fibrations defined in Proposition ?? to the contact fibration CZ. We obtain an isomorphism $\alpha_{\mathbf{Z}}$ of TP ζ and PT ζ . There is the Liouville section $\vartheta_{\mathbf{Z}}$ of PCZ. It follows from the construction of $\alpha_{\mathbf{Z}}$ that the differential $dd_{\mathbf{T}}\vartheta_{\mathbf{Z}}$ is a symplectic form on TPZ. Thus T has the canonical structure of a contact fibration defined by $d_{\mathbf{T}}\vartheta_{\mathbf{Z}}$.

Since $\widehat{\alpha}_{\mathbf{Z}}$ is an isomorphism of TCZ and CTZ it defines an isomorphism of PTCZ and PCTZ. It follows from the construction of $\widehat{\alpha}_{\mathbf{Z}}$ that $\widehat{\alpha}_{\mathbf{Z}} \circ d_{\mathrm{T}} \vartheta_{\mathbf{Z}} = \vartheta_{\mathrm{TZ}}$. We say that $\widehat{\alpha}_{\mathbf{Z}}$ is an isomorphism of contact fibrations.

9 The definition of $\hat{\beta}_z$

Let $\mathbf{Z} = (\zeta: Z \to M, \rho; Z \times_M Z \to M \times \mathbf{R})$ be an affine fibration modelled on the trivial fibration $pr_M: M \times \mathbf{R} \to M$. The symplectic form $\omega_{P\mathbf{Z}}$ on PZ defines the canonical symplectomorphism $\beta_{PZ}: TPZ \to T^*PZ$. The trivial fibration $pr_{T^*PZ}: T^*PZ \times \mathbf{R} \to T^*PZ$ is the contact fibration of the trivial fibration $pr_{PZ}: PZ \times \mathbf{R} \to PZ$ with the connection form ϑ_{PZ} . The trivial fibration $pr_{TPZ}: TPZ \times \mathbf{R} \to TPZ$ is also a contact fibration with the connection form $i_T\omega_{PZ}$. The trivial lift of β_{PZ} to the fibration isomorphism $\widehat{\beta}_{PZ}: T^*PZ \times \mathbf{R} \to TPZ \times \mathbf{R} \to TPZ \times \mathbf{R}$ is the isomorphism of contact bundles.

The Liouville section $\vartheta_{\mathbf{Z}}$ of $P\gamma_{\mathbf{Z}}$ defines a section $i_{\mathbf{T}}\vartheta$ of $T\gamma_{\mathbf{Z}}$. Since

$$i_T \omega_{PZ} = i_T d\vartheta_Z = d_T \vartheta_Z - di_T \vartheta_Z$$

it follows that the mapping $\varepsilon_{\mathbf{Z}} \colon \widetilde{\mathrm{TC}}Z \to \mathrm{TP}Z \times \mathbf{R}$ defined by

$$\varepsilon_{\mathbf{Z}}(\widetilde{w}) = \widetilde{w} - i_{\mathrm{T}}\vartheta_{\mathbf{Z}}(\widetilde{\mathrm{T}}\gamma_{\mathbf{Z}}(\widetilde{w}))$$

is an isomorphism of contact bundles. We define $\widehat{\beta}_{\mathbf{Z}} \colon \widetilde{\mathrm{TC}}\mathbf{Z} \to \mathrm{T}^*\mathrm{P}Z \times \mathbf{R}$ by $\widehat{\beta}_{\mathbf{Z}} = \widehat{\beta}_{\mathrm{P}Z} \circ \varepsilon_{\mathbf{Z}}$.

