An affine framework for the dynamics of charged particles
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1 Introduction

Gauge independence of the Lagrangian formulation of dynamics of charged particles can
be achieved by increasing the dimension of the configuration space of the particle. The four
dimensional space-time of general relativity is replaced by the five dimensional space-time-
phase of Kaluza. The phase space of the particle is the cotangent bundle of the Kaluza space
and the gauge independent Lagrangian is a function on the tangent bundle of the Kaluza
space [1]. An alternate approach is proposed in the present note. The four dimensional
space-time is used as the configuration space of the charged particle. The phase space is no
longer a cotangent bundle and not even a vector bundle. It is an affine bundle modelled on
the cotangent bundle of the space-time manifold. The Lagrangian is a section of an affine
line bundle over the tangent bundle of the space-time manifold.

2 Affine fibrations

Let &: E — M be a vector fibration. An affine fibration modelled on & is a differential
fibration : A — M and a differentiable mapping p: A Xy A — E such that

L §op=nxun,

2. p(as,az) + p(az,ar) = p(as,a1) for each triple (a3, az,a1) € A xpr A Xpr A,

3. for each local section o: U — A of 1, the mapping p,:n~1(U) — £ 1(U) defined by
po(@) = pla, o (n(a)))

is a diffeomorphism.



For each pair (ag,a1) € A xpr A we will use the symbol as — a; to denote the element
plaz,a1) € E. We will write as = a1 + e if ag — a; = e. These notational conventions are
extended to local sections of A and E. If as and «; are local sections of A over U C M
then ay — iy denotes the local section of E defined by (s — a)(m) = aa(m) — ag(m). We
will write g = a1 + € if s — a1 = €.

An affine fibration modelled on the trivial vector fibration prys;: M x R — M is usually
interpreted as a principal fibration with structure group R.

3 The phase fibration and the contact fibration of a
principal fibration

Let Z=(¢:Z — M,p: Z Xy Z — M x R) be an affine fibration modelled on the trivial
fibration pryr: M x R — M. We define an equivalence relation in the set of all pairs (m, o),
where m is a point in M and o is a section of (. Two pairs (m, o) and (m/, ¢’) are equivalent
if m’ = m and d(o’— o) (m) = 0. We have identified the section ¢’ — o of prjs with a function
on M for the purpose of evaluating the differential d(¢’ — o)(m). We denote by PZ the set
of equivalence classes. The class of (m, o) will be denoted by do(m) and will be called the
differential of o at m. We define a mapping P(: PZ — M by P{(do(m)) = m. We define a
mapping Pp: PZ x 3 PZ — T*M by

Pp(dog(m)7d01(m)) = d(UQ — 01)(m).

The pair PZ = (P(,Pp) is an affine fibration modelled on the fibration mp;: T*M — M.
This fibration is called the phase fibration of Z = (¢, p). Let ¢ be a section of P¢ and let
o be a section of (. We define the differential dy of ¢ by dp = d(¢ — do). Since for two
sections o, ¢’ of ¢ we have d(do — do’) = dd(o — ¢’) = 0 it follows that the definition of the
differential does not depend on the choice of o.

Let (¢, p) be again an affine fibration modelled on the trivial fibration pry; : M xR — M.
We define an equivalence relation in the set of all pairs (m, o) , where m is a point in M and o
is a section of ¢. Two pairs (m, o) and (m, ,o’) are equivalent if m = m/, (¢ —o)(m) = 0 and
d(¢’ — o)(m) = 0. We denote by CZ the set of equivalence classes. The class of (m, o) will
be denoted by Co(m) and will be called the contact element of o at m. We define a mapping
C¢:CZ — M by C¢(Co(m) = m. We define a mapping Cp: CZ x; CZ — T*M x R by

Cp(Caa(m), Coy(m)) = ((02 — a1)(m),d(o9 — o1)(m).

The pair (C¢,Cp) is an affine fibration modelled on the vector fibration T*M x R — M.
There is a natural morphism 7z between CZ and PZ defined by

vz(Co(m)) = do(m).

The pair (yz, Cp) where Cp denotes the mapping Cp restricted to CZ xpy CZ is an affine
fibration modelled on the trivial fibration PZ x R — PZ. This fibration will be called the
contact fibration of (¢, p) and will be denoted CZ. The fibration CZ is a pull-back of the
fibration ({, p) with respect to the mapping d¢.



