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Introduction

Abstract

In this talk | shall describe some recent research on
parametric problems in the calculus of variations (of which
the minimal surfaces problem is perhaps the most basic
example).

| shall also explain the relationship between these problems
and the type of problem more usual in physics, where there
is a given space of independent variables.

Aspects to be covered will include an interpretation of the
first variation formula in terms of cohomology.
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What are ‘parametric’ variational systems?

Compare two problems:
1. Find the trajectory of a free unit-mass particle in
3-dimensional space;

2. Find the shortest curve between two points in
three-dimensional space.
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What are ‘parametric’ variational systems?

Compare two problems:
1. Find the trajectory of a free unit-mass particle in
3-dimensional space;
2. Find the shortest curve between two points in
three-dimensional space.
Solutions:
1. Amap [0,T] - R®, t~ (alt + b')
2. A straight line segment [(p?), (q%)] c R3.
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What are ‘parametric’ variational systems?

Compare two problems:
1. Find the trajectory of a free unit-mass particle in
3-dimensional space;
2. Find the shortest curve between two points in
three-dimensional space.
Solutions:
1. Amap [0,T] — R?, t~ (alt + b?)
2. A straight line segment [(p?), (q%)] c R3.
Lagrangians:
1.5 ((H2 + @2 + (u3)?)

2. J(yH2Z + (¥2)2 + (¥3)2  positively homogeneous
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What are ‘parametric’ variational systems? (2)

In physics, variational problems are commonly defined on
fibred manifolds 7 : E — M.

(For the free particle, this is R x R3 — R.)
Extremals are local sections of 7r, and the Lagrangian is

defined on a jet bundle Ji1 (or J*1r) of jets of local sections
of .
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What are ‘parametric’ variational systems? (2)

In physics, variational problems are commonly defined on
fibred manifolds 7 : E — M.

(For the free particle, this is R x R3 — R.)
Extremals are local sections of 7r, and the Lagrangian is

defined on a jet bundle Ji1 (or J¥T) of jets of local sections
of .

In geometry, variational problems are commonly defined on
manifolds E without a given fibration.

Extremals are submanifolds of E, defined ‘parametrically’.
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What are ‘parametric’ variational systems? (2)

In physics, variational problems are commonly defined on
fibred manifolds 7 : E — M.

(For the free particle, this is R x R3 — R.)

Extremals are local sections of 7r, and the Lagrangian is
defined on a jet bundle Ji1 (or J*1r) of jets of local sections
of .

In geometry, variational problems are commonly defined on
manifolds E without a given fibration.
Extremals are submanifolds of E, defined ‘parametrically’.

So where is the Lagrangian defined?
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between a vector space, an affine space and a projective
space.
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(eg,e1,...,en) and corresponding coordinate functions
0. ™.



Introduction

[ Jo}

Jet bundles

There are different types of jet bundle.

To understand the difference, think of the relationships
between a vector space, an affine space and a projective
space.

Take a vector space V, with dimV = n + 1, basis
(eg,e1,...,en) and corresponding coordinate functions
(yoiyll""yn)'

The set A= {v € V:y%w) =1} is an n-dimensional affine
space.



Introduction

[ Jo}

Jet bundles

There are different types of jet bundle.

To understand the difference, think of the relationships
between a vector space, an affine space and a projective
space.

Take a vector space V, with dimV = n + 1, basis
(eg,e1,...,en) and corresponding coordinate functions
(yoiyll""yn)'

The set A= {v € V:y%w) =1} is an n-dimensional affine
space.

The set P = (V- {0})/(R — {0}) is an n-dimensional
projective space.
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Jet bundles

There are different types of jet bundle.

To understand the difference, think of the relationships
between a vector space, an affine space and a projective
space.

Take a vector space V, with dimV = n + 1, basis
(eg,e1,...,en) and corresponding coordinate functions
(yoiyll""yn)'

The set A= {v € V:y%w) =1} is an n-dimensional affine
space.

The set P = (V- {0})/(R — {0}) is an n-dimensional
projective space. There is a natural injection A — P.
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Jet bundles (2)

Let 7T : E — R be a fibred manifold, with dimE = n + 1 and
coordinates (0 =t,y!,...,y").

