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The presented approach to differential forms on differential spaces is motivated by the
use of differential forms in the theory of static systems ([10, 11, 3]). The concept of a
covector of higher order is based on duality between forms and multivectors rather then
on the idea of the Grassman algebra.

1 Differential spaces

Let M be a set and let C be a family of real functions on M. The topology induced on M
by the family C, i.e., the weakest topology such that all functions from the family C are
continuous, will be denoted by 7¢. If the family C separates points of M, then (M, 7¢) is
a Hausdorff space.

Let sc(C) denote the set of all functions of the form

ao(fi,-., fu)

where f1,..., fr € C and « is a smooth real-valued function defined on an open neighbor-
hood of fi(M) x ... x fy(M) in R*.
It is easy to show ( [9]) that:
C C sc(C)

sc(C) = sc(sce(C))
Tsc(c) = TcC

Definition 1.1 A function f on A C M is alocal C-function if at each point p € A there
exist g € C and an open neighborhood U of p such that fly = gluv -
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The set of all local C-functions on A will be denoted by C4. We list the following
properties of C4 (see [9]):

Cla C Ca (in particular C C Cyy)

(Ca)a=Ca
C Csc(Cur) C (sc(C))m

Definition 1.2 A differential space is a pair (M,C) where M is a set and C is a family
of real functions on M such that C = (sc(C))nr. The family C will be called the differential
structure on M and functions in C will be called smooth functions on M.

We use also C*°(M) to denote the family af all smooth functions.
For each family Cy of functions on M there exists the smallest differential structure C
which includes Cy. We observe that C = (sc¢(Co)) ur-

Definition 1.3 We say that a family Cy generates a differential structure C if C =
(sc(Co))nr-

Definition 1.4 Let (M,C) and (N, D) be differential spaces. A mapping c: M — N is a
smooth mapping between differential spaces if for each f € D we have f o« € C.

Proposition 1.1 Let (M,C) and (N, D) be differential spaces and let Dy generate D. A
mapping o: M — N is smooth if for each f € Dy we have foa € C.

2 Tangent spaces and the module of smooth 1-
forms

Let the interval [0, 1[€ R be endowed with the natural differential structure (see [9]) and
let (M,C*(M)) be a differential space.

Definition 2.1 A smooth half-curve on M is a smooth mapping ~y: [0, 1[— M.

Let X! denote the set of all smooth half-curves on M. We define a fibration 7: X! — M
by
7(v) = 7(0).

By II' we denote a trivial fibration M x C°°(M) with the canonical projection
m I — M:(q, f) = q.
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We define a mapping <, >: 3! x;; I[I! — R by the formula:

<7&%f%ﬁ=ifwmﬂ

where ¢ = 7(0). We refer to this mapping as a pairing between fibrations X! and IT'.
Let be v1,72 € 2. We say that v, and ~, are equivalent if 7(y,) = 7(72) = ¢ and

<m,(q, f) >=<12,(q, f) > for each f € C*(M).

An equivalence class [7] is a tangent vector at the point q. A tangent space Ty(M) is
the set of all tangent vectors at the point q.

Definition 2.2 The tangent bundle of a differential space M is a triple (TM, M, T) where
TM = Ugen T¢M is the disjoint sum of tangent spaces and T is the canonical projection
T:TM — M:v, — q.

Now, we introduce an equivalence relation in IT': two pairs (qi, fi) and (g9, fo) are
equivalent if ¢ = ¢ and < 7,(q1, f1) >=< 7,(qo, f2) > for each v € ¥ such that
7(0) =@ = g

An equivalence class [(q, f)] is called the differential of the function f at the point
q and will be denoted by d,f. The cotangent space at q is the set of all differentials of
functions at the point ¢ and will be denoted T;"M .

Definition 2.3 The cotangent bundle (T*M, M, ) of a differential space M is the dis-
joint sum of cotangent spaces T*M = Ugenr Tj;M with the canonical projection

W:T*M—>M:dqf|—>q.

The pairing between X! and IT' defines a pairing between TM and T*M by the formula

d

<wv,dgf >= &f@)h:o

where ~ represents v.
Remark. C°°(M) has a natural structure of a linear space. This structure defines a
linear space structure in T*M. Let be f,h € C®°(M) and a € R then:

dgf +dgh = dq(f + h)

ad,f = d,(af).
In general, the dimension of a cotangent space is not the same at each point of M and
a tangent space is not a linear space.



