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The presented approach to differential forms on differential spaces is motivated by the
use of differential forms in the theory of static systems ([10, 11, 3]). The concept of a
covector of higher order is based on duality between forms and multivectors rather then
on the idea of the Grassman algebra.

1 Differential spaces

Let M be a set and let C be a family of real functions on M . The topology induced on M
by the family C, i.e., the weakest topology such that all functions from the family C are
continuous, will be denoted by τC. If the family C separates points of M , then (M, τC) is
a Hausdorff space.

Let sc(C) denote the set of all functions of the form

α ◦ (f1, . . . , fk)

where f1, . . . , fk ∈ C and α is a smooth real-valued function defined on an open neighbor-
hood of f1(M)× . . .× fk(M) in Rk.

It is easy to show ( [9]) that:
C ⊂ sc(C)

sc(C) = sc(sc(C))

τsc(C) = τC

Definition 1.1 A function f on A ⊂ M is a local C-function if at each point p ∈ A there
exist g ∈ C and an open neighborhood U of p such that f |U = g|U .
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The set of all local C-functions on A will be denoted by CA. We list the following
properties of CA (see [9]):

C|A ⊂ CA (in particular C ⊂ CM)

(CA)A = CA

C ⊂ sc(CM) ⊂ (sc(C))M

Definition 1.2 A differential space is a pair (M, C) where M is a set and C is a family
of real functions on M such that C = (sc(C))M . The family C will be called the differential
structure on M and functions in C will be called smooth functions on M .

We use also C∞(M) to denote the family af all smooth functions.
For each family C0 of functions on M there exists the smallest differential structure C

which includes C0. We observe that C = (sc(C0))M .

Definition 1.3 We say that a family C0 generates a differential structure C if C =
(sc(C0))M .

Definition 1.4 Let (M, C) and (N,D) be differential spaces. A mapping α: M → N is a
smooth mapping between differential spaces if for each f ∈ D we have f ◦ α ∈ C.

Proposition 1.1 Let (M, C) and (N,D) be differential spaces and let D0 generate D. A
mapping α: M → N is smooth if for each f ∈ D0 we have f ◦ α ∈ C.

2 Tangent spaces and the module of smooth 1-

forms

Let the interval [0, 1[∈ R be endowed with the natural differential structure (see [9]) and
let (M, C∞(M)) be a differential space.

Definition 2.1 A smooth half-curve on M is a smooth mapping γ: [0, 1[→ M .

Let Σ1 denote the set of all smooth half-curves on M . We define a fibration τ : Σ1 → M
by

τ(γ) = γ(0).

By Π1 we denote a trivial fibration M × C∞(M) with the canonical projection

π: Π1 → M : (q, f) 7→ q.
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We define a mapping <,>: Σ1 ×M Π1 → R by the formula:

< γ, (q, f) >=
d

dt
f(γ)|t=0

where q = γ(0). We refer to this mapping as a pairing between fibrations Σ1 and Π1.
Let be γ1, γ2 ∈ Σ1. We say that γ1 and γ2 are equivalent if π(γ1) = π(γ2) = q and

< γ1, (q, f) >=< γ2, (q, f) > for each f ∈ C∞(M).

An equivalence class [γ] is a tangent vector at the point q. A tangent space Tq(M) is
the set of all tangent vectors at the point q.

Definition 2.2 The tangent bundle of a differential space M is a triple (TM,M, τ) where
TM =

⋃
q∈M TqM is the disjoint sum of tangent spaces and τ is the canonical projection

τ : TM → M : vq 7→ q.

Now, we introduce an equivalence relation in Π1: two pairs (q1, f1) and (q2, f2) are
equivalent if q1 = q2 and < γ, (q1, f1) >=< γ, (q2, f2) > for each γ ∈ Σ such that
γ(0) = q1 = q2.

An equivalence class [(q, f)] is called the differential of the function f at the point
q and will be denoted by dqf . The cotangent space at q is the set of all differentials of
functions at the point q and will be denoted T∗q M .

Definition 2.3 The cotangent bundle (T∗M, M, π) of a differential space M is the dis-
joint sum of cotangent spaces T∗M =

⋃
q∈M T∗q M with the canonical projection

π: T∗M → M : dqf 7→ q.