4 The symplectic structure of the phase fibration

Let (n: A — M,p: A x3r A — T*M) be an affine fibration modelled on the cotangent
fibration mp: T*M — M. We define an equivalence relation between triples (a, ¢, ) where a
is a point in A, ¢ is a section of  and 1 is a section of the cotangent fibration m4: T*A — A.
Two triples (a, ¢, ) and (a’, ¢, ') are equivalent if a = @’ and (n*(p—¢’))(a) = (V' —)(a).
We denote by n* A the set of equivalence classes. We define a mapping p*: n*Axn*A — T*A
by

p*([(a, 0. 9)], [(a, ¢, 0")]) = 1% (¢ — ) (@) + (¥ — ¢')(a).
The pair (7™, p*) is an affine fibration modelled on the vector fibration 74. We define a
section ¥4 of n* by 9a(a) = [(a,¢,0)] where ¢ is such that ¢(n(a)) = a. The section Ja
will be called the Liouville section of A. For a section ¢ of  we define a section 7™ of the
fibration (n*, p*) by n*¢(a) = [(a, ¢, 0)]. We observe that for two sections ¢ and ¢’ of n we
have n*o — n*¢" = n* (¢ — ¢').

Let ((:Z — M,p:Z xp Z — M x R) be an affine fibration modelled on the trivial
fibration pras: M x R — M. Let ¢ be a section of the affine fibration ((P¢)*, (Pp)*) . We
define a 2-form dy on PZ by dyp = d(p — (P¢)*do) where o is a section of . The definition
does not depend on the choice of a section o because for two sections o and ¢’ of ¢ we have
d(P¢*do — P¢*do’) = d(P¢*(do — do’) = (P¢*dd(o — o') = 0.

PROPOSITION 4.1 The differential wpyz of the Liouville section Upz is a symplectic
form on PZ.

Proof. It is enough to observe that for a section ¢ of ¢ the 1-form ¥pz — P(*do on PZ
is ¥ on T*M is the pull-back of the canonical 1-form on T*M with respect to a mapping
Pp,:PZ — T*M defined by Pp,(a) = a —do(a). O

Thus we have shown that PZ has the canonical structure of a symplectic manifold.

5 The structure of the contact fibration

Let Z=(¢:Z — M,p: Z Xy Z — M x R) be an affine fibration modelled on the trivial
fibration pras;: M x R — M.

PROPOSITION 5.1 There is a canonical isomorphism of affine fibrations PCZ and
(PO*, (Pp)™).

Proof. Let us choose a section o of (. We define a section & of vz by
(d) = [(P¢(d), 0)] + (d — do(P(¢(d), 0).
A mapping ®,: PCZ — T*PZ defined by
®,(a) = a — d5(Pyz(a)

is an isomorphism of affine fibrations. A mapping ¥,: (P¢()* — T*PZ defined by ¥, (b) =
dy(a) where b = [(a, do, )] is also an isomorphism of affine fibrations. We observe, that for
two sections o and ¢’ of ¢ we have ®,(d) = ®,/(d) + (P{)*d(0 — o')(yz(b)) and ¥, (b) =



U’ (b) + (P¢)*d(o — o) (vz(b)). It follows that (®,)~* o ¥, does not depend on the choice
of o and defines a canonical isomorphism of P7(¢) and (P¢)*. O

We define a canonical section ¥z of Pyz as ¥pz transported by the isomorphism intro-
duced in the proposition. We observe that diz = ddpz. We refer to ¥z as a connection
in the fibration vz and to the symplectic form d¥z = wpz as the curvature form of this
connection.

