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Department of Mathematical Methods in Physics,
University of Warsaw
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Abstract

If the space-time is a product of the space and the time the Poisson structure on
the phase bundle is used to describe dynamics of mechanical systems. Further
it is shown that if the space-time is a fibration over the time, then the Poisson
structure has to be replaced by an affine Poisson structure.

1 . TIME-DEPENDENT SYSTEMS

1.1. Time Independent Systems

In order to define a time-independent system the space-time has to be the product
of space and time represented by the real line R. For a time-independent system with
the configuration manifold Q the infinitesimal dynamics is a submanifold D of TT∗Q.
In particular cases D is the image of a vector field. The cotangent bundle T∗Q with
the canonical 2-form ωQ is a symplectic manifold. The tangent bundle TT∗Q of the
cotangent bundle with the tangent 2-form dTωQ is a symplectic manifold as well4, 5.
We say that the system is Lagrangian if the dynamics D is a Lagrange submanifold of
(TT∗Q, dTωQ).

Let us denote by τQ the canonical projection τQ: TQ → Q and by πQ the canonical

projection πQ: T∗Q → Q. There are three, fundamental for the analytical mechanics,
isomorphisms of vector bundles:

κQ: (τTQ: TTQ → TQ) −→ (TτQ: TTQ → TQ) (1.1)

αQ: (TπQ: TT∗Q → TQ) −→ (πTQ: T∗TQ → TQ) (1.2)

βQ: (TπQ: TT∗Q → TQ) −→ (πT
∗
QT∗T∗Q → T∗Q) (1.3)

The mapping αQ is also a symplectomorfism of (TT∗Q, TπQ) and (T∗TQ, πTQ). The

mapping βQ is a symplectomorphism of (TT∗Q, TπQ) and (T∗T∗Q, πT
∗
Q).

Let the dynamics D of a system be a Lagrangian submanifold of (TT∗Q, TπQ).

It follows that αQ(D) and βQ(D) are Lagrangian submanifolds of (T∗TQ, πTQ) and



(T∗T∗Q, πT
∗
Q) respectively. By a theorem of Hörmander αQ(D) and βQ(D) can be

generated (at least locally) by a function (or a Morse family of functions) on a subman-
ifold of TQ or T∗Q respectively. The generating function on TQ (if it exists) is called
the Lagrangian of the system. The generating function on T∗Q is called the Hamilto-
nian generating function of the system. In the following we shall consider systems with
the dynamics generated by a Lagrangian defined on TQ.

1.2. Time-Dependent Systems. Inhomogeneous formulation.

Let us assume that, as before, the space-time is the product of the space and
the time. Let Q be the manifold of space configurations of a system. M = Q × R
is the manifold of the space-time configurations of the system. Let ζ: M → Q be the
canonical projection. An infinitesimal configuration is a vector v ∈ TM such that
Tζ(v) = (ζ(τMv), ∂t). T1M will denote the bundle of infinitesimal configurations. The
phase bundle is the product P = T∗Q× R. Let η: P → R be the canonical projection.
For each t ∈ R the fiber Pt = η−1(t) is a symplectic manifold. An infinitesimal state
is a vector w ∈ TP such that Tη(w) = (η(τPw), ∂t). We denote by T1P the bundle of
infinitesimal states. The dynamics of the system is a submanifold D of T1P . Let Dt

denote a subset of D defined by Dt = {D 3 w; η(τPw) = t ∈ R}. Since P = T∗Q× R,
we have also TP = TT∗Q × TR and Dt = Dt × (t, ∂t). We say that the system is
Lagrangian if Dt is a Lagrangian submanifold of (TT∗Q, dTωQ) for each t ∈ R. It

follows (see previous section) that Dt can be generated by the Lagrangian Lt on TQ
or by the Hamiltonian generating function Ht on T∗Q. Families of functions Lt, Ht

define functions L,H on TQ×R and T∗Q×R respectively. A procedure of generating
the component D of the dynamics can be formulated in terms of the canonical Poisson
structure on P . This formulation is equivalent to the described one.