The pairing between Σ1 and Π1 defines a pairing between TM and T∗M by the formula

< v, dqf >=
d

dt
f(γ)|t=0

where γ represents v.
Remark. C∞(M) has a natural structure of a linear space. This structure defines a

linear space structure in T∗M . Let be f, h ∈ C∞(M) and a ∈ R then:

dqf + dqh = dq(f + h)

adqf = dq(af).

In general, the dimension of a cotangent space is not the same at each point of M and
a tangent space is not a linear space.
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Definition 2.4 The differential of a function f ∈ C∞(M) is a mapping df : TM → R
defined by the formula df(v) =< v, df >.

A differential structure C∞(TM) on a tangent bundle TM we define in the following
way:

C∞(TM) = (sc({τ∗f : f ∈ C∞(M)} ∪ {dg: g ∈ C∞(M)}))TM .

It follows that that the projection τ : TM → M is smooth and that if C∞(M) separates
points of M then C∞(TM) separates points of TM .

We may introduce a differential structure on T∗M generated by functions of the form
π∗f where f ∈ C∞(M) and of the form dqf 7→ 〈X(q), dqf〉 where X is a smooth vector
field on M (X: M → TM). However this differential structure does not, in general,
separate points of T∗M and, consequently, is not very usefull.

Definition 2.5 A smooth 1-form on M is a smooth function φ: TM → R such that for
each point q ∈ M there exists f ∈ C∞(M) such that φ|TqM = dqf .

The space Λ1M of all smooth 1-forms has natural structure of a module over the ring
of smooth functions on M . The structure of a linear space and of a module in Λ1M is
given by:

(ϕ1 + ϕ2)(vq) = ϕ1(vq) + ϕ2(vq)

(fϕ)(vq) = f(q)ϕ(vq).

It is evident that the differential of a smooth function is a smooth 1-form.

3 The fibration of 2-vectors and the module of

smooth 2-forms

A 2-cube is a smooth mapping ξ: [0, 1[×[0, 1[→ M . Let Σ2 be the set of all 2-cubes on
M . We define a fibration τ : Σ2 → M by Σ2 3 ξ 7→ ξ(0, 0). Let π: Π2 = M × Λ1M → M
be the trivial fibration defined by π(q, ϕ) = q.

For each t ∈ [0, 1[ half-curves

t1 → ξ2
t (t1) = ξ(t1, t)

and
t2 → ξ1

t (t2) = ξ(t, t2)

are smooth and, consequently, represent tangent vectors denoted by [ξ2
t ] and [ξ1

t ], respec-
tively. Mappings [0, 1[3 t 7→ [ξ1

t ] ∈ TM and [0, 1[3 t 7→ [ξ2
t ] ∈ TM are smooth half-curves.

Thus we can define a pairing between fibrations τ and π by the formula:
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< ξ, (q, ϕ) >=
d

dt
(ϕ([ξ1

t ])− ϕ([ξ2
t ]))|t=0

We say that two 2-cubes ξ and ξ′ are equivalent if

τ(ξ) = τ(ξ′) = q and < ξ, (q, ϕ) >=< ξ′, (q, ϕ) >

for each ϕ ∈ Λ1M .
An equivalence class [ξ] of 2-cubes is called a 2-vector at point q. By T(2)

q M we denote
the space of all 2-vectors at point q.

Definition 3.1 The fibre bundle of 2-vectors on the differential space M is the triple
(T(2)M,M, τ2) where T(2)M =

⋃
q∈M T(2)

q M and τ2: T
(2)M → M : [ξ] 7→ ξ(0, 0)

Now, we introduce an equivalent relation in Π2. Two pairs (q, ϕ) and (q, ϕ′) are
equivalent if < ξ, (q, ϕ) >=< ξ, (q, ϕ) > for each ξ ∈ Σ2 such that τ(ξ) = q. An
equivalence class [(q, ϕ)] is called the differential of 1-form ϕ at the point q and it will be
denoted by dqϕ.

Definition 3.2 The differential of a smooth 1-form ϕ is a map dϕ: T(2)M → R defined
by the formula:

dϕ([ξq]) =< ξq, dqϕ >

.

