Differential forms on differential spaces

R. Mąka P. Urbański¹

Division of Mathematical Methods in Physics University of Warsaw Hoża 74, 00-682 Warszawa

The presented approach to differential forms on differential spaces is motivated by the use of differential forms in the theory of static systems ([10, 11, 3]). The concept of a covector of higher order is based on duality between forms and multivectors rather then on the idea of the Grassman algebra.

1 Differential spaces

Let M be a set and let \mathcal{C} be a family of real functions on M. The topology induced on M by the family \mathcal{C} , i.e., the weakest topology such that all functions from the family \mathcal{C} are continuous, will be denoted by $\tau_{\mathcal{C}}$. If the family \mathcal{C} separates points of M, then $(M, \tau_{\mathcal{C}})$ is a Hausdorff space.

Let $sc(\mathcal{C})$ denote the set of all functions of the form

$$\alpha \circ (f_1,\ldots,f_k)$$

where $f_1, \ldots, f_k \in \mathcal{C}$ and α is a smooth real-valued function defined on an open neighborhood of $f_1(M) \times \ldots \times f_k(M)$ in \mathbf{R}^k .

It is easy to show ([9]) that:

$$\mathcal{C} \subset \operatorname{sc}(\mathcal{C})$$
$$\operatorname{sc}(\mathcal{C}) = \operatorname{sc}(\operatorname{sc}(\mathcal{C}))$$
$$\tau_{\operatorname{sc}(\mathcal{C})} = \tau_{\mathcal{C}}$$

Definition 1.1 A function f on $A \subset M$ is a local C-function if at each point $p \in A$ there exist $g \in C$ and an open neighborhood U of p such that $f|_U = g|_U$.

¹Supported by Polish scientific grant RP.I.10

The set of all local C-functions on A will be denoted by C_A . We list the following properties of C_A (see [9]):

$$\mathcal{C}|_A \subset \mathcal{C}_A \text{ (in particular } \mathcal{C} \subset \mathcal{C}_M)$$

 $(\mathcal{C}_A)_A = \mathcal{C}_A$
 $\mathcal{C} \subset \operatorname{sc}(\mathcal{C}_M) \subset (\operatorname{sc}(\mathcal{C}))_M$

Definition 1.2 A differential space is a pair (M, \mathcal{C}) where M is a set and \mathcal{C} is a family of real functions on M such that $\mathcal{C} = (\operatorname{sc}(\mathcal{C}))_M$. The family \mathcal{C} will be called the differential structure on M and functions in \mathcal{C} will be called smooth functions on M.

We use also $C^{\infty}(M)$ to denote the family af all smooth functions.

For each family \mathcal{C}_0 of functions on M there exists the smallest differential structure \mathcal{C} which includes \mathcal{C}_0 . We observe that $\mathcal{C} = (\operatorname{sc}(\mathcal{C}_0))_M$.

Definition 1.3 We say that a family C_0 generates a differential structure C if $C = (sc(C_0))_M$.

Definition 1.4 Let (M, \mathcal{C}) and (N, \mathcal{D}) be differential spaces. A mapping $\alpha: M \to N$ is a smooth mapping between differential spaces if for each $f \in \mathcal{D}$ we have $f \circ \alpha \in \mathcal{C}$.

Proposition 1.1 Let (M, \mathcal{C}) and (N, \mathcal{D}) be differential spaces and let \mathcal{D}_0 generate \mathcal{D} . A mapping $\alpha: M \to N$ is smooth if for each $f \in \mathcal{D}_0$ we have $f \circ \alpha \in \mathcal{C}$.

2 Tangent spaces and the module of smooth 1forms

Let the interval $[0, 1] \in \mathbf{R}$ be endowed with the natural differential structure (see [9]) and let $(M, C^{\infty}(M))$ be a differential space.