1.3. Time-Dependent Systems. Homogeneous formulation.

In the homogeneous formulation the configuration manifold is the manifold M .
Infinitesimal configurations are vectors tangent to M . TM is the manifold of infinitesi-
mal configurations. If the system is Lagrangian, i. e., the dynamics is generated by the
Lagrangian L on TQ× R, we define a function L̂: TM → R by the formula

L̂(v) = sLt(v)

where v is the component of v in TQ and Tζ(v) = (t, s∂t).
The function L̂ generates a Lagrangian submanifold of T∗TM and, consequently,

of TT∗M (Section 1.2). We denote by D̂ the generated by L̂ submanifold of TT∗M . It
can also be generated also by a Hamiltonian.

Proposition 1 The manifold D̂ is generated by a function equal to zero and defined
on a submanifold C ⊂ T∗M

C = {T∗M 3 (p, t, ε);−ε = Ht(p)}
We can also get Dt from D̂ directly. It is easy to verify that TT∗Q is canonicaly
identified with the reduction of TT∗M with respect to the coisotropic submanifold TKt

where Kt ⊂ T∗M defined by

Kt = {T∗M 3 (p, t′, ε); t′ = t}.



Let us denote this reduction by T%t.

Proposition 2
Dt = T%t(D)

2 . AFFINE SPACES AND AFFINE BUNDLES

2.1. Principal Affine Spaces

An affine space is a triple (A, V, α), where A is a set, V is a real vector space of
finite dimension and α is a mapping α: A× A → V such that

1. α(a3, a2) + α(a2, a1) + α(a1, a3) = 0;

2. the mapping α(·, a): A → V is bijective for each a ∈ A.

We will write for brevity a2 − a1 instead of α(a2, a1). We will denote by a + v the
unique point a′ ∈ A such that a′ − a = v.

We consider quadruples (A, V, α, v0), where (A, V, α) is an affine space and v0 is a
distinguished nonzero vector in the model space V of the affine space (A, V, α). Such ob-
jects will be called principal affine spaces. A principal affine mapping from (A, V, α, v0)
to (B, W, β, w0) is an affine mapping ϕ from (A, V, α) to (B, W, β) such that ϕ̄(v0) = w0

( ϕ̄ is the linear part of ϕ. A principal affine space (A, V, α, v0) can be considered as a
principal bundle with the structural group R and the action

(r, a) 7→ a + sv0.

The category of principal affine spaces has a distiguished object I = (R,R,−, 1). The
affine dual to a principal affine space (A, V, α, v0) is a principal affine space (A#, V #, α#, f0)
where A# is the space of all principal affine mappings from (A, V, α, v0) to I, V # is the
vector space of affine functions on the quotient vector space V /{v0}, α#(ϕ−ϕ′) = ϕ−ϕ′

and f0 is the equal 1 constant function.

2.2. Affine Bundles

Let ξ: E → N be a vector fibration. An affine fibration modelled on ξ is a differ-
ential fibration η: A → N and a differentiable mapping ρ: A×N A → E such that

1. ξ ◦ ρ = η ×N η,

2. ρ(a3, a2) + ρ(a2, a1) = ρ(a3, a1) for each triple (a3, a2, a1) ∈ A×N A×N A,

3. for each local section σ: U → A of η, the mapping ρσ: η−1(U) → ξ−1(U) defined
by

ρσ(a) = ρ(a, σ(η(a)))

is a diffeomorphism.

A principal affine fibration is an affine fibration with e nowhere vanishing section of the
model vector fibration. It follows that a fiber of a principal affine fibration is a principal
affine space. The affine dual to a principal affine fibration we define in the obvious way.



An affine fibration modelled on the trivial vector fibration prN : N × R → N is
usually interpreted as a principal fibration with structure group R. We denote by I the
trivial principal fibration (pr1: {1} × R→ {1}).

Let Z = (ζ: Z → N, ρ: Z ×N Z → N × R) be an affine fibration modelled on the
trivial fibration prN : N×R→ N . We define an equivalence relation in the set of all pairs
(m,σ), where m is a point in N and σ is a section of ζ. Two pairs (m, σ) and (m′, σ′)
are equivalent if m′ = m and d(σ′ − σ)(m) = 0. We have identified the section σ′ − σ
of prN with a function on N for the purpose of evaluating the differential d(σ′−σ)(m).
We denote by PZ the set of equivalence classes. The class of (m,σ) will be denoted by
dσ(m) and will be called the differential of σ at m. We define a mapping Pζ: PZ → N
by Pζ(dσ(m)) = m. We define a mapping

Pρ: PZ ×N PZ → T∗N
by

Pρ(dσ2(m), dσ1(m)) = d(σ2 − σ1)(m).