Jet manifolds: J'7r contains jets of local sections of 1T, and
JY(E,1) contains jets of immersed submanifolds in E.



Introduction

oe

Jet bundles (2)

Let 7T : E — R be a fibred manifold, with dimE = n + 1 and
coordinates (0 =t,y!,...,y").

Jet manifolds: J'7r contains jets of local sections of 1T, and
JY(E,1) contains jets of immersed submanifolds in E.

The bundle Ji1r — E is an affine bundle, and there is a
canonical injection J'1t — TE. The image is given by y" = 1.



Introduction

oe

Jet bundles (2)

Let 7T : E — R be a fibred manifold, with dimE = n + 1 and
coordinates (0 =t,y!,...,y").

Jet manifolds: J'7r contains jets of local sections of 1T, and
JY(E,1) contains jets of immersed submanifolds in E.

The bundle Ji1r — E is an affine bundle, and there is a
canonical injection J'1t — TE. The image is given by y" = 1.

The bundle J'(E,1) — E is isomorphic to the projective
tangent bundle PTE — E.
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Jet bundles (2)
Let 7T : E — R be a fibred manifold, with dimE = n + 1 and
coordinates (Y = t,yl,...,y™).
Jet manifolds: J'7r contains jets of local sections of 1T, and
JY(E,1) contains jets of immersed submanifolds in E.
The bundle Ji1r — E is an affine bundle, and there is a
canonical injection J'1t — TE. The image is given by y" = 1.

The bundle J'(E,1) — E is isomorphic to the projective
tangent bundle PTE — E.

We identify J17r with an open submanifold of J!(E, 1) by
mapping the jet of a local section to the jet of its image.
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Jet bundles (2)

Let 7T : E — R be a fibred manifold, with dimE = n + 1 and
coordinates (0 =t,y!,...,y").

Jet manifolds: J'7r contains jets of local sections of 1T, and
JY(E,1) contains jets of immersed submanifolds in E.

The bundle Ji1r — E is an affine bundle, and there is a
canonical injection J'1t — TE. The image is given by y" = 1.

The bundle J'(E,1) — E is isomorphic to the projective
tangent bundle PTE — E.

We identify J17r with an open submanifold of J!(E, 1) by
mapping the jet of a local section to the jet of its image.

The bundle TE — J'(E, 1) is a principal bundle with structure
group R — {0}.
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An example

Finsler geometry (special case: Riemannian geometry)
Manifold E, coordinates ¥4 (0 < a < n)
Lagrangian L defined on TE

. 0L
Positive h ity: a_— =1
ositive nhomogeneity y ay“

Variational problem: find extremals y of ley*(L) dt
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An example

Finsler geometry (special case: Riemannian geometry)
Manifold E, coordinates ¥4 (0 < a < n)
Lagrangian L defined on TE

. 0L
Positive h ity: a_— =1
ositive nhomogeneity y ay“

Variational problem: find extremals y of ley*(L) dt
If y is an extremal then so is y o ¢p where
¢ : R - R diffeomorphism, ¢’ >0

The problem may also be formulated on PTE* = TE/R*
(double cover of PTE).
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Regular velocities on a manifold

Finsler geometry is defined on the slit tangent bundle T°E.

First-order multiple integral problems are defined on a
sub-bundle of the Whitney sum @™ TE.

The bundle of regular velocities on E is
T(m)E ={(&,...,&m) € D™ TE : (&) linearly independent} .
Equivalently:

f“(m)E is the bundle of non-degenerate velocities —
1-jets (at the origin) of non-singular maps R™ — E.

Coordinates: (%) on E, (¥4, y{) on Zof(m)E (1<i=<m).
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Regular velocities on a manifold (2)
Contact forms on T E:

w € Q(f"(m)E) where the pull-back (jlo)*w by a
prolongation of o : R™ — E always vanishes.