Definition 2.1 A smooth half-curve on M is a smooth mapping $\gamma: [0, 1[\rightarrow M.$

Let Σ^1 denote the set of all smooth half-curves on M. We define a fibration $\tau: \Sigma^1 \to M$ by

$$\tau(\gamma) = \gamma(0).$$

By Π^1 we denote a trivial fibration $M \times C^{\infty}(M)$ with the canonical projection

$$\pi:\Pi^1 \to M: (q, f) \mapsto q.$$

We define a mapping $\langle , \rangle \colon \Sigma^1 \times_M \Pi^1 \to \mathbf{R}$ by the formula:

$$<\gamma, (q, f)>= \frac{\mathrm{d}}{\mathrm{d}t}f(\gamma)|_{t=0}$$

where $q = \gamma(0)$. We refer to this mapping as a pairing between fibrations Σ^1 and Π^1 . Let be $\gamma_1, \gamma_2 \in \Sigma^1$. We say that γ_1 and γ_2 are equivalent if $\pi(\gamma_1) = \pi(\gamma_2) = q$ and

$$\langle \gamma_1, (q, f) \rangle = \langle \gamma_2, (q, f) \rangle$$
 for each $f \in C^{\infty}(M)$.

An equivalence class $[\gamma]$ is a *tangent vector* at the point q. A *tangent space* $T_q(M)$ is the set of all tangent vectors at the point q.

Definition 2.2 The tangent bundle of a differential space M is a triple (TM, M, τ) where $TM = \bigcup_{q \in M} T_q M$ is the disjoint sum of tangent spaces and τ is the canonical projection $\tau: TM \to M: v_q \mapsto q$.

Now, we introduce an equivalence relation in Π^1 : two pairs (q_1, f_1) and (q_2, f_2) are equivalent if $q_1 = q_2$ and $\langle \gamma, (q_1, f_1) \rangle = \langle \gamma, (q_2, f_2) \rangle$ for each $\gamma \in \Sigma$ such that $\gamma(0) = q_1 = q_2$.

An equivalence class [(q, f)] is called the differential of the function f at the point q and will be denoted by $d_q f$. The *cotangent space* at q is the set of all differentials of functions at the point q and will be denoted T_q^*M .

Definition 2.3 The cotangent bundle (T^*M, M, π) of a differential space M is the disjoint sum of cotangent spaces $T^*M = \bigcup_{q \in M} T^*_q M$ with the canonical projection

$$\pi: \mathrm{T}^* M \to M: \mathrm{d}_a f \mapsto q$$

The pairing between Σ^1 and Π^1 defines a pairing between TM and T^*M by the formula

$$\langle v, \mathrm{d}_q f \rangle = \frac{\mathrm{d}}{\mathrm{d}t} f(\gamma)|_{t=0}$$

where γ represents v.

Remark. $C^{\infty}(M)$ has a natural structure of a linear space. This structure defines a linear space structure in T^*M . Let be $f, h \in C^{\infty}(M)$ and $a \in \mathbf{R}$ then:

$$d_q f + d_q h = d_q (f + h)$$
$$a d_q f = d_q (a f).$$

In general, the dimension of a cotangent space is not the same at each point of M and a tangent space is not a linear space.

Definition 2.4 The differential of a function $f \in C^{\infty}(M)$ is a mapping $df: TM \to \mathbf{R}$ defined by the formula $df(v) = \langle v, df \rangle$.

A differential structure $C^{\infty}(TM)$ on a tangent bundle TM we define in the following way:

$$C^{\infty}(\mathrm{T}M) = (\mathrm{sc}(\{\tau^*f : f \in C^{\infty}(M)\} \cup \{\mathrm{d}g : g \in C^{\infty}(M)\}))_{\mathrm{T}M}.$$

It follows that the projection $\tau: TM \to M$ is smooth and that if $C^{\infty}(M)$ separates points of M then $C^{\infty}(TM)$ separates points of TM.

We may introduce a differential structure on T^*M generated by functions of the form $\pi^* f$ where $f \in C^{\infty}(M)$ and of the form $d_q f \mapsto \langle X(q), d_q f \rangle$ where X is a smooth vector field on M (X: $M \to TM$). However this differential structure does not, in general, separate points of T^*M and, consequently, is not very usefull.

Definition 2.5 A smooth 1-form on M is a smooth function $\phi: TM \to \mathbf{R}$ such that for each point $q \in M$ there exists $f \in C^{\infty}(M)$ such that $\phi|_{T_{qM}} = d_q f$.

The space $\Lambda^1 M$ of all smooth 1-forms has natural structure of a module over the ring of smooth functions on M. The structure of a linear space and of a module in $\Lambda^1 M$ is given by:

$$(\varphi_1 + \varphi_2)(v_q) = \varphi_1(v_q) + \varphi_2(v_q)$$
$$(f\varphi)(v_q) = f(q)\varphi(v_q).$$

It is evident that the differential of a smooth function is a smooth 1-form.

