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1 Introduction

Gauge independence of the Lagrangian formulation of dynamics of charged particles can
be achieved by increasing the dimension of the configuration space of the particle. The four
dimensional space-time of general relativity is replaced by the five dimensional space-time-
phase of Kaluza. The phase space of the particle is the cotangent bundle of the Kaluza space
and the gauge independent Lagrangian is a function on the tangent bundle of the Kaluza
space [1]. An alternate approach is proposed in the present note. The four dimensional
space-time is used as the configuration space of the charged particle. The phase space is no
longer a cotangent bundle and not even a vector bundle. It is an affine bundle modelled on
the cotangent bundle of the space-time manifold. The Lagrangian is a section of an affine
line bundle over the tangent bundle of the space-time manifold.

2 Affine fibrations

Let ξ: E → M be a vector fibration. An affine fibration modelled on ξ is a differential
fibration η: A → M and a differentiable mapping ρ:A×M A → E such that

1. ξ ◦ ρ = η ×M η,

2. ρ(a3, a2) + ρ(a2, a1) = ρ(a3, a1) for each triple (a3, a2, a1) ∈ A×M A×M A,

3. for each local section σ: U → A of η, the mapping ρσ: η−1(U) → ξ−1(U) defined by

ρσ(a) = ρ(a, σ(η(a)))

is a diffeomorphism.
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For each pair (a2, a1) ∈ A ×M A we will use the symbol a2 − a1 to denote the element
ρ(a2, a1) ∈ E. We will write a2 = a1 + e if a2 − a1 = e. These notational conventions are
extended to local sections of A and E. If α2 and α1 are local sections of A over U ⊂ M
then α2 − α1 denotes the local section of E defined by (α2 − α1)(m) = α2(m)− α1(m). We
will write α2 = α1 + ε if α2 − α1 = ε.

An affine fibration modelled on the trivial vector fibration prM : M ×R → M is usually
interpreted as a principal fibration with structure group R.

3 The phase fibration and the contact fibration of a
principal fibration

Let Z = (ζ: Z → M, ρ: Z ×M Z → M ×R) be an affine fibration modelled on the trivial
fibration prM : M ×R → M . We define an equivalence relation in the set of all pairs (m,σ),
where m is a point in M and σ is a section of ζ. Two pairs (m,σ) and (m′, σ′) are equivalent
if m′ = m and d(σ′−σ)(m) = 0. We have identified the section σ′−σ of prM with a function
on M for the purpose of evaluating the differential d(σ′ − σ)(m). We denote by PZ the set
of equivalence classes. The class of (m,σ) will be denoted by dσ(m) and will be called the
differential of σ at m. We define a mapping Pζ: PZ → M by Pζ(dσ(m)) = m. We define a
mapping Pρ: PZ ×M PZ → T∗M by

Pρ(dσ2(m), dσ1(m)) = d(σ2 − σ1)(m).

The pair PZ = (Pζ, Pρ) is an affine fibration modelled on the fibration πM : T∗M → M .
This fibration is called the phase fibration of Z = (ζ, ρ). Let ϕ be a section of Pζ and let
σ be a section of ζ. We define the differential dϕ of ϕ by dϕ = d(ϕ − dσ). Since for two
sections σ, σ′ of ζ we have d(dσ− dσ′) = dd(σ− σ′) = 0 it follows that the definition of the
differential does not depend on the choice of σ.

Let (ζ, ρ) be again an affine fibration modelled on the trivial fibration prM : M×R → M .
We define an equivalence relation in the set of all pairs (m,σ) , where m is a point in M and σ
is a section of ζ. Two pairs (m,σ) and (m, , σ′) are equivalent if m = m′, (σ′−σ)(m) = 0 and
d(σ′ − σ)(m) = 0. We denote by CZ the set of equivalence classes. The class of (m,σ) will
be denoted by Cσ(m) and will be called the contact element of σ at m. We define a mapping
Cζ: CZ → M by Cζ(Cσ(m) = m. We define a mapping Cρ: CZ ×M CZ → T∗M ×R by

Cρ(Cσ2(m),Cσ1(m)) = ((σ2 − σ1)(m), d(σ2 − σ1)(m).