In coordinates, contact 1-forms are sums of
(m+1) x (m + 1) determinants:

yIZI ylz2 . yIZmH
/S S S
Yl ym o ymt!
dyal dya2 v dyam+1

(Compare the contact 1-forms du® — uf‘dxi on a jet bundle.)
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Regular velocities on a manifold (3)

For each function f : E — R, define the functions

o(fo0)

TE where 0 : R™ — E.

dif (jgo) =

d; is a vector field along T4y, : f"(m)E — E, called a
total derivative

A 1-form 0 € Qlfl)"(m)E is a contact form exactly when
(di,0) =0, l<i<m.

In coordinates 5

oya’

di =y
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Regular velocities on a manifold (4)

The Whitney sum @™ TE — E is a vector bundle. Denote its
vertical lift operator to (n;) by

D" TrpynE — Ty (BMTE) , (&) — (£,
For each vector € € T(ni)fl)"(m)E define the vector
SlC S T(nl)%(m)E by
ST =(0,...,0, Tt (), 0,...,0) )

Stis atype (1,1) tensor field on IO"(m)E, called a

vertical endomorphism

2
oy’

In coordinates

St=dy*e®
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Grassmannians

Regular velocities f"(m)E: equivalence classes of maps
R™ - E

Grassmannian bundle J'(E, m): equivalence classes of
images of maps R™ — E (m-dimensional subspaces of
TE)

Two regular velocities jjo, jio represent the same subspace
when

Jo0 = jo(0 o )
for some diffeomorphism ¢ : R™ — R™ with ¢(0) = 0.

Oriented Grassmannians J'(E,m)": diffeomorphism ¢
preserves orientation on R,
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Grassmannians (2)

The projections give principal bundles

p:TmE—~J'(E,;m)  (group GL(m,R))
p* : T E — JHE,m)*  (group GL(m,R)*)

Fundamental vector fields are A§- = Si(d;)

In coordinates 5

oyd
Any fibration 11 : E — M defines open submanifolds
Jimt c JY(E,M) and Jimr c JYE,M)*.

Special case: J'(E,1) = PTE and J'(E,1)* = PTE™.

i _ A4
Aj=Yj
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Higher-order regular velocities

k-th order regular velocities Tf, | E:
k-jets (at the origin) of non-singular maps R" — E

Coordinates yf on f"g‘m)E (I multi-index, 0 < |I| < k)
Total derivatives d; and vertical endomorphisms St:
k-1

k-1
0 .
di= > Ys—ar» S'=2 (IO +Ddyfez——
P I11=0 0¥fe1,

eneous problems
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Higher-order regular velocities (2)

Principal bundles:
pk Tk E—JMEm),  p*t TR E— JTRE M.
Groups are the jet groups LX,, LX+:

Lk = (jk¢ : ¢ : R™ — R™ diffeomorphism}
Lit = Usd € Ly : 17()] > 0}

Fundamental vector fields Ag- = Sl(dj) 0=<|I| <k).

Put i, for contraction with A and d’; for Lie derivative by A’.
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Vector forms

We often use vectors of operators, tensors, forms, ...
d;, St, 9%, ...

These fit into a framework of vector forms.
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Vector forms

We often use vectors of operators, tensors, forms, ...
di, St, 9%, ...
These fit into a framework of vector forms.

We consider forms on f"{‘m)E taking values in the vector space
R™* and its exterior powers.

Put
apf = (Q" Tk, E) @ (N°R™)

Let the standard basis for R™* be denoted by (dt?). Then
® =i, @At AL AdES € QL

the scalar forms ¢, ...;, are skew-symmetric in their indices.
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Vector forms (2)

Operators on vector forms:

- -, dropt - ot
dpew)=ded ®w,
dr(p @ w) =dip ®dt' A w.

Properties: ddr = drd, d3 =0.
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Vector forms (2)

Operators on vector forms:

- -, dropt - ot
dpew)=ded ®w,
dr(p @ w) =dip ®dt' A w.