The pair PZ = (Pζ, Pρ) is an affine fibration modelled on the fibration πN : T∗N → N .
This fibration is called the phase fibration of Z = (ζ, ρ). Let ϕ be a section of Pζ and
let σ be a section of ζ. We define the differential dϕ of ϕ by dϕ = d(ϕ − dσ). Since
for two sections σ, σ′ of ζ we have d(dσ − dσ′) = dd(σ − σ′) = 0 it follows that the
definition of the differential does not depend on the choice of σ.

For each Z the manifold PZ is a symplectic manifold6.

3 . AFFINE POISSON STRUCTURES

3.1. Homogeneous Formulation of the Dynamics

In the first section we have assumed that the space-time is the product of the space
and the time (represented by the real line R). This assumption implies that we have
chosen a reference frame. In this section we formulate the dynamics of a nonrelativistic
system in a frame-independent way. We represent the time by the real line. The
space-time is a fibration over the time. It follows that the manifold of space-time
configurations of a system is a fibration

ζ: M → R.

Let us denote by Qt the fiber over t ∈ R of the fibration. Infinitesimal configurations are
vectors tangent to M . TM is the manifold of infinitesimal configurations. The phase
bundle is the cotangent bundle T∗M . Let η̂: T∗M → R be the canonical projection
η̂ = ζ ◦ πM. The dynamics of a system is a submanifold D̂ of TT∗M . We say that the
system is lagrangian if D is the Lagrangian submanifold of (TT∗M, dTωM). Let L be
Lagrangian generating function of D. For a nonrelativistic system L is a homogeneous
function on TM . It follows that the Hamiltonian generating function is the zero function
on a submanifold C of T∗M .

3.2. Inhomogeneous Formulation of the Dynamics

In the formulation of the dynamics presented in Section 1.2 the existence of La-
grangian and Hamiltonian generating functions was possible because the space-time
was assumed to be the product of the space and the time.



Let ζ: M → R be the configuraton manifold of a system, fibered over the time. By
Mt we denote a fiber of the fibration ζ, Mt = (ζ)−1(t). An infinitesimal configuration
of the system is a vector v ∈ TM such that Tζ(v) = (ζ(τMv), ∂t). T1M will denote the
bundle of infinitesimal configurations. For each t ∈ R a submanifold T1Mt of T1M is
defined by

T1Mt = {T1M 3 w; η(τMw) = t}.
The phase bundle is a fibration η: P → R with Pt = (η)−1(t) = T∗Mt. For

each t ∈ R the fiber Pt can be considered as the reduction of T∗M with respect to a
coisotropic submanifold Kt = {T∗ 3 p; ζ(πMp) = t}. An infinitesimal state is a vector
w ∈ TP such that Tη(w) = (η(τPw), ∂t). We denote by T1P the bundle of infinitesimal
states . For each t ∈ R a submanifold T1Pt of T1P is defined by

T1Pt = {T1P 3 w; η(τPw) = t}.

Proposition 3 A submanifold T1Pt is the reduction of (TT∗M,dTωM) with respect to
a coisotropic submanifold T1Kt defined by

T1Kt = {TT∗M 3 w; TπM(w) ∈ T1M and ζ(τT
∗
M ◦ πM(w)) = t}.

It follows from this proposition that T1Pt is a symplectic manifold. The dynamics of
the system is a submanifold D of T1P . Let Dt denote a subset of D defined by

Dt = D ∩ T1Pt.

The system is Lagrangian if for each t ∈ R the dynamics Dt is a Lagrangian submanifold
of T1Pt. The existence of a Lagrangian generating function follows from the theorem

Theorem 1 Let T1TMt be a submanifold of TTM defined by

T1TMt = {TTM 3 w; TτMw ∈ T1M and τTMw ∈ TMt}.