3 The fibration of 2-vectors and the module of smooth 2-forms

A 2-cube is a smooth mapping $\xi: [0, 1[\times [0, 1[\to M. \text{ Let } \Sigma^2 \text{ be the set of all 2-cubes on } M.$ We define a fibration $\tau: \Sigma^2 \to M$ by $\Sigma^2 \ni \xi \mapsto \xi(0, 0)$. Let $\pi: \Pi^2 = M \times \Lambda^1 M \to M$ be the trivial fibration defined by $\pi(q, \varphi) = q$.

For each $t \in [0, 1]$ half-curves

$$t_1 \to \xi_t^2(t_1) = \xi(t_1, t)$$

and

$$t_2 \to \xi_t^1(t_2) = \xi(t, t_2)$$

are smooth and, consequently, represent tangent vectors denoted by $[\xi_t^2]$ and $[\xi_t^1]$, respectively. Mappings $[0, 1[\ni t \mapsto [\xi_t^1] \in TM \text{ and } [0, 1[\ni t \mapsto [\xi_t^2] \in TM \text{ are smooth half-curves.}]$ Thus we can define a pairing between fibrations τ and π by the formula:

$$\langle \xi, (q, \varphi) \rangle = \frac{\mathrm{d}}{\mathrm{d}t} (\varphi([\xi_t^1]) - \varphi([\xi_t^2]))|_{t=0}$$

We say that two 2-cubes ξ and ξ' are equivalent if

$$\tau(\xi)=\tau(\xi')=q \text{ and } <\xi, (q,\varphi)>=<\xi', (q,\varphi)>$$

for each $\varphi \in \Lambda^1 M$.

An equivalence class $[\xi]$ of 2-cubes is called a 2-vector at point q. By $T_q^{(2)}M$ we denote the space of all 2-vectors at point q.

Definition 3.1 The fibre bundle of 2-vectors on the differential space M is the triple $(T^{(2)}M, M, \tau_2)$ where $T^{(2)}M = \bigcup_{q \in M} T_q^{(2)}M$ and $\tau_2: T^{(2)}M \to M: [\xi] \mapsto \xi(0, 0)$

Now, we introduce an equivalent relation in Π^2 . Two pairs (q, φ) and (q, φ') are equivalent if $\langle \xi, (q, \varphi) \rangle = \langle \xi, (q, \varphi) \rangle$ for each $\xi \in \Sigma^2$ such that $\tau(\xi) = q$. An equivalence class $[(q, \varphi)]$ is called the *differential of 1-form* φ at the point q and it will be denoted by $d_q \varphi$.

Definition 3.2 The differential of a smooth 1-form φ is a map $d\varphi: T^{(2)}M \to \mathbf{R}$ defined by the formula:

$$\mathrm{d}\varphi([\xi_q]) = <\xi_q, \mathrm{d}_q\varphi >$$

We introduce a differential structure $C^{\infty}(\mathbf{T}^{(2)}M)$ on $\mathbf{T}^{(2)}M$ by

$$C^{\infty}(\mathbf{T}^{(2)}M) = (\mathrm{sc}(\{d\varphi:\varphi\in\Lambda^1M\}\cup\{\tau^*f:f\in C^{\infty}(M)\}))_{\mathbf{T}^{(2)}M}$$

We observe that the projection $\tau_2: T^{(2)}M \to M$ is projection and that $C^{\infty}(T^{(2)}M)$ separates points of $T^{(2)}M$ if $C^{\infty}(M)$ separates points of M.

Definition 3.3 A smooth 2-form on M is a smooth function $\omega: T^2M \to \mathbf{R}$ such that for each point $q \in M$ there exists $\varphi \in \Lambda^1 M$ such that $\omega|_{T^2_{aM}} = d_q \varphi$.

The set of all smooth 2-forms will be denoted by $\Lambda^2 M$. We introduce in $\Lambda^2 M$ a structure of the module over $C^{\infty}(M)$ in the following way:

$$(\omega_1 + \omega_2)(\xi_q) = \omega_1(\xi_q) + \omega_2(\xi_q),$$

$$(f\omega)(\xi_q) = f(q)\omega(\xi_q).$$

We notice that for $\varphi \in \Lambda^1 M$ the 2-form $d\varphi$ is smooth.