The pair (Cζ, Cρ) is an affine fibration modelled on the vector fibration T∗M ×R → M .
There is a natural morphism γZ between CZ and PZ defined by

γZ(Cσ(m)) = dσ(m).

The pair (γZ, C̃ρ) where C̃ρ denotes the mapping Cρ restricted to CZ ×PZ CZ is an affine
fibration modelled on the trivial fibration PZ ×R → PZ. This fibration will be called the
contact fibration of (ζ, ρ) and will be denoted CZ. The fibration CZ is a pull-back of the
fibration (ζ, ρ) with respect to the mapping dζ.
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4 The symplectic structure of the phase fibration

Let (η: A → M, ρ: A ×M A → T∗M) be an affine fibration modelled on the cotangent
fibration πM : T∗M → M . We define an equivalence relation between triples (a, ϕ, ψ) where a
is a point in A, ϕ is a section of η and ψ is a section of the cotangent fibration πA: T∗A → A.
Two triples (a, ϕ, ψ) and (a′, ϕ′, ψ′) are equivalent if a = a′ and (η∗(ϕ−ϕ′))(a) = (ψ′−ψ)(a).
We denote by η∗A the set of equivalence classes. We define a mapping ρ∗: η∗A×η∗A → T∗A
by

ρ∗([(a, ϕ, ψ)], [(a, ϕ′, ψ′)]) = η∗(ϕ− ϕ)(a) + (ψ − ψ′)(a).

The pair (η∗, ρ∗) is an affine fibration modelled on the vector fibration πA. We define a
section ϑA of η∗ by ϑA(a) = [(a, ϕ, 0)] where ϕ is such that ϕ(η(a)) = a. The section ϑA

will be called the Liouville section of A. For a section ϕ of η we define a section η∗ϕ of the
fibration (η∗, ρ∗) by η∗ϕ(a) = [(a, ϕ, 0)]. We observe that for two sections ϕ and ϕ′ of η we
have η∗ϕ− η∗ϕ′ = η∗(ϕ− ϕ′).

Let (ζ: Z → M, ρ: Z ×M Z → M × R) be an affine fibration modelled on the trivial
fibration prM : M ×R → M . Let ϕ be a section of the affine fibration ((Pζ)∗, (Pρ)∗) . We
define a 2-form dϕ on PZ by dϕ = d(ϕ− (Pζ)∗dσ) where σ is a section of ζ. The definition
does not depend on the choice of a section σ because for two sections σ and σ′ of ζ we have
d(Pζ∗dσ − Pζ∗dσ′) = d(Pζ∗(dσ − dσ′) = (Pζ∗dd(σ − σ′) = 0.

PROPOSITION 4.1 The differential ωPZ of the Liouville section ϑPZ is a symplectic
form on PZ.

Proof. It is enough to observe that for a section σ of ζ the 1-form ϑPZ − Pζ∗dσ on PZ
is ϑ on T∗M is the pull-back of the canonical 1-form on T∗M with respect to a mapping
Pρσ: PZ → T∗M defined by Pρσ(a) = a− dσ(a). 2

Thus we have shown that PZ has the canonical structure of a symplectic manifold.

5 The structure of the contact fibration

Let Z = (ζ: Z → M, ρ: Z ×M Z → M ×R) be an affine fibration modelled on the trivial
fibration prM : M ×R → M .

PROPOSITION 5.1 There is a canonical isomorphism of affine fibrations PCZ and
((Pζ)∗, (Pρ)∗).

Proof. Let us choose a section σ of ζ. We define a section σ̃ of γZ by

σ̃(d) = [(Pζ(d), σ)] + (d− dσ(Pζ(d), 0).