Properties: ddr = drd, d3 =0.
Also
it Q= O T in(pew) = (diad) @dti A w

where
dT = diT + de.
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The bicomplex

0 0 0 0

> =00 d - O1,0 d > 02,0 d > 03,0 >
0 [9) Q Q Q
dr dr dTl dTl
dr dr dTl dTl

0 Hﬁlm*2 L olLm-2 — 2m-2 — 3m-2 —
dr dr dTl dTl

0 Hﬁ),m% L Qlm-1 —2m-1 — - 3m-1 -
dr dTl dTl dTl

0 — ﬁO,m —Qlm —2m —sQ3m
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The bicomplex

0 0 0 0

> =00 d - O1,0 d > 02,0 d > 03,0 >

0 [9) Qb Q= Q>

dr dr dTl dTl
dr dr dTl dTl

0 Hﬁ;{,m*2 L olm-2 — 2m-2 — 3m-2 —
dr dTl dTl dTl

0 Hﬁ),m% —Qlm-1 —» 2m-1 —»(3m-1

w w] w] a

0 — 60,111 —Qlm —2m —sQ3m
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The bicomplex

0 0 0 0
=00 0 0 YL 430 .
0 Q oL 02 Q3
dr dr dTl dTl
dr dr dTl dTl
0 Hﬁlm*2 L olm-2 — 2m-2 —, 3m-2 —
k
dr dTl dTl dTl
_ o A/0m-1 ", ~h1m-1_"—, 02m-1 _—_— 3m-1
0 Qk+1 Qk+1 Qk+1 Qk+1
dr dTl dr dr
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The bicomplex

0 0 0 0
=00 0 0 YL 430 .
0 Q oL 02 Q3
dr dr dTl dTl
dr dr dTl dTl
0 Hﬁlm*2 L olm-2 — 2m-2 —, 3m-2 —
k
dr dTl dTl dTl
_ o A/0m-1 " | ~hlm-1_"—, 02m-1 _—_— 3m-1
0 Qk+1 Qk+1 Qk+1 Qk+1
dr dTl dr dr



Introduction Geometrical background Vector forms Variational problems Homogeneous problems

(e]e} 0000 (e]e} 0000 000000
(e} (e} [e] 000
[e] (e]e] [ 1o} 00000

The homotopy operators for dr

The map dr: Q1 — Q"1 is not exact (even locally).
k k+1
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The homotopy operators for dr

The map dr : Q;° — Q7’1 is not exact (even locally).

But it is globally exact modulo pull-backs (for v > 1).
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e0

The homotopy operators for dr

The map dr : Q;° — Q7’1 is not exact (even locally).

But it is globally exact modulo pull-backs (for v > 1).

r,s—1

The homotopy operators are P,P : Q) — QG k-1

P(®) = P, (diy..iy) ®{ 0

507 - <dti1 /\.../\dti5>}

~ ~ 7 0 ) ,
P(®) = P(JS)(¢i1._.iS) ® {% J (dtll AL A dt13>}

where P = P when acting on vector 1-forms, or on first-order
forms.
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The homotopy operators for dr (2)

The scalar operators P(js) and ﬁ(js) are given by

rk—1

—DV m - )" .
PJ — d S]+1J’
(s) |J|Z=07’J|+1(m s+ I+t
rk—1
~i (DU =TI, ~req,
Pi]S) = Z _ ' 'dJSJJrlJ
|leor(m s+ JI+ D!
where, for a scalar form 0,
StilizLir @ = igj ig - - - igjr 0

Stinljalirg = isjlsjz...sjre .
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The homotopy operators for dr (2)

The scalar operators P(js) and ﬁ(js) are given by

rk—1

—DV m - )" .
PJ — d S]+1J’
(s) |J|Z=07’J|+1(m s+ I+t
rk—1
~i (DU =TI, ~req,
Pi]S) = Z _ | 'dJSJJrlJ
|leor(m s+ 1J+ D!
where, for a scalar form 0,
StilizLir @ = igj ig - - - igjr 0

Stinljalirg = isjlsjz...SjTQ .

Note that P2 = 0 but P2 # 0.
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Let 7t : E — M be a fibred manifold, with dimM = m and
dimE = m + n, where M is orientable.

A Lagrangian is an m-form A = L d™x on the jet bundle J*m,
horizontal over M.
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Variational problems on fibred manifolds
Let 7t : E — M be a fibred manifold, with dimM = m and
dimE = m + n, where M is orientable.

A Lagrangian is an m-form A = L d™x on the jet bundle J*m,
horizontal over M.