Lemma 3.1 Let be $f \in C^{\infty}(M)$ then d(df) = 0

Proof: Let ξ be a 2-cube representing a 2-vector $[\xi]$. We have

$$< [\xi], \mathbf{d}_q(\mathbf{d}f) >= (\partial_t(\mathbf{d}f([\xi_t^1])) - \partial_s(\mathbf{d}f([\xi_s^2)))|_{t=s=0})$$
$$= (\partial_t \partial_s(f \circ \xi) - \partial_s \partial_t(f \circ \xi))|_{t=s=0} = 0 \quad \Box$$

4 Differential forms on a differential space.

An *l*-cell ξ on M is a smooth mapping

$$\xi: [0, 1[^l \to M.$$

Let ξ be an l + r-cell on M and let (i_1, \ldots, i_r) be a sequence of integers such that $i_p \neq i_q$ and $1 \geq i_p \leq l + r$, $p = 1, \ldots, r$. For each $(t_1, t_2, \ldots, t_r) \in [0, 1]^r$ we define in the obvious way an l-cell $\xi_{t_1 \ldots t_r}^{i_1 \ldots i_r}$.

Let us assume that we have already defined k-vectors as equivalence classes of k-cells and differentials of k - 1-forms as equivalence classes of pairs (q, φ) where $q \in M$ and φ is a k - 1-form. We denote by $T^{(k)}M$ the bundle of k-vectors and by $\Lambda^k M$ the module of k-forms defined in the obvious way. We also assume that for each k + r-cell on Mmappings defined by

$$(t_1,\ldots,t_r)\mapsto [\xi_{t_1\ldots t_r}^{i_1\ldots i_r}]$$

are smooth *r*-cells on $T^{(k)}M$.

Now, we define k + 1-vectors and forms. Let Σ^{k+1} be the set of all smooth (k+1)-cells on M. We define a fibration $\tau^{k+1} \colon \Sigma^{k+1} \to M \colon \xi \mapsto \xi(0, \ldots, 0)$. Let $\Pi^{k+1} = M \times \Lambda^k M$. We define a fibration

$$\pi^{k+1}: \Pi^{k+1} \to M: (q, \omega) \mapsto q.$$

We introduce a pairing between these fibrations by the formula:

$$<\xi, (q,\omega)> = \sum_{i=1}^{k+1} (-1)^i \frac{\mathrm{d}}{\mathrm{d}t} \omega([\xi_t^i])|_{t=0}$$

 $(\tau(\xi) = q)$. With this pairing we define equivalence relations in Σ^{k+1} and Π^{k+1} . We say that two k+1-cells ξ and ξ' are equivalent if $\tau^{k+1}(\xi) = \tau^{k+1}(\xi')$ and for each $(q, \omega) \in \Pi^{k+1} < \xi, (q, \omega) > = < \xi', (q, \omega) >$, where $q = \tau^{k+1}(\xi)$. An equivalence class of (k+1)-cells is, by the definition, a (k+1)-vector at the point q. $T_q^{(k+1)}M$ will denote the set of all (k+1)-vectors at q. In the standard way we define the bundle $(T^{(k+1)}M, M, \tau_{k+1})$ of (k+1)-vectors on M.

In a similar way we introduce an equivalence relation in Π^{k+1} . An equivalence class $[(q, \omega)]$ is called the *differential* of a form ω at the point q. It will be denoted by $d_q \omega$.

Definition 4.1 The differential of a k-form ω is a mapping $d\omega$: $T^{(k+1)}M \to \mathbf{R}^1$ defined by the formula:

$$d\omega([\xi]) = <\xi, (q, \omega) > \text{ where } q = \xi(0, \dots, 0)$$

We introduce a differential structure $C^{\infty}(\mathbf{T}^{(k+1)}M)$ on $\mathbf{T}^{(k+1)}M$ generated by the family of functions:

$$\{\tau_{k+1}^* f \colon f \in C^\infty(M)\} \cup \{\mathrm{d}\omega \colon \omega \in \Lambda^k M\}.$$

With this differential structure the projection $\tau_{k+1}: \mathbb{T}^{(k+1)}M \to M$ is a smooth. Moreover, if $C^{\infty}(M)$ separates points of M, then $C^{\infty}(\mathbb{T}^{(k+1)}M)$ separates points of $\mathbb{T}^{(k+1)}M$. It is easy to check that for a given k + r + 1-cell ξ mappings defined by

$$(t_1,\ldots,t_r)\mapsto [\xi_{t_1\ldots t_r}^{i_1\ldots i_r}]$$

are smooth *r*-cells on $T^{(k+1)}M$.