We introduce a differential structure C∞(T(2)M) on T(2)M by

C∞(T(2)M) = (sc({dϕ: ϕ ∈ Λ1M} ∪ {τ∗f : f ∈ C∞(M)}))T(2)M .

We observe that the projection τ2: T
(2)M → M is projection and that C∞(T(2)M) sepa-

rates points of T(2)M if C∞(M) separates points of M .

Definition 3.3 A smooth 2-form on M is a smooth function ω: T2M → R such that for
each point q ∈ M there exists ϕ ∈ Λ1M such that ω|T2

qM = dqϕ.

The set of all smooth 2-forms will be denoted by Λ2M . We introduce in Λ2M a
structure of the module over C∞(M) in the following way:

(ω1 + ω2)(ξq) = ω1(ξq) + ω2(ξq),

(fω)(ξq) = f(q)ω(ξq).

We notice that for ϕ ∈ Λ1M the 2-form dϕ is smooth.

Lemma 3.1 Let be f ∈ C∞(M) then d(df) = 0

Proof: Let ξ be a 2-cube representing a 2-vector [ξ]. We have

< [ξ], dq(df) >= (∂t(df([ξ1
t ]))− ∂s(df([ξ2

s )))|t=s=0

= (∂t∂s(f ◦ ξ)− ∂s∂t(f ◦ ξ))|t=s=0 = 0 2
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4 Differential forms on a differential space.

An l-cell ξ on M is a smooth mapping

ξ: [0, 1[l→ M.

Let ξ be an l + r-cell on M and let (i1, . . . , ir) be a sequence of integers such that ip 6= iq
and 1 ≥ ip ≤ l + r, p = 1, . . . , r. For each (t1, t2, . . . , tr) ∈ [0, 1[r we define in the obvious
way an l-cell ξi1...ir

t1...tr .
Let us assume that we have already defined k-vectors as equivalence classes of k-cells

and differentials of k − 1-forms as equivalence classes of pairs (q, ϕ) where q ∈ M and ϕ
is a k − 1-form. We denote by T(k)M the bundle of k-vectors and by ΛkM the module
of k-forms defined in the obvious way. We also assume that for each k + r-cell on M
mappings defined by

(t1, . . . , tr) 7→ [ξi1...ir
t1...tr ]

are smooth r-cells on T(k)M .
Now, we define k + 1-vectors and forms. Let Σk+1 be the set of all smooth (k+1)-cells

on M . We define a fibration τ k+1: Σk+1 → M : ξ 7→ ξ(0, . . . , 0). Let Πk+1 = M × ΛkM .
We define a fibration

πk+1: Πk+1 → M : (q, ω) 7→ q.

We introduce a pairing between these fibrations by the formula:

< ξ, (q, ω) >=
k+1∑

i=1

(−1)i d

dt
ω([ξi

t])|t=0

( τ(ξ) = q). With this pairing we define equivalence relations in Σk+1 and Πk+1. We say
that two k+1-cells ξ and ξ′ are equivalent if τ k+1(ξ) = τ k+1(ξ′) and for each (q, ω) ∈ Πk+1

< ξ, (q, ω) >=< ξ′, (q, ω) >, where q = τ k+1(ξ). An equivalence class of (k+1)-cells is, by
the definition, a (k+1)-vector at the point q. T(k+1)

q M will denote the set of all (k+1)-

vectors at q. In the standard way we define the bundle (T(k+1)M, M, τk+1) of (k+1)-vectors
on M .

In a similar way we introduce an equivalence relation in Πk+1. An equivalence class
[(q, ω)] is called the differential of a form ω at the point q. It will be denoted by dqω.

Definition 4.1 The differential of a k-form ω is a mapping dω: T(k+1)M → R1 defined
by the formula:

dω([ξ]) =< ξ, (q, ω) > where q = ξ(0, . . . , 0).
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We introduce a differential structure C∞(T(k+1)M) on T(k+1)M generated by the fam-
ily of functions:

{τ∗k+1f : f ∈ C∞(M)} ∪ {dω: ω ∈ ΛkM}.
With this differential structure the projection τk+1: T

(k+1)M → M is a smooth. Moreover,
if C∞(M) separates points of M , then C∞(T(k+1)M) separates points of T(k+1)M . It is
easy to check that for a given k + r + 1-cell ξ mappings defined by

(t1, . . . , tr) 7→ [ξi1...ir
t1...tr ]

are smooth r-cells on T(k+1)M .