The fixed-boundary variational problem defined by A is the
search for submanifolds o (C) C E satisfying

J ((jo)*x*A) = 0
C

for every variation field X on E satisfying X|,@c¢) = 0.
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Lepage equivalents

Let A = Ld™x be a Lagrangian m-form on J¥7r.

Another m-form 6 on Jlmr (where L > k) is a Lepage form if:
iyd0 is a contact form whenever the vector field Y is vertical
over E.
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Lepage equivalents

Let A = Ld™x be a Lagrangian m-form on J¥7r.

Another m-form 6 on Jlmr (where L > k) is a Lepage form if:

iyd0 is a contact form whenever the vector field Y is vertical
over E.

It is a Lepage equivalent of A if:
it is a Lepage form, and 11/, A — 0 is a contact form.
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Lepage equivalents

Let A = Ld™x be a Lagrangian m-form on J¥7r.

Another m-form 6 on Jlmr (where L > k) is a Lepage form if:

iyd0 is a contact form whenever the vector field Y is vertical
over E.

It is a Lepage equivalent of A if:
it is a Lepage form, and 11/, A — 0 is a contact form.

Every Lagrangian m-form has a Lepage equivalent, defined
on J2k-1.
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Examples of Lepage equivalents

For the case m = 1 (single integral variational problems):
For a first-order Lagrangian A = Ldx on J'1t:

oL

0=Ldx + 3y

(dy®™ — y*dx)

is the unique Lepage equivalent, the Poincaré-Cartan form,
also defined on Jl1r.
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Examples of Lepage equivalents

For the case m = 1 (single integral variational problems):
For a first-order Lagrangian A = Ldx on J'1r

o yadx)

is the unique Lepage equivalent, the Poincaré-Cartan form,
also defined on Jlmr

For a higher-order Lagrangian A = L dx on Jkmr

k-1  k-p-1 44 oL
0-rax+y (3 01Oy -y dx
p=0 * g=0 (p+q+1)

is the unique Lepage equivalent, defined on J2*~17r
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Examples of Lepage equivalents (2)

For the case m > 2 (multiple integral variational problems)
and a first-order Lagrangian A = Ld™x on J':

L _
0, =Ld"x + ayiaw"‘ Ad™ L x;
1 . oL
0y = A (L dxt + —w“)
-1 64
L= i=1 ayi
min{m,n}
1 o'L
03 = WX A AW ANAd™ X
3 TZZ:O (r!)2 aylf)l‘l .. _ayioy(r (SRR 2

(where w® =dy% — yj‘?‘dxf) are globally-defined Lepage
equivalents.
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Homogeneous problems
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Homogeneous variational problems

We now consider m-dimensional variational problems on E,
with fixed boundary conditions.

It is sufficient to consider submanifolds of the form o (C)
where o : R™ — E and C ¢ R™ is a compact m-dimensional
submanifold.
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Homogeneous variational problems

We now consider m-dimensional variational problems on E,
with fixed boundary conditions.

It is sufficient to consider submanifolds of the form o (C)
where 0 : R™ — E and C c R™ is a compact m-dimensional
submanifold.

This is because variational problems are local.

‘An m-dimensional submanifold of E is extremal with fixed
boundary conditions if, and only if, every small piece of it is
extremal with fixed boundary conditions.’
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Homogeneous Lagrangians

A vector function A = Ld™t € Q%™ is called a Lagrangian
for a parametric variational problem. It is called
homogeneous if it is equivariant with respect to the action of
the jet group L’;yj, where k is the order of the Lagrangian.

If A is homogeneous then the scalar function L satisfies

i _ si Iy _
djL—éjL, djL—Ofor|I|22.
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Homogeneous Lagrangians

A vector function A = Ld™t € Q%™ is called a Lagrangian
for a parametric variational problem. It is called
homogeneous if it is equivariant with respect to the action of
the jet group L’;yj, where k is the order of the Lagrangian.

If A is homogeneous then the scalar function L satisfies
ir _ si Iy _
djL—éjL, djL—OforIIIZQ.

The fixed-boundary variational problem defined by A is the
search for submanifolds o (C) C E satisfying

JC((jU)*XkL)dmt i

for every variation field X on E satisfying X|s¢) = 0.
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Equivalents of Lagrangians

Let A € Q%™ be a homogeneous Lagrangian.