Definition 4.2 A smooth (k+1)-form on M is a smooth function $\eta: \mathbb{T}^{(k+1)}M \to \mathbb{R}$ such that for each point $q \in M$ there exists $\omega \in \Lambda^k M$ such that $\eta|_{\mathbb{T}^{(k+1)}_{\alpha}M} = \mathrm{d}_q \omega$.

Thus we have defined the fibration of k-vectors $\tau_k: T^{(k)}M \to M$ and the module of smooth k-forms $\Lambda^k M$ for each integer k.

Lemma 4.1 For each (k-1)-form ω we have $d(d\omega) = 0$.

Proof: Let ξ be a (k+1)-cell, $\xi(0, \ldots, 0) = q$ and let be $\epsilon(i, j) = 0$ for j < i, $\epsilon(i, j) = 1$ for j > i. We have

$$< [\xi], d_q(d\omega) > = < \xi, (q, d\omega) > = \sum_{i=1}^{k+1} (-1)^i \partial_t \omega(\xi_t^i)|_{t=0} =$$
$$= \sum_{i=1}^{k+1} (-1)^i \sum_{i \neq j=1}^{k+1} (-1)^{j-\epsilon(i,j)} \partial_s \partial_t \omega(\xi_{ts}^{ij})|_{t=s=0}$$
$$= \sum_{i=1}^{k+1} \sum_{i \neq j=1}^{k+1} (-1)^{j+i-\epsilon} \partial_t \partial_s \xi_{ts}^{ij} = 0. \quad \Box$$

Let α be a smooth mapping of differential spaces $\alpha: (M, \mathcal{C}) \to (N, \mathcal{D})$.

Definition 4.3 The k-tangent of α is a mapping $T^{(k)}\alpha: T^{(k)}M \to T^{(k)}N$ defined by the formula: $T^{(k)}\alpha([\xi]) = [\alpha \circ \xi].$

Lemma 4.2 $T^{(k)}\alpha$: $(T^{(k)}M, C^{\infty}(T^{(k)}M)) \rightarrow (T^{(k)}N, C^{\infty}(T^{(k)}N))$ is a smooth mapping of differential spaces.

Proof. We have to show that $(T^{(k)}\alpha)^*g \in C^{\infty}(T^{(k)}M)$ for each $g \in C^{\infty}(T^{(k)}N)$. The differential structure on T^kN is generated by

$$\{\tau_k^* f \colon f \in C^{\infty}(N)\} \cup \{\mathrm{d}\omega \colon \omega \in \Lambda^{k-1}N\}.$$

Let be $f \in C^{\infty}$. We have

$$(\mathbf{T}^{(k)}\alpha)^*\tau_k^*f = (\tau_k\mathbf{T}^{(k)}\alpha)^*f = (\alpha \circ \tau_k)^*f = \tau_k^*\alpha^*f \in C^{\infty}(\mathbf{T}^{(k)}M).$$

Now, let ξ be a k-cell in M and let be $\varphi \in \Lambda^{k-1}M$. We have

$$(\mathbf{T}^{(k)}\alpha)^*(\mathrm{d}\varphi)([\xi]) = \mathrm{d}\varphi([\alpha \circ \eta])]) =$$
$$= \sum_{i=1}^k (-1)^i \frac{\mathrm{d}}{\mathrm{d}t}\varphi([\alpha \circ \xi]^i_t)|_{t=0} = \mathrm{d}((\mathbf{T}^{(k-1)}\alpha)^*(\varphi)([\xi]).$$

It follows that $(\mathbf{T}^{(k)}\alpha)^*(\mathrm{d}\varphi) = \mathrm{d}(\mathbf{T}^{(k-1)}\alpha)^*\varphi$.