Definition 4.2 A smooth (k +1)-form on M is a smooth function η: T(k+1)M → R such
that for each point q ∈ M there exists ω ∈ ΛkM such that η|

T
(k+1)
q M

= dqω.

Thus we have defined the fibration of k-vectors τk: T
(k)M → M and the module of

smooth k-forms ΛkM for each integer k.

Lemma 4.1 For each (k − 1)-form ω we have d(dω) = 0.

Proof: Let ξ be a (k+1)-cell, ξ(0, . . . , 0) = q and let be ε(i, j) = 0 for j < i, ε(i, j) = 1
for j > i. We have

< [ξ], dq(dω) >=< ξ, (q, dω) >=
k+1∑

i=1

(−1)i∂tω(ξi
t)|t=0 =

=
k+1∑

i=1

(−1)i
k+1∑

i 6=j=1

(−1)j−ε(i,j)∂s∂tω(ξij
ts)|t=s=0

=
k+1∑

i=1

k+1∑

i 6=j=1

(−1)j+i−ε∂t∂sξ
ij
ts = 0. 2

Let α be a smooth mapping of differential spaces α: (M, C) → (N,D) .

Definition 4.3 The k-tangent of α is a mapping T(k)α: T(k)M → T(k)N defined by the
formula: T(k)α([ξ]) = [α ◦ ξ].

Lemma 4.2 T(k)α: (T(k)M, C∞(T(k)M)) → (T(k)N,C∞(T(k)N)) is a smooth mapping of
differential spaces.

7



Proof. We have to show that (T(k)α)∗g ∈ C∞(T(k)M) for each g ∈ C∞(T(k)N). The
differential structure on TkN is generated by

{τ∗k f : f ∈ C∞(N)} ∪ {dω: ω ∈ Λk−1N}.
Let be f ∈ C∞. We have

(T(k)α)∗τ∗k f = (τkT
(k)α)∗f = (α ◦ τk)

∗f = τ∗k α∗f ∈ C∞(T(k)M).

Now, let ξ be a k-cell in M and let be ϕ ∈ Λk−1M . We have

(T(k)α)∗(dϕ)([ξ]) = dϕ([α ◦ η])]) =

=
k∑

i=1

(−1)i d

dt
ϕ([α ◦ ξ]it)|t=0 = d((T(k−1)α)∗(ϕ)([ξ]).

It follows that (T(k)α)∗(dϕ) = d(T(k−1)α)∗ϕ.
The induction with respect to k shows that (T(k)α)∗(dϕ) ∈ C∞(T(k)M). Indeed, for

k = 1 we have (Tα)(df) = d(f ◦α) ∈ C∞(TM). Now, let be (T(k−1)α)∗ϕ ∈ C∞(T(k−1)M)
for each ϕ ∈ Λk−1N . We have

(T(k)α)∗(dϕ) = d((T(k−1)α)ϕ ∈ ΛkM

for ϕ ∈ Λk−1N . It folows that (T(k)α)∗g ∈ C∞(T(k)M) for g from the set of generators
of C∞(T(k)N). Thus T(k)α is smooth. 2

Definition 4.4 The pull-back of a smooth k-form ω on N is a smooth k-form α∗ω on
M defined by the formula

α∗ω = ω ◦ T(k)α.

Lemma 4.3 Let be ϕ, ψ ∈ ΛkM then:

1. α∗(ϕ + ψ) = α∗(ϕ) + α∗(ψ).

2. d(α∗(ϕ)) = α∗(dϕ).

Proof:

1. Obvious.

2. Let ξ be a k + 1-cell on M . We have α∗(dϕ)([ξ]) = dϕ([α ◦ ξ]) =

∑

i

(−1)i d

dt
ϕ([α ◦ ξ)]it) =

∑

i

(−1)i d

dt
(α∗ϕ)([ξ]it) = d(α∗ϕ)([ξ]). 2
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5 Integration of differential forms. Stokes’ theorem.