A mapping Φσ: PCZ → T∗PZ defined by

Φσ(a) = a− dσ̃(PγZ(a)

is an isomorphism of affine fibrations. A mapping Ψσ: (Pζ)∗ → T∗PZ defined by Ψσ(b) =
dψ(a) where b = [(a,dσ, ψ)] is also an isomorphism of affine fibrations. We observe, that for
two sections σ and σ′ of ζ we have Φσ(d) = Φσ′(d) + (Pζ)∗d(σ − σ′)(γZ(b)) and Ψσ(b) =
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Ψ′σ(b) + (Pζ)∗d(σ − σ′)(γZ(b)). It follows that (Φσ)−1 ◦Ψσ does not depend on the choice
of σ and defines a canonical isomorphism of Pτ(ζ) and (Pζ)∗. 2

We define a canonical section ϑZ of PγZ as ϑPZ transported by the isomorphism intro-
duced in the proposition. We observe that dϑZ = dϑPZ. We refer to ϑZ as a connection
in the fibration γZ and to the symplectic form dϑZ = ωPZ as the curvature form of this
connection.

6 The reduced tangent fibration

Let Z = (ζ: Z → M, ρ: Z ×M Z → M ×R) be an affine fibration modelled on the trivial
fibration prM : M × R → M . We introduce an equivalence relation in the set of triples
(v, a, r) where v is an element of the tangent fibration τM : TM → M , a is an element of
the phase fibration Pζ such that τM (v) = Pζ(a) and r is a real number. Two such triples
(v, a, r) and (v′, a′, r′) are equivalent if and only if v = v′ and 〈v, a−a′〉 = r′− r. We denote
by T̃Z the set of equivalence classes. The class of (v, a, 0) will be denoted by 〈v, a〉 and will
be called the evaluation of a on v. We define a mapping τ̃ : T̃Z → TM by T̃ζ([(v, a, r)] = v

and a mapping T̃ρ: T̃Z ×TM T̃Z → TM ×R by

T̃ρ([(v, a, r)], [(v, a′, r′)]) = (v, r − r′ + 〈v, a− a′〉).

The affine fibration T̃Z = (T̃ζ, T̃ρ) will be called the reduced tangent fibration of Z .
For two triples (v, a, r) and ( v′, a′, r′) such that τM (v) = τM (v′) we introduce the sum

[(v, a, r)] + [(v′, a′, r′)] = [(v + v′, a, r + r′ + 〈v′, a′ − a〉)].

For a number s and a triple (v, a, r) we introduce the product

s[(v, a, r)] = [(sv, a, sr)].

With this operations the fibration τZ : T̃Z → M is a vector fibration.
Let σ be a section of ζ. We define a section T̃σ of T̃ζ by

T̃σ(v) = [(v, dσ(τMv), 0)] = 〈v, dσ〉.

7 The definition of αZ

Let A = (η:A → M, ρ:A ×M A → E) be an affine fibration modelled on the vector
fibration ξ: E → M . The tangent fibration (Tη, Tρ) is an affine fibration modelled on the
vector fibration Tξ: TE → TM . The tangent fibration will be denoted TA

Let Z = (ζ: Z → M, ρ: Z ×M Z → M ×R) be an affine fibration modelled on the trivial
fibration prM : M ×R → M .

PROPOSITION 7.1 There is a canonical isomorphism of affine fibrations TPZ and PT̃Z.
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Proof. The affine fibration TPZ is modelled on the vector fibration TπM : TT∗ → TM .
The affine fibration PT̃Z is modelled on the vector fibration πTM : T∗TM → TM . There is
a canonical isomorphism of vector fibrations αM : TπM → πTM with the property that for a
function f on M αM (Tdf) = dT̃f . Let σ be a section of ζ, then Tdσ is a section of Tπ

and dT̃σ is a section of πTM . We define a mapping αZ,σ: TPZ → PT̃Z by

αZ,σ(w) = dT̃σ + αM (w − Tdσ(TPζ(w)).