Definition 2.4 The differential of a function f € C*°(M) is a mapping df: TM — R
defined by the formula df(v) =< v,df >.

A differential structure C*°(TM) on a tangent bundle TM we define in the following
way:
C>®(TM) = (sc({*f: f € C®(M)} U {dg: g € C®(M)}))Tar.

It follows that that the projection 7: TM — M is smooth and that if C°°(M) separates
points of M then C*°(TM) separates points of TM.

We may introduce a differential structure on T*M generated by functions of the form
7 f where f € C°°(M) and of the form d,f — (X(q),d,f) where X is a smooth vector
field on M (X:M — TM). However this differential structure does not, in general,
separate points of T* M and, consequently, is not very usefull.

Definition 2.5 A smooth 1-form on M is a smooth function ¢: TM — R such that for
each point q € M there exists f € C(M) such that ¢|v,n = dgf.

The space A'M of all smooth 1-forms has natural structure of a module over the ring
of smooth functions on M. The structure of a linear space and of a module in A'M is
given by:

(01 + ©2)(vg) = #1(vg) + p2(vg)

(fo)(vg) = f(q)p(vg).

It is evident that the differential of a smooth function is a smooth 1-form.

3 The fibration of 2-vectors and the module of
smooth 2-forms

A 2-cube is a smooth mapping &:[0,1[x[0,1[— M. Let X2 be the set of all 2-cubes on
M. We define a fibration 7: 32 — M by ¥? 3 £ — £(0,0). Let m:I1? = M x A'M — M
be the trivial fibration defined by (¢, p) = q.

For each ¢ € [0, 1] half-curves

ty — & (1) = &1, 1)
and
ty — & () = £(t, 1)

are smooth and, consequently, represent tangent vectors denoted by [¢2] and [£}], respec-
tively. Mappings [0,1[3 ¢t — [¢}] € TM and [0,1[3 ¢ — [¢?] € TM are smooth half-curves.
Thus we can define a pairing between fibrations 7 and 7 by the formula:
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d
<& (g9) >= (e(l&]) — (& D)=0
We say that two 2-cubes & and &' are equivalent if

T(§) =7({) =qand < (q,9) >=< (¢, 9) >
for each ¢ € A*M.

An equivalence class [£] of 2-cubes is called a 2-vector at point gq. By T((IQ)M we denote
the space of all 2-vectors at point q.

Definition 3.1 The fibre bundle of 2-vectors on the differential space M is the triple
(TAM, M, 73) where TOM = Uyep TP M and 15: TOM — M:[€] — £(0,0)

Now, we introduce an equivalent relation in IT12. Two pairs (q,¢) and (¢,¢’) are
equivalent if < & (q,0) >=< & (q,0) > for each £ € X% such that 7(§) = ¢. An
equivalence class [(q, ¢)] is called the differential of 1-form ¢ at the point ¢ and it will be
denoted by dg¢.

Definition 3.2 The differential of a smooth 1-form ¢ is a map dp: TAM — R defined
by the formula:

d@([fq]) =< &g dgp >

We introduce a differential structure C°(T® M) on T M by
C®(TOM) = (sc({dp: o € A'MYU{r*f: f € C®(M)})) e -

We observe that the projection 75: T®M — M is projection and that C*(T® M) sepa-
rates points of T M if C*°(M) separates points of M.

Definition 3.3 A smooth 2-form on M is a smooth function w: T?M — R such that for
each point ¢ € M there exists ¢ € A'M such that W\TgM = dg.

The set of all smooth 2-forms will be denoted by A?2M. We introduce in A2M a
structure of the module over C*(M) in the following way:

(w1 +w2) (&) = wi(§y) +wa(&y),

(fw)(&g) = f(@w(&y)-
We notice that for ¢ € A'M the 2-form dy is smooth.