There are canonical isomorpisms of vector bundles

κ̃Mt
: (τT1Mt

: TT1Mt → T1Mt) −→ (TτM: T1TMt → T1Mt) (3.1)

α̃Mt
: (TπM: T1T

∗Mt → T1M) −→ (πT1Mt
: T∗TM → TM) (3.2)

Proof. The bundle TτM: T1TMt → T1Mt is defind as a subbundle of the bundle
TτM: TTM → TM .

Also the bundle τT1Mt
: TT1Mt → T1Mt can be considered as a subbundle of the

bundle τTM: TTM → TM . It is an easy exercise to verify that κM restricted to TT1Mt

gives the required isomorphism.
The isomorphism αM is defined as the dual to κM. We define the isomorphism α̃Mt

as the dual to κ̃Mt
as well. Since αM is a symplectomorphism we conclude that also α̃Mt

is a symplectomorphism.

It follows that a Lagrangian system can be generated by a Lagrangian generat-
ing function defined on T1M . The Hamiltonian formulation of a dynamics is more
complicated and requires affine structures.



3.3. Affine Poisson Structures

This paragraph is based on the relation between Legendre transformation and the
affine duality7. A Lagrange bundle is the trivial line bundle T̂1M = T1M×R over T1M .
By ξ we denote the canonical projection

ξ: T̂1M → T1M.

Lagrangians are sections of the fibration ξ. With respect to the projection

τM ◦ ξ: T̂1M → M

T̂1M is a special affine bundle. The affine dual T̂
#

1 M to this bundle is a Hamiltonian
bundle.

Proposition 4 The special affine bundle T̂
#

1 M is isomorphic to the cotangent bundle
πM: T∗M → M . The distinguished covector field ϑ is defined by 〈v, ϑ〉 = 0 for Tζv = 0
and 〈∂t, ϑ〉 = 1.

Proof. Let us fix m ∈ M . Elements of T̂
#

1 M over m are affine functions on T1,mM .
An affine function on T1,mM has the unique extension to a linear function on TmM ,

i. e., to an element of T∗M . The distinguished element of T̂
#

1 M at m is the equal to 1
constant function. The liner extension of this function is a ζ-vertical covector, equal to
1 on vectors which project onto ∂t.

With this isomorphism the line bundle structure of T̂
#

1 M is given by the canonical
projection

χ: T∗M → P.

Theorem 2 There is a canonical isomorphism of affine bundles

β̃Mt
: (τP: T1Pt → Pt) −→ (Pχ: P(T̂

#

1 Mt) → Pt),

which is also a symplectomorphism.

Proof. Let γ: Pt → T∗M be a section of the fibration χ. We define a function γ̃ on
χ−1(Pt) by the formula

γ̃(γ(p) + sϑ) = −s.

We define a relation R from C∞(T∗M) to the space of sections of χ over Pt:
γ ∈ R(f) if f = γ̃ on χ−1(Pt).
The relation R defines a relation

dR: T∗M → P(T̂
#

1 Mt).

It is easy to verify that the composition dR ◦ βM projects to an isomorphism β̃Mt
of

affine bundles
β̃Mt

: (τP: T1Pt → Pt) −→ (Pχ: P(T̂
#

1 Mt) → Pt),

and that this isomorphism is a symplectomorphism.



It follows that the dynamics of a Lagrangian system can be generated by a section
of the fibration χ: T1P → P . This section we call the Hamiltonian generating section. It
is easy to verify that the image of the Hamiltonian generating section is the submanifold
C of T∗M we mentioned in Section 3.1. The collection (β̃Mt

) of isomorphisms defines
a morphism Λ of affine bundles

Λ: (Pχ: P(T̂
#

1 M) → P ) −→ (τPT1P : P ).

Let Γ(χ) be the afine space of sections of the fibration χ. With the morphism Λ
we define an affine Poisson bracket as a mapping

{, }: Γ(χ)× C∞(P ) → C∞(P )

defined by
{γ, f}(p) = Λ(dpγ)(f).

The bracket {, } has the following properties:

• it is affine with respect to the first and linear with respect to the second argument,

• the linear part is a linear Poisson bracket,

• for each section γ the mapping C∞(P ) → C∞(P ): f 7→ {γ, f} defines a canonical
vector field on P .

A discussion on the concept of an affine Poisson structure will be given in a separate
publication.
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