6 The reduced tangent fibration

Let Z=(¢:Z — M,p: Z Xy Z — M x R) be an affine fibration modelled on the trivial
fibration pra;: M x R — M. We introduce an equivalence relation in the set of triples
(v,a,7) where v is an element of the tangent fibration 7ps: TM — M, a is an element of
the phase fibration P¢ such that 73;(v) = P{(a) and r is a real number. Two such triples
(v,a,7) and (v',a’,7") are equivalent if and only if v = v" and (v,a—a’) = ' —r. We denote
by TZ the set of equivalence classes. The class of (v, a,0) will be denoted by (v, a) and will
be called the evaluation of a on v. We define a mapping 7: TZ — TM by TC([(U, a,r)] =v
and a mapping 'T‘p: TZ XTM TZ - TM xR by

T,o([(v, avr)]v [(v,a’,r’)]) = (’U,T‘ -+ (v,a - a/>)~

The affine fibration TZ = (T¢, Tp) will be called the reduced tangent fibration of Z .
For two triples (v, a,r) and ( v’,a’,r’) such that 7as(v) = 77 (v") we introduce the sum

[(v,a, )]+ [(v,a", 7)) = [(v+ ' a7+ 7" + (v, a" — a))].
For a number s and a triple (v, a,r) we introduce the product
s[(v, a,7)] = [(sv, a, 57)].

With this operations the fibration 77: TZ — M is a vector fibration.
Let o be a section of (. We define a section To of T( by

To(v) = [(v,do(Tarv),0)] = (v,do).

7 The definition of o,

Let A = (mA — M,p:Axpy A — E) be an affine fibration modelled on the vector
fibration £&: E — M. The tangent fibration (T#, Tp) is an affine fibration modelled on the
vector fibration T(: TE — TM. The tangent fibration will be denoted TA

Let Z=(¢:Z — M,p: Z Xy Z — M x R) be an affine fibration modelled on the trivial
fibration pras;: M x R — M.

PROPOSITION 7.1 There is a canonical isomorphism of affine fibrations TPZ and PTZ.



Proof. The affine fibration TPZ is modelled on the vector fibration T y;: TT* - TM.
The affine fibration PTZ is modelled on the vector fibration 7pps: T*TM — TM. There is
a canonical isomorphism of vector fibrations aps: Ty — 7y with the property that for a
function f on M ap(Tdf) = dTf . Let o be a section of ¢, then Tdo is a section of Tw

and dTo is a section of w5 . We define a mapping az ,: TPZ — PTZ by
az o (w) = dTo + ap(w — Tdo (TP (w)).
For two sections o and ¢’ of ( we have
o (Tdo) — ap(Tde') = ap(Td(o — ') = dT (o — o) = dTo — dTo’.

It follows that the mapping az , does not depend on the choice of o. It follows also that it
is an isomorphism of affine fibrations. O

Let ¢ be a section of the fibration P{. We define a section ity of TVC by ite(v) =
(v, o(Tar(v))). The section az o Ty of PT¢ will be denoted drp.

PROPOSITION 7.2 Let ¢ be a section of PC. Then dpp = dire + ipde.
Proof. We know ([?, ?]) that for a section o of { we have
dT(gD — d(f) = le(Qp — dG’) + le(gD — dO’)

From the definition of agz it follows that drdo = dipdeo + ipddo. Thus dpy = dirp + irde
for every section ¢. O

8 The definition of &,

We already know from Section ?? that the fibration CZ is a pull-back of the fibration (¢, p)
with respect to the mapping P{. It follows that the fibration Vi, IS a pull-back of the

fibration TC with respect to the mapping PTC: PTZ — TZ.

PROPOSITION 8.1 The fibration TCC is a pull-back of the fibration TC with respect to
the mapping TP( : TPZ — TM.

Proof. Let o be a section of ¢ and let o be its pull-back to a section of yz. We define a
mapping from TCZ to TZ by [(w,a,r)] — [(v,do(Tav),r + (w,a — do))] where w € TPZ,
v = TP¢w and a € PCZ. For two sections o and o’ of ¢ we have (w, dg—do’) = (v, d(c—0")).
It follows that the triples (v,do(Tpv), 7 + (w,a — d&)) and (v,do’ (Tpr0), 7 + (w,a — do”))
define the same element of TZ. Thus the introduced mapping does not depend on the choice
of o and, consequently, the fibration TC( is a pull-back of the fibration T{ with respect to
the mapping TP( : TPZ — TM. O

Since both fibrations ’TCC and CTQ are pull-backs of the same fibration it follows that
az has a natural extension aiz to the isomorphism of fibrations Tz and Vg 1t is also an

isomorphism of affine fibrations TCZ and CTZ.