Lemma 3.1 Let be f € C°(M) then d(df) =0
Proof: Let £ be a 2-cube representing a 2-vector [£]. We have
< [€], dg(df) >= (@(df([&])) — Ou(df([€2)))e=s=0
= (0:05(f 0 &) = 050(f 0 &))|t=s=0 =0 O



4 Differential forms on a differential space.
An [-cell £ on M is a smooth mapping
€0, 1['— M.

Let £ be an [ + r-cell on M and let (i, ...,%,) be a sequence of integers such that i, # i,
and 1 >, <l+r,p=1,...,r. For each (t1,ts,...,t,) € [0,1]" we define in the obvious
way an [-cell ffi_'jf:.

Let us assume that we have already defined k-vectors as equivalence classes of k-cells
and differentials of k — 1-forms as equivalence classes of pairs (¢, ) where ¢ € M and ¢
is a k — 1-form. We denote by T®) M the bundle of k-vectors and by A*M the module
of k-forms defined in the obvious way. We also assume that for each k + r-cell on M

mappings defined by
(1, te) = [0
are smooth r-cells on T*) M.
Now, we define k + 1-vectors and forms. Let X**! be the set of all smooth (k+1)-cells
on M. We define a fibration 771 ¥ — M: € £(0,...,0). Let TTI*! = M x A*M.
We define a fibration
LM — M (q,w) - g

We introduce a pairing between these fibrations by the formula:

k+1

<& (0) >= (1) T8 o

i=1

( 7(€) = q). With this pairing we define equivalence relations in X** and IT**!. We say
that two k+ 1-cells £ and & are equivalent if 7*T1(¢) = 7*+1(¢’) and for each (¢, w) € ITF+?
<& (qw) >=< ¢, (q,w) >, where ¢ = 7FT1(£). An equivalence class of (k+1)-cells is, by
the definition, a (k41)-vector at the point g. T¥M will denote the set of all (k+1)-
vectors at ¢. In the standard way we define the bundle (T**YV M, M, 7,.,1) of (k+1)-vectors
on M.

In a similar way we introduce an equivalence relation in II**!. An equivalence class
[(¢,w)] is called the differential of a form w at the point ¢. It will be denoted by d,w.

Definition 4.1 The differential of a k-form w is a mapping dw: T**Y A — R defined
by the formula:

dw([¢]) =< &, (q,w) > where ¢ =£(0,...,0).



We introduce a differential structure C°(T**V M) on T*+Y M generated by the fam-
ily of functions:
{ri i feC™(M)}U{dw:iw e A"M}.

With this differential structure the projection 7y, 1: T®*VM — M is a smooth. Moreover,
if C°°(M) separates points of M, then C=(T®*+V M) separates points of T*+D M. It is
easy to check that for a given k + r + 1-cell £ mappings defined by

(tr, .o t) = [E07]
are smooth r-cells on T*+D M7,

Definition 4.2 A smooth (k+1)-form on M is a smooth function n: T*+Y M — R such
that for each point ¢ € M there exists w € A¥M such that N+ ,, = dgw.
q

Thus we have defined the fibration of k-vectors 7,: T®) M — M and the module of
smooth k-forms A*M for each integer k.

Lemma 4.1 For each (k — 1)-form w we have d(dw) = 0.

Proof: Let € be a (k+1)-cell, £(0,...,0) = g and let be €(i, 7) = 0 for j <, €(i,j) =1
for 7 > i. We have

< [6],dq<dW) >=< ga (Q7dw) >= Z(—l)latw(ﬁ)‘tzo =
i=1
k+1 ) k+1 ' o -
= Z(_l)l Z (_1)]_6(17])6581?@(6;@)|t:s:0

i=1 i#j=1
k+1 k+1 o -

= > (-1Y"9,0,42 =0. O
=1 i#j=1

Let a be a smooth mapping of differential spaces a: (M,C) — (N, D) .

Definition 4.3 The k-tangent of a is a mapping T®a: THM — TEN defined by the
formula: T®a([¢]) = [ao€].

Lemma 4.2 T®q: (T® M, C=(T®M)) — (T®N,C*(T*N)) is a smooth mapping of
differential spaces.