Let us denote by Ik the standard closed k-dimensional cube in Rk (I = [0, 1] ∈ R1).

Definition 5.1 A closed k-cell in M is a smooth mapping ξ: Ik → M .

For a given k-cell on M and for each (t1, . . . , tk) ∈ [0, 1[k we define in the obvious way
a k-vector at η(t1, . . . , tk) denoted by [ξ](t1, . . . , tk).

Definition 5.2 The integral of a k-form ϕ over a k-cell η is a number
∫
η ϕ defined by

∫

η
ϕ =

∫

Ik
ξ∗ϕ =

∫ 1

0
. . .

∫ 1

0
ϕ([η](t1, . . . , tk))dt1 . . . dtk.

Let us denote
∫
η ϕ by < η, ϕ >. The integral of ϕ over a k-chain c =

∑
miηi is defined

by
< c, ϕ >=

∑
mi < ηi, ϕ > .

The boundary of a k-cell η is a (k − 1)-chain

∂η =
k∑

m=1

(−1)m(wm
+ − wm

− )

where wm
+ = η|tm=0 and wm

− = η|tm = 1.

Theorem 5.1 (The Stokes’ identity)

< η, dϕ >=< ∂η, ϕ > .

Proof: Let ϕ be a smooth k-form and let η be a (k + 1)-cell. Then

< η, dϕ >=
∫ 1

0
. . .

∫ 1

0
dϕ([η](t1, . . . , tk+1))dt1 . . . dtk+1 =

=
∫ 1

0
. . .

∫ 1

0

k+1∑

i=1

(−1)i∂iϕ([ηi
ti
](t1,

ti∨. . ., tk+1))dt1 . . . dtk+1

=
∫ 1

0
. . .

∫ 1

0

k+1∑

i=1

(−1)i(ϕ([η](. . . , 1, . . .))− ϕ([ηi
1](t1,

ti∨. . ., tk+1)))dt1,
i∨. . ., dtk+1

=
k+1∑

i=1

(−1)i(< wi
+, ϕ > − < wi

−, ϕ >) =< ∂η, ϕ > . 2
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6 Poincare Lemma for differential spaces.

In M × I we introduce the product differential structure ( [9]). For a k − 1-cell η on M
and the identity 1-cell on I we define a k-cell η × e on M × I by

η × e(t1, . . . , tk−1, t) = (η(t1, . . . , tk−1), t).

For a k-form ω on M × I we define a (k-1)-form Dω on M by

(Dω)([η]) =
∫ 1

0
ω([η × e](0, . . . , 0, t)dt.

Let η be a k-cell on M . We have

dω([η × e](0, . . . , 0, t)) =
k∑

i=1

(−1)i d

ds
ω([ηi

s × e](0, . . . , 0, t)|s=0 + (−1)k+1 d

ds
ω([η × e1

s]|s=t).

Hence

(Ddω)([η]) =
∫ 1

0
dω([η × e](0, . . . , 0, t)dt

=
∫ 1

0

k∑

i=1

(−1)i d

ds
ω([ηi

s × e](0, . . . , 0, t)|s=0 + (−1)k+1(ω([η × e1
1])− ω([η × e1

0])).

On the other side

(dDω)(η) =
k∑

i=1

(−1)i d

ds
ω([ηi

s])|s=0

=
k∑

i=1

(−1)i
∫ 1

0

d

ds
ω([ηi

s × e](0, . . . , 0, t)|s = 0dt .

It follows that

(dDω)(η) + (−1)k+1(Ddω)(η) = ω([η × e1
1])− ω([η × e1

0]).

Let F : M × I → M be a smooth homotopy between the identity and the constant
mapping and let be ω = F∗ϕ, where ϕ is a k-form on M . We have then the homotopy
formula

dD(F∗ϕ) + (−1)k+1Dd(F∗ϕ) = ϕ

Theorem 6.1 (Poincare Lemma.) If for each point of M there exists a local, smooth
homotopy between the constant and the identity mappings then each closed form ϕ is
locally exact:

ϕ = d(D(F∗ϕ)).
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