Homogeneous problems
00e000

000

00000

Any scalar m-form 0, € Q™9 is called an integral equivalent

of A if (—1)ymm-1/2y
A= (e,
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Equivalents of Lagrangians

Let A € Q%™ be a homogeneous Lagrangian.

Any scalar m-form 0, € Q™9 is called an integral equivalent

of A if (—1)ymm-1/2y
IEEESE

Any vector v-form @, € Q""" is called an intermediate

equivalent if
~D)TT=DR2(m - )
A=( ) m'( )ﬁ@r 0O<r=m-1.
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Equivalents of Lagrangians

Let A € Q%™ be a homogeneous Lagrangian.

Any scalar m-form 0, € Q™9 is called an integral equivalent

of A if (—1)ymm-1/2y
IEEESE

Any vector v-form @, € Q""" is called an intermediate
equivalent if
(-1)TT=D2(m — )]

A= poo 0, O0<r=<m-1.

If ®41 is an equivalent of A then

(="
T m-vr

Oy
is also an equivalent.

iT®r+1
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Integral equivalents
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Why ‘integral equivalent’?
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Integral equivalents
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Why ‘integral equivalent’?

If o : R™ — E then (jo)*A = (jo)*O,,
so that

Jc(ja)*A= JC(jU)*Gm.

Thus A = 0 and ©,, have the same extremals.

Homogeneous problems
000e00
000
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Euler forms
Let ©,, be an integral equivalent of A.
Define the scalar (m + 1)-form E,, € QM+10 py
Em =dOpy,
and the vector forms F, € Q"+L.m=7" py
Er =dO, — (=1)"d10, 41 O<r<m-1.

The forms E, are called the Euler forms of ©,.
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0000e0

Euler forms

Let ©,, be an integral equivalent of A.
Define the scalar (m + 1)-form E,, € QM+10 py
Em =dOpy
and the vector forms F, € Q"+L.m=7" py
Er =dO, — (=1)"d10, 41 O<r<m-1.
The forms E, are called the Euler forms of ©,.

By a straightforward calculation

_ (_1)1’+1

Ly
m-—r

itEr+1 O<r<m-1.
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_ Ql,m = fo

Geometrical background Vector forms Variational problems Homogeneous problems
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Equivalents and Euler forms

d
@m = Qm,O - Qm+1,09 fm

~ l d/
D @1, @ =A
,/d far

@2 c Q2,m—2 - Q3,m—2 =) fz

s

@1 c Ql,m—l - 92,m—1 =) fl

fEr = d@r - (—1)rdT®r+1



Homogeneous problems

@00

Lepagian forms

Let A be a homogeneous Lagrangian.
Let ®, be an equivalent of A (1 < v < m).

Say that O, is Lepagian if the corresponding Euler form
Fo € QL™ satisfies
SEy=0,

so that Zj is horizontal over E.
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@00

Lepagian forms

Let A be a homogeneous Lagrangian.
Let ®, be an equivalent of A (1 < v < m).

Say that O, is Lepagian if the corresponding Euler form
Fo € QL™ satisfies
SEy=0,

so that Zj is horizontal over E.

Theorem The vector 1-form
®, = PdA

is an integral equivalent of A (mm = 1) or an intermediate
equivalent (m > 2), and is Lepagian. It is called the Hilbert
equivalent of A.



Homogeneous problems

oeo

The Hilbert equivalent

®1 = PdA is a Lepagian equivalent of A = L d"t.

Outline of proof: if ® = ¢p ® d™t € QL™ use

: - : (-1)V! ,
P®=Pipod™'t;, P=> -~ ——4,8*%,

¢ j 2 e i

To show iTPdA = A, use:
) g o I+1;

commutators [iy,d;] =0, [i}, 81 =1, 7,
homogeneity itdL = diL =0 (]I > 1), '
vanishing of St on functions ixdL and if(dL,
homogeneity again ijde = d‘,](dL = 6{<dL.



Homogeneous problems
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The Hilbert equivalent

®1 = PdA is a Lepagian equivalent of A = L d"t.