Let us apply the isomorphism of affine fibrations defined in Proposition 77 to the contact
fibration CZ. We obtain an isomorphism az of TP( and PT(. There is the Liouville section
Yz of PCZ. It follows from the construction of az that the differential ddrvz is a symplectic
form on TPZ. Thus T has the canonical structure of a contact fibration defined by drvz .

§ince Qz is an isomorphism of TCZ and CTZ it defines an isomorphism of PTCZ and
PCTZ. It follows from the construction of az that az odridz = ﬁ%z' We say that az is an
isomorphism of contact fibrations.

9 The definition of BZ

Let Z = (¢:Z — M,p:Z xp Z — M x R) be an affine fibration modelled on the
trivial fibration pra;: M x R — M. The symplectic form wpz on PZ defines the canonical
symplectomorphism Bpz: TPZ — T*PZ. The trivial fibration Prysp T*PZ xR — T*PZ
is the contact fibration of the trivial fibration prpz: PZ x R — PZ with the connection form
Upz . The trivial fibration prrpz: TPZ x R — TPZ is also a contact fibration with the
connection form itwpz. The trivial lift of Spz to the fibration isomorphism Bpz: T*PZ x
R — TPZ x R is the isomorphism of contact bundles. _

The Liouville section ¥z of Pz defines a section it of Tryz. Since

iTwPZ = deﬁz = dTﬂz — diTﬂZ
it follows that the mapping ez: TCZ — TPZ x R defined by
e2(W) = @ — iv9z(Tyz(@))

is an isomorphism of contact bundles. We define BZ: TCZ — T*PZ x R by /@Z = sz o€y,

10 The dynamics of a charged particle
Let M be the space-time with the metric tensor g. Let
Y=&Y ->MnYxyY—>MxR

be the Kaluza-Klein fibration. An electromagnetic potential A is a section of P£ and the
electromagnetic field is its differential dA. Let e be the charge of a particle with the mass
m. We define an equivalence relation between pairs (y,r) where y € Y and r € R. Two
pairs (y,r) and (y',7’) are equivalent if £(y) = £(y') and (£(y),r — ') = n(y — y'). We
denote by Z the set of equivalence classes. We define (: Z — M by (([(y,7)]) = &£(y) and
p:Z Xy Z — M x R by p([(y, )], [(y,7)]) = (£(y),r — r'). Let o be a section of £&. We
define a section o, of ¢ by g.(m) = [(6(m),0)]. The correspondence between sections of &
and sections of ¢ defines an isomorphism of fibrations ®: P¢ — P by the correspondence
(m, o) — (m,o.) of representants of elements of the phase fibrations. We denote by A, the
section ® o A of P(. The Lagrangian of a charged particle is a section L of the reduced
tangent fibration T( defined by L(v) = (v, Ac) + my/g(v,v) defined on the submanifold of
positive vectors. Let D; and W; denote sets of all elements of PTZ and CTZ respectively
which have representatives of the form (m, L). A submanifold D of the phase manifold PZ
of the system defined by az(D) = D; is the dynamics of the system.



Let us choose a section (a gauge) o of . The mapping ¥,:PZ — T*M defined by
U, (a) = a—do(P{(a)) is a symplectomorphism. We introduce symbols A, , = ¥, 0 A, and

CAe,U = {p S T*M : g(p - Ae,aap - Ae,a) = mZ}'
We then have

TV, (D) ={w € TT*M : w € TCa, ,,w I (wn|Ca,,) =0,

mv = \/g(v,v)g(p — Ae.o (a1 (p)), ),
v =Ty (w)

and
p= TT*(]\/I)(w)}'

Another representation of PZ as TT*M is obtained by choosing A, as the zero section.
We define a mapping W4,:PZ — T*M by ¥4_(a) = a — A.(P((a)). This mapping is not
symplectomorphic and the canonical symplectic form wpy is transported by this mapping
to the 2-form wy — 75, F = wr where F = dA.. Let be Co = {p € T*M : g(p,p) = m>.
We have Uy (D) = {w € TT*M : w € TCo,w s (7p|Co) = 0,mv = /g(v,v)g(p,-),v =
Trag(w),p = Tpepy ()} )

In order to obtain the Hamilton description of the system we project 8z to PZ x R. We
obtain the zero function on the constraint submanifold

OAe = {p € T*M : g(p - Ae,zﬂp - Ae,o) = mz}-
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