The induction with respect to k shows that $(T^{(k)}\alpha)^*(d\varphi) \in C^{\infty}(T^{(k)}M)$. Indeed, for k = 1 we have $(T\alpha)(df) = d(f \circ \alpha) \in C^{\infty}(TM)$. Now, let be $(T^{(k-1)}\alpha)^*\varphi \in C^{\infty}(T^{(k-1)}M)$ for each $\varphi \in \Lambda^{k-1}N$. We have

$$(\mathbf{T}^{(k)}\alpha)^*(\mathrm{d}\varphi) = \mathrm{d}((\mathbf{T}^{(k-1)}\alpha)\varphi \in \Lambda^k M$$

for $\varphi \in \Lambda^{k-1}N$. It follows that $(\mathbf{T}^{(k)}\alpha)^*g \in C^{\infty}(\mathbf{T}^{(k)}M)$ for g from the set of generators of $C^{\infty}(\mathbf{T}^{(k)}N)$. Thus $\mathbf{T}^{(k)}\alpha$ is smooth. \Box

Definition 4.4 The pull-back of a smooth k-form ω on N is a smooth k-form $\alpha^*\omega$ on M defined by the formula

$$\alpha^* \omega = \omega \circ \mathcal{T}^{(k)} \alpha.$$

Lemma 4.3 Let be $\varphi, \psi \in \Lambda^k M$ then:

1.
$$\alpha^*(\varphi + \psi) = \alpha^*(\varphi) + \alpha^*(\psi).$$

2. $d(\alpha^*(\varphi)) = \alpha^*(d\varphi).$

Proof:

- 1. Obvious.
- 2. Let ξ be a k + 1-cell on M. We have $\alpha^*(\mathrm{d}\varphi)([\xi]) = \mathrm{d}\varphi([\alpha \circ \xi]) =$

$$\sum_{i} (-1)^{i} \frac{\mathrm{d}}{\mathrm{d}t} \varphi([\alpha \circ \xi)]_{t}^{i}) = \sum_{i} (-1)^{i} \frac{\mathrm{d}}{\mathrm{d}t} (\alpha^{*} \varphi)([\xi]_{t}^{i}) = \mathrm{d}(\alpha^{*} \varphi)([\xi]). \quad \Box$$

5 Integration of differential forms. Stokes' theorem.

Let us denote by I^k the standard closed k-dimensional cube in \mathbf{R}^k $(I = [0, 1] \in \mathbf{R}^1)$.

Definition 5.1 A closed k-cell in M is a smooth mapping $\xi: I^k \to M$.

For a given k-cell on M and for each $(t_1, \ldots, t_k) \in [0, 1]^k$ we define in the obvious way a k-vector at $\eta(t_1, \ldots, t_k)$ denoted by $[\xi](t_1, \ldots, t_k)$.

Definition 5.2 The integral of a k-form φ over a k-cell η is a number $\int_{\eta} \varphi$ defined by

$$\int_{\eta} \varphi = \int_{I^k} \xi^* \varphi = \int_0^1 \dots \int_0^1 \varphi([\eta](t_1, \dots, t_k)) \mathrm{d} t_1 \dots \mathrm{d} t_k.$$

Let us denote $\int_{\eta} \varphi$ by $\langle \eta, \varphi \rangle$. The integral of φ over a k-chain $c = \sum m_i \eta_i$ is defined by

$$\langle c, \varphi \rangle = \sum m_i \langle \eta_i, \varphi \rangle.$$

The boundary of a k-cell η is a (k-1)-chain

$$\partial \eta = \sum_{m=1}^{k} (-1)^m (w_+^m - w_-^m)$$

where $w_{+}^{m} = \eta|_{t_{m}=0}$ and $w_{-}^{m} = \eta|t_{m} = 1$.

Theorem 5.1 (The Stokes' identity)

$$<\eta, \mathrm{d}\varphi>=<\partial\eta, \varphi>.$$

Proof: Let φ be a smooth k-form and let η be a (k+1)-cell. Then

$$<\eta, d\varphi> = \int_0^1 \dots \int_0^1 d\varphi([\eta](t_1, \dots, t_{k+1})) dt_1 \dots dt_{k+1} =$$
$$= \int_0^1 \dots \int_0^1 \sum_{i=1}^{k+1} (-1)^i \partial_i \varphi([\eta_{t_i}^i](t_1, \overset{t_i}{\vee}, t_{k+1})) dt_1 \dots dt_{k+1}$$

$$= \int_0^1 \dots \int_0^1 \sum_{i=1}^{k+1} (-1)^i (\varphi([\eta](\dots,1,\dots)) - \varphi([\eta_1^i](t_1,\overset{t_i}{\vee},t_{k+1}))) dt_1, \overset{i}{\vee}, dt_{k+1}) dt_{k+1}$$
$$= \sum_{i=1}^{k+1} (-1)^i (\langle w_+^i, \varphi \rangle - \langle w_-^i, \varphi \rangle) = \langle \partial \eta, \varphi \rangle. \quad \Box$$