For two sections σ and σ′ of ζ we have

αM (Tdσ)− αM (Tdσ′) = αM (Td(σ − σ′)) = dT̃ (σ − σ′) = dT̃ σ − dT̃ σ′.

It follows that the mapping αZ,σ does not depend on the choice of σ. It follows also that it
is an isomorphism of affine fibrations. 2

Let ϕ be a section of the fibration Pζ. We define a section iTϕ of T̃ ζ by iTϕ(v) =
〈v, ϕ(τM (v))〉. The section αZ ◦ Tϕ of PT̃ζ will be denoted dTϕ.

PROPOSITION 7.2 Let ϕ be a section of Pζ. Then dTϕ = diTϕ + iTdϕ.

Proof. We know ([?, ?]) that for a section σ of ζ we have

dT(ϕ− dσ) = diT(ϕ− dσ) + iTd(ϕ− dσ).

From the definition of αZ it follows that dTdσ = diTdσ + iTddσ. Thus dTϕ = diTϕ + iTdϕ
for every section ϕ. 2

8 The definition of α̂Z

We already know from Section ?? that the fibration CZ is a pull-back of the fibration (ζ, ρ)
with respect to the mapping Pζ. It follows that the fibration γ

T̃Z
is a pull-back of the

fibration T̃ζ with respect to the mapping PT̃ζ: PT̃Z → TZ.

PROPOSITION 8.1 The fibration T̃Cζ is a pull-back of the fibration T̃ζ with respect to
the mapping TPζ : TPZ → TM .

Proof. Let σ be a section of ζ and let σ̃ be its pull-back to a section of γZ. We define a
mapping from T̃CZ to T̃Z by [(w, a, r)] 7→ [(v,dσ(τMv), r + 〈w, a− dσ̃〉)] where w ∈ TPZ,
v = TPζw and a ∈ PCZ. For two sections σ and σ′ of ζ we have 〈w, dσ̃−dσ̃′〉 = 〈v,d(σ−σ′)〉.
It follows that the triples (v, dσ(τMv), r + 〈w, a − dσ̃〉) and (v, dσ′(τMv), r + 〈w, a − dσ̃′〉)
define the same element of T̃Z. Thus the introduced mapping does not depend on the choice
of σ and, consequently, the fibration T̃Cζ is a pull-back of the fibration T̃ζ with respect to
the mapping TPζ : TPZ → TM . 2

Since both fibrations T̃Cζ and CT̃ζ are pull-backs of the same fibration it follows that
αZ has a natural extension α̃Z to the isomorphism of fibrations T̃γZ and γ

T̃Z
. It is also an

isomorphism of affine fibrations T̃CZ and CT̃Z.
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Let us apply the isomorphism of affine fibrations defined in Proposition ?? to the contact
fibration CZ. We obtain an isomorphism αZ of TPζ and PT̃ζ. There is the Liouville section
ϑZ of PCZ. It follows from the construction of αZ that the differential ddTϑZ is a symplectic
form on TPZ. Thus T̃ has the canonical structure of a contact fibration defined by dTϑZ .

Since α̂Z is an isomorphism of T̃CZ and CT̃Z it defines an isomorphism of PT̃CZ and
PCT̃Z. It follows from the construction of α̂Z that α̂Z ◦ dTϑZ = ϑ

T̃Z
. We say that α̂Z is an

isomorphism of contact fibrations.

9 The definition of β̂Z

Let Z = (ζ: Z → M, ρ:Z ×M Z → M × R) be an affine fibration modelled on the
trivial fibration prM :M ×R → M . The symplectic form ωPZ on PZ defines the canonical
symplectomorphism βPZ : TPZ → T∗PZ. The trivial fibration prT∗PZ : T∗PZ×R → T∗PZ
is the contact fibration of the trivial fibration prPZ : PZ×R → PZ with the connection form
ϑPZ . The trivial fibration prTPZ : TPZ × R → TPZ is also a contact fibration with the
connection form iTωPZ . The trivial lift of βPZ to the fibration isomorphism β̂PZ : T∗PZ ×
R → TPZ ×R is the isomorphism of contact bundles.