Proof. We have to show that (T®a)*g € C(T® M) for each g € C*(T®N). The
differential structure on T¥N is generated by

{1 f: f € C®(N)} U {dw:w € AN,
Let be f € C*°. We have
(T(k)Oé)*T];k = (TkT(k)Oé)*f = (o ) f = T,;kOé*f € C’OO(T(’“)M).
Now, let € be a k-cell in M and let be ¢ € A¥=1M. We have

(TWa)*(dp)([€]) = dellaon])]) =

k
Z (favo gDli=o = AT Va)* () ([€])
=1
It follows that (T®a)*(dy) = d(T*Va)*e.
The induction with respect to k shows that (T®a)*(dy) € C°(T® M). Indeed, for

k = 1 we have (Ta)(df) = d(foa) € C®°(TM). Now, let be (T®*~1) ) € COO(T(k—l)]\/[)
for each p € A¥"1N. We have

(TWa)*(dg) = d(T" Va)p € A'M

for o € AF"'N. Tt folows that (T®a)*g € C®°(T® M) for g from the set of generators
of C*(T®N). Thus T®« is smooth. O

Definition 4.4 The pull-back of a smooth k-form w on N is a smooth k-form a™w on
M defined by the formula
ofw=woTWaq,

Lemma 4.3 Let be ¢, € A*M then:
I a*(p ) = a*(p) + a*(y).
2. d(@*(p)) = a*(dyp).
Proof:
1. Obvious.
2. Let € be a k + 1-cell on M. We have a*(dp)([€]) = de([a o €]) =
(1) Sl ) = S(-1) Lla* o)D) = d(a*p)((€]). B
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5 Integration of differential forms. Stokes’ theorem
Let us denote by I* the standard closed k-dimensional cube in R* (I =[0,1] € RY).

Definition 5.1 A closed k-cell in M is a smooth mapping &: IF — M
[0, 1[* we define in the obvious way

For a given k-cell on M and for each (t1,...,t) €
tr) denoted by [](t1, ..., tx).

a k-vector at n(ty,. ..,
Definition 5.2 The integral of a k-form ¢ over a k-cell np is a number [ o defined by

/ngpz/Ikg*go:/01.../Olgo([n](tl,...,tk))dtl...dtk

Let us denote [ ¢ by < n,p >. The integral of ¢ over a k-chain ¢ = > m;n; is defined

by
<cp>=)mp <>
— 1)-chain

= Z_l(—l)m(WT —w?)

=1.

The boundary of a k-cell n is a (k

where w" = 1|, —o and w™ = 7|t
Theorem 5.1 (The Stokes’ identity)
<n,dp >=< 0n, o > .
Proof: Let ¢ be a smooth k-form and let n be a (k + 1)-cell. Then
1 1
<n, dg& >= /0 .. /0 dg&([n](tl, ce ,tk+1>)dt1 c dtk+1

_ / / ts))dt - dt

L Ee

k41 A ‘
Z(—l)’(< wh,p>—<w,p>)

1 k—i—l
Dol )11,

G 1,)) = ([ )t Yoy tean)))dy, Ve At

=<0n,p>. O

=1



6 Poincare Lemma for differential spaces.

In M x I we introduce the product differential structure ( [9]). For a k — 1-cell n on M
and the identity 1-cell on I we define a k-cell n x e on M x I by

n X e(tl, A ,tk_l, t) = (n(tl, . ,tk_1>,t).
For a k-form w on M x I we define a (k-1)-form Dw on M by

1
(D)) = [l x )0...... 0. )t
Let n be a k-cell on M. We have

ol > €100,-+-,0.8) = (1) ol x 0,0, + (- Ly ).
Hence -
(Ddw)( / dw([n % ¢(0, ..., 0,0)dt
/ Sl x €0, 0, Dlaco (1) (T x ef]) — (ly x el]).
On the other side
(D)) = Y1) ()

-3 [l % €0, 0.0)ls = 0t

It follows that

(dDw)(n) + (=1)**(Ddw)(n) = w([n x e1]) — w([n x eg)).

Let F: M x I — M be a smooth homotopy between the identity and the constant
mapping and let be w = F*p, where ¢ is a k-form on M. We have then the homotopy
formula

dD(F*¢) + (—1)*"'Dd(F*¢) = ¢

Theorem 6.1 (Poincare Lemma.) If for each point of M there exists a local, smooth
homotopy between the constant and the identity mappings then each closed form ¢ is
locally exact:

p = d(D(F*)).
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