6 Poincare Lemma for differential spaces.

In $M \times I$ we introduce the product differential structure ([9]). For a k – 1-cell η on M and the identity 1-cell on I we define a k-cell $\eta \times e$ on $M \times I$ by

$$\eta \times e(t_1, \dots, t_{k-1}, t) = (\eta(t_1, \dots, t_{k-1}), t).$$

For a k-form ω on $M \times I$ we define a (k-1)-form $D\omega$ on M by

$$(D\omega)([\eta]) = \int_0^1 \omega([\eta \times e](0, \dots, 0, t) \mathrm{d}t.$$

Let η be a k-cell on M. We have

$$d\omega([\eta \times e](0, \dots, 0, t)) = \sum_{i=1}^{k} (-1)^{i} \frac{d}{ds} \omega([\eta_{s}^{i} \times e](0, \dots, 0, t)|_{s=0} + (-1)^{k+1} \frac{d}{ds} \omega([\eta \times e_{s}^{1}]|_{s=t}).$$

Hence

$$(Dd\omega)([\eta]) = \int_0^1 d\omega([\eta \times e](0, \dots, 0, t)dt)$$

$$= \int_0^1 \sum_{i=1}^k (-1)^i \frac{\mathrm{d}}{\mathrm{d}s} \omega([\eta_s^i \times e](0, \dots, 0, t)|_{s=0} + (-1)^{k+1} (\omega([\eta \times e_1^1]) - \omega([\eta \times e_0^1])).$$

On the other side

$$(\mathrm{d}D\omega)(\eta) = \sum_{i=1}^{k} (-1)^{i} \frac{\mathrm{d}}{\mathrm{d}s} \omega([\eta_{s}^{i}])|_{s=0}$$
$$= \sum_{i=1}^{k} (-1)^{i} \int_{0}^{1} \frac{\mathrm{d}}{\mathrm{d}s} \omega([\eta_{s}^{i} \times e](0, \dots, 0, t)|_{s} = 0 \mathrm{d}t \; .$$

It follows that

$$(\mathrm{d}D\omega)(\eta) + (-1)^{k+1}(Dd\omega)(\eta) = \omega([\eta \times e_1^1]) - \omega([\eta \times e_0^1]).$$

Let $F: M \times I \to M$ be a smooth homotopy between the identity and the constant mapping and let be $\omega = F^* \varphi$, where φ is a k-form on M. We have then the homotopy formula

$$\mathrm{d}D(F^*\varphi) + (-1)^{k+1}D\mathrm{d}(F^*\varphi) = \varphi$$

Theorem 6.1 (Poincare Lemma.) If for each point of M there exists a local, smooth homotopy between the constant and the identity mappings then each closed form φ is locally exact:

$$\varphi = \mathrm{d}(D(F^*\varphi)).$$

References

- [1] Cegiełka, K., Differential geometry (in Polish), University of Warsaw, 1978.
- [2] Kowalczyk, A., Tangent differential spaces and smooth form, Demonstratio Math. 13 (1980), 893–905.
- [3] Mąka, R., MSc Dissertation, University of Warsaw, 1988.
- [4] Marshall, C., Calculus on subcartesian spaces, J. Diff. Geometry, 10 (1975), 893-905.
- [5] Sasin, W., On some exterior algebra of differential space, Demonstratio Math., 19 (1986), 1063–1075.
- [6] Sasin, W. and Zekanowski, Z. On Stokes' theorem in differential space, Abhandlungen der Akademie der Wissenschaften der DDR ,2N (1984), 195-200.
- [7] Sikorski, R., *Differential modules*, Colloq. Math., **24** (1972), 45-79.
- [8] Sikorski, R., Abstract covariant derivative, Colloq. Math., 18 (1967), 251-272.
- [9] Sikorski, R., Introduction to differential geometry, PWN, Warsaw, 1972 (in Polish).
- [10] Tulczyjew, W. M. Geometric formulations of physical theories, Bibliopolis, Napoli 1989.
- [11] Tulczyjew, W. M. Control of static mechanical systems in Dynamical systems and microphysics, control theory and mechanics, Academic Press 1984.