10 The dynamics of a charged particle

Let M be the space-time with the metric tensor g. Let

$$\mathbf{Y} = (\xi: Y \to M, \eta: Y \times_M Y \to M \times \mathbf{R}$$

be the Kaluza-Klein fibration. An electromagnetic potential A is a section of $P\xi$ and the electromagnetic field is its differential dA. Let e be the charge of a particle with the mass m. We define an equivalence relation between pairs (y, r) where $y \in Y$ and $r \in \mathbf{R}$. Two pairs (y, r) and (y', r') are equivalent if $\xi(y) = \xi(y')$ and $(\xi(y), r - r') = \eta(y - y')$. We denote by Z the set of equivalence classes. We define $\zeta: Z \to M$ by $\zeta([(y, r)]) = \xi(y)$ and $\rho: Z \times_M Z \to M \times \mathbf{R}$ by $\rho([(y, r)], [(y, r')]) = (\xi(y), r - r')$. Let σ be a section of ξ . We define a section σ_e of ζ by $\sigma_e(m) = [(\sigma(m), 0)]$. The correspondence between sections of ξ and sections of ζ defines an isomorphism of fibrations $\Phi: P\xi \to P\zeta$ by the correspondence $(m, \sigma) \mapsto (m, \sigma_e)$ of representants of elements of the phase fibrations. We denote by A_e the section $\Phi \circ A$ of $P\zeta$. The Lagrangian of a charged particle is a section L of the reduced tangent fibration $\widetilde{T}\zeta$ defined by $L(v) = \langle v, A_e \rangle + m\sqrt{g(v, v)}$ defined on the submanifold of positive vectors. Let D_l and W_l denote sets of all elements of $P\widetilde{T}Z$ and $C\widetilde{T}Z$ respectively which have representatives of the form (m, L). A submanifold D of the phase manifold PZ of the system defined by $\alpha_{\mathbf{Z}}(D) = D_l$ is the dynamics of the system.

Let us choose a section (a gauge) σ of ζ . The mapping $\Psi_{\sigma}: PZ \to T^*M$ defined by $\Psi_{\sigma}(a) = a - d\sigma(P\zeta(a))$ is a symplectomorphism. We introduce symbols $A_{e,\sigma} = \Psi_{\sigma} \circ A_e$ and

$$C_{A_{e,\sigma}} = \{ p \in T^*M : g(p - A_{e,\sigma}, p - A_{e,\sigma}) = m^2 \}.$$

We then have

$$T\Psi_{\sigma}(D) = \{ w \in TT^*M : w \in TC_{A_{e,\sigma}}, w \, \lrcorner \, (\omega_M | C_{A_{e,\sigma}}) = 0, \\ mv = \sqrt{g(v,v)}g(p - A_{e,\sigma}(\pi_M(p)), \cdot), \\ v = T\pi_M(w) \}$$

and

$$p = \tau_{\mathrm{T}^*(M)}(w) \}.$$

Another representation of PZ as TT^*M is obtained by choosing A_e as the zero section. We define a mapping $\Psi_{A_e}: \mathrm{PZ} \to \mathrm{T}^*M$ by $\Psi_{A_e}(a) = a - A_e(\mathrm{P}\zeta(a))$. This mapping is not symplectomorphic and the canonical symplectic form ω_{PZ} is transported by this mapping to the 2-form $\omega_M - \pi_M^*F = \omega_F$ where $F = \mathrm{d}A_e$. Let be $C_0 = \{p \in \mathrm{T}^*M : g(p,p) = m^2$. We have $\Psi_{A_e}(D) = \{w \in \mathrm{TT}^*M : w \in \mathrm{TC}_0, w \, \lrcorner \, (\pi_F | C_0) = 0, mv = \sqrt{g(v,v)}g(p,\cdot), v = \mathrm{T}\pi_M(w), p = \pi_{\mathrm{T}^*M}(w)\}.$

In order to obtain the Hamilton description of the system we project $\hat{\beta}_{\mathbf{Z}}$ to $\mathbf{P}Z \times \mathbf{R}$. We obtain the zero function on the constraint submanifold

$$C_{A_e} = \{ p \in T^*M : g(p - A_{e,\sigma}, p - A_{e,\sigma}) = m^2 \}.$$

References

- Tulczyjew, W.M., Geometric Foundations of Lagrangian mechanics, Proceedings of IUTAM-ISIMM Symposium on "Modern Developments in Analytical Mechanics", Torino 7-11 June 1982, Atti Accademia delle Scienze di Torino 117, 255-272.
- [2] Pidello, G. and Tulczyjew, W.M., *Derivations of differential forms on jet bundles*, Ann. Math. Pura Applicata ,147, (1987).
- [3] Menzio, Maria Rosa and Tulczyjew, W.M., Infinitesimal symplectic relations and generalized Hamiltonian dynamics, Ann. Inst. H. Poincare, 28, 349-367 (1978).
- [4] Tulczyjew, W.M., A Symplectic Formulation of Relativisitic Particle Dynamics, Acta Phys. Polon., B8, 431-477 (1977).