The Liouville section ϑZ of PγZ defines a section iTϑ of T̃γZ. Since

iTωPZ = iTdϑZ = dTϑZ − diTϑZ

it follows that the mapping εZ: T̃CZ → TPZ ×R defined by

εZ(w̃) = w̃ − iTϑZ(T̃γZ(w̃))

is an isomorphism of contact bundles. We define β̂Z: T̃CZ → T∗PZ ×R by β̂Z = β̂PZ ◦ εZ.

10 The dynamics of a charged particle

Let M be the space-time with the metric tensor g. Let

Y = (ξ:Y → M, η:Y ×M Y → M ×R

be the Kaluza-Klein fibration. An electromagnetic potential A is a section of Pξ and the
electromagnetic field is its differential dA. Let e be the charge of a particle with the mass
m. We define an equivalence relation between pairs (y, r) where y ∈ Y and r ∈ R. Two
pairs (y, r) and (y′, r′) are equivalent if ξ(y) = ξ(y′) and (ξ(y), r − r′) = η(y − y′). We
denote by Z the set of equivalence classes. We define ζ: Z → M by ζ([(y, r)]) = ξ(y) and
ρ:Z ×M Z → M × R by ρ([(y, r)], [(y, r′)]) = (ξ(y), r − r′). Let σ be a section of ξ. We
define a section σe of ζ by σe(m) = [(σ(m), 0)]. The correspondence between sections of ξ
and sections of ζ defines an isomorphism of fibrations Φ: Pξ → Pζ by the correspondence
(m,σ) 7→ (m,σe) of representants of elements of the phase fibrations. We denote by Ae the
section Φ ◦ A of Pζ. The Lagrangian of a charged particle is a section L of the reduced
tangent fibration T̃ζ defined by L(v) = 〈v,Ae〉 + m

√
g(v, v) defined on the submanifold of

positive vectors. Let Dl and Wl denote sets of all elements of PT̃Z and CT̃Z respectively
which have representatives of the form (m,L). A submanifold D of the phase manifold PZ
of the system defined by αZ(D) = Dl is the dynamics of the system.
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Let us choose a section (a gauge) σ of ζ. The mapping Ψσ: PZ → T∗M defined by
Ψσ(a) = a−dσ(Pζ(a)) is a symplectomorphism. We introduce symbols Ae,σ = Ψσ ◦Ae and

CAe,σ
= {p ∈ T∗M : g(p−Ae,σ, p−Ae,σ) = m2}.

We then have

TΨσ(D) = {w ∈ TT∗M : w ∈ TCAe,σ
, w (ωM |CAe,σ

) = 0,

mv =
√

g(v, v)g(p−Ae,σ(πM (p)), ·),
v = TπM (w)

and
p = τT∗(M)(w)}.

Another representation of PZ as TT∗M is obtained by choosing Ae as the zero section.
We define a mapping ΨAe : PZ → T∗M by ΨAe(a) = a − Ae(Pζ(a)). This mapping is not
symplectomorphic and the canonical symplectic form ωPZ is transported by this mapping
to the 2-form ωM − π∗MF = ωF where F = dAe. Let be C0 = {p ∈ T∗M : g(p, p) = m2.
We have ΨAe(D) = {w ∈ TT∗M : w ∈ TC0, w (πF |C0) = 0, mv =

√
g(v, v)g(p, ·), v =

TπM (w), p = τT∗M (w)}.
In order to obtain the Hamilton description of the system we project β̂Z to PZ ×R. We

obtain the zero function on the constraint submanifold

CAe = {p ∈ T∗M : g(p−Ae,σ, p−Ae,σ) = m2}.
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