Outline of proof: if ® = ¢p ® A"t € QL™ use

) 3 , (=) _
Po=Plpodm't;, PI=> —"——d;5/".
= (171 +1J!

To show SEy = S(dA — drPdA) = 0 use:
commutators [S/,d;] = 6“1-’ to give a collapsing sum
so that SdrP(dA) = S(dA).

If ®; is another Lepagian vector 1-form equivalent to A, with
corresponding Euler form ZEg, then

fo =%, @)1 -0y =drd (® e Qr,m—2)
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ooe

The First Variation Formula

Given a variation field X on E with X|c =0, and its
prolongation X,

j *dAAzj ] *d'AA+I o) *igdA
JC(JO') % C(JO‘) iy C(]O‘) iy
= i *'AA+J o) *igdA
LC(]O') iy C(JO‘) i

- [ Gorigzo+ | (jor*igdzo,
But

| o) igdr0r = | (o) drizer = | _d(jor*iger =0
because prolongations commute with total derivatives. Thus

because Z; is horizontal over E.

(jo)*ixEo
c

J
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Integral equivalents for m > 2

Let A = Ld™t be a homogeneous Lagrangian with m > 2,
and write its Hilbert equivalent ©®; as

0 =9 @d™ 't;;
the scalar 1-forms &; are called the Hilbert forms of A.

Ij/\ never vanishes, define the Carathéodory equivalent
Om € QMO py

~ 1 "o
@m: /\91

m-—1
L i=1

Theorem The Carathéodory equivalent Om is an integral
equivalent of A.
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The Carathéodory equivalent

Given ©,, = (1/L™ 191 A - .. A 9™, we must show that
10, = (-1)MMD2mIA,

Outline of proof, using i3 = 5,‘;L: suppose

. (__1)5(2n17571)/2
rOm = (m — 5)!Lm51{

> (179D AL pgTM)g
OESm

® dtoM=s+D Ao A dt"(m)}

(where Sy, is the permutation group) and use induction.
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The variation formula for @m

From the induction formula
iM10,, = (—1)MmM-D/2 1n — 1)10,

where ©1 is the Hilbert equivalent.
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The variation formula for @m

From the induction formula
iM10,, = (—1)MmM-D/2 1n — 1)10,

where 01 is the Hilbert equivalent. Thus @,n is Lepagian.
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The variation formula for C:)m

From the induction formula
iM10,, = (—1)MmM-D/2 1n — 1)10,
where 01 is the Hilbert equivalent. Thus (?)m is Lepagian.
Then, as d®;;, = Ey,
| Goravew = | or*ivEn

=j (o) iy Ey
C

for any vector field Y on f"(km)E vanishing on jo (0C),
because contractions by vector fields anticommute, so that
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Another integral equivalent
Let A be a first-order Lagrangian, and put

®r+1 = (_1)7Pd®r (]. <r< m) .
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Homogeneous problems
0000 [e]e] 0000 000000
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Another integral equivalent
Let A be a first-order Lagrangian, and put

@1/'+1 = (_1)TPd®T (]. <r< m) .

Each ©, is a first-order vector form.



Homogeneous problems

Another integral equivalent
Let A be a first-order Lagrangian, and put

0,11 = (-1)"PdO, 1l<r<m).
Each ©, is a first-order vector form.

Using commutator relations, we obtain

_ (D"

O

iT®7’+1

so that ©,, is a Lepagian integral equivalent of A, the
fundamental equivalent of A.
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Another integral equivalent

Let A be a first-order Lagrangian, and put
@1/'+1 = (_1)TPd®T (]. <r< m) .
Each ©, is a first-order vector form.

Using commutator relations, we obtain

_ (D"

O

iT®1’+1

so that ©,, is a Lepagian integral equivalent of A, the
fundamental equivalent of A.

Thus d®,, = E, = 0if, and only if, Ey = 0.



Introduction Geometrical background Vector forms Variational problems

(e]e} 0000 (e]e} 0000
(e} (e} [e]
[e] (e]e] (e}

Other matters

e Regularity
e Symmetry

e Helmholtz equations

Homogeneous problems
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