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Abstract

In this talk I shall describe some recent research on
parametric problems in the calculus of variations (of which
the minimal surfaces problem is perhaps the most basic
example).

I shall also explain the relationship between these problems
and the type of problem more usual in physics, where there
is a given space of independent variables.

Aspects to be covered will include an interpretation of the
first variation formula in terms of cohomology.
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What are ‘parametric’ variational systems?

Compare two problems:

1. Find the trajectory of a free unit-mass particle in
3-dimensional space;

2. Find the shortest curve between two points in
three-dimensional space.

Solutions:

1. A map [0, T ]→ R3, t , (ait + bi)
2. A straight line segment [(pi), (qi)] ⊂ R3.

Lagrangians:

1. 1
2

(
(u̇1)2 + (u̇2)2 + (u̇3)2

)
2.

√
(ẏ1)2 + (ẏ2)2 + (ẏ3)2 positively homogeneous
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What are ‘parametric’ variational systems? (2)

In physics, variational problems are commonly defined on
fibred manifolds π : E → M.

(For the free particle, this is R×R3 → R.)

Extremals are local sections of π , and the Lagrangian is
defined on a jet bundle J1π (or Jkπ ) of jets of local sections
of π .

In geometry, variational problems are commonly defined on
manifolds E without a given fibration.

Extremals are submanifolds of E, defined ‘parametrically’.

So where is the Lagrangian defined?
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Jet bundles

There are different types of jet bundle.

To understand the difference, think of the relationships
between a vector space, an affine space and a projective
space.

Take a vector space V , with dimV = n+ 1, basis
(e0, e1, . . . , en) and corresponding coordinate functions
(ẏ0, ẏ1, . . . , ẏn).

The set A = {v ∈ V : ẏ0(v) = 1} is an n-dimensional affine
space.

The set P = (V − {0})/(R− {0}) is an n-dimensional
projective space. There is a natural injection A→ P .
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Jet bundles (2)

Let π : E → R be a fibred manifold, with dimE = n+ 1 and
coordinates (y0 = t,y1, . . . , yn).

Jet manifolds: J1π contains jets of local sections of π , and
J1(E, 1) contains jets of immersed submanifolds in E.

The bundle J1π → E is an affine bundle, and there is a
canonical injection J1π → TE. The image is given by ẏ0 = 1.

The bundle J1(E, 1)→ E is isomorphic to the projective
tangent bundle PTE → E.

We identify J1π with an open submanifold of J1(E, 1) by
mapping the jet of a local section to the jet of its image.

The bundle
o

T E → J1(E, 1) is a principal bundle with structure
group R− {0}.
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An example

Finsler geometry (special case: Riemannian geometry)
Manifold E, coordinates ya (0 ≤ a ≤ n)

Lagrangian L defined on
o

TE

Positive homogeneity: ẏa
∂L
∂ẏa

= L

Variational problem: find extremals γ of
∫
j1γ∗(L)dt

If γ is an extremal then so is γ ◦φ where

φ : R→ R diffeomorphism , φ′ > 0

The problem may also be formulated on PTE+ =
o

T E/R+

(double cover of PTE).
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∂ẏa

= L

Variational problem: find extremals γ of
∫
j1γ∗(L)dt

If γ is an extremal then so is γ ◦φ where

φ : R→ R diffeomorphism , φ′ > 0

The problem may also be formulated on PTE+ =
o

TE/R+

(double cover of PTE).



Introduction Geometrical background Vector forms Variational problems Homogeneous problems

Regular velocities on a manifold

Finsler geometry is defined on the slit tangent bundle T ◦E.

First-order multiple integral problems are defined on a
sub-bundle of the Whitney sum

⊕m TE.

The bundle of regular velocities on E is
o

T(m)E =
{
(ξ1, . . . , ξm) ∈

⊕m TE : (ξi) linearly independent
}
.

Equivalently:
o

T(m)E is the bundle of non-degenerate velocities —
1-jets (at the origin) of non-singular maps Rm → E.

Coordinates: (ya) on E, (ya, yai ) on
o

T(m)E (1 ≤ i ≤m).
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Regular velocities on a manifold (2)

Contact forms on
o

T(m)E:

ω ∈ Ω( o

T(m)E) where the pull-back (j1σ)∗ω by a
prolongation of σ : Rm → E always vanishes.

In coordinates, contact 1-forms are sums of
(m+ 1)× (m+ 1) determinants:∣∣∣∣∣∣∣∣∣∣∣∣∣

ya1
1 ya2

1 · · · yam+1
1

ya1
2 ya2

2 · · · yam+1
2

...
...

...
ya1
m ya2

m · · · yam+1
m

dya1 dya2 · · · dyam+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(Compare the contact 1-forms duα −uαi dxi on a jet bundle.)
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Regular velocities on a manifold (3)
For each function f : E → R, define the functions

dif :
o

T(m)E → R by

dif(j10σ) =
∂(f ◦ σ)
∂ti

where σ : Rm → E .

di is a vector field along τm :
o

T(m)E → E, called a

total derivative

A 1-form θ ∈ Ω1
o

T(m)E is a contact form exactly when

〈di, θ〉 = 0 , 1 ≤ i ≤m.

In coordinates

di = yai
∂
∂ya

.
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Regular velocities on a manifold (4)
The Whitney sum

⊕mTE → E is a vector bundle. Denote its
vertical lift operator to (ηi) by⊕mTτm(ηi)E → T(ηi)

(⊕mTE
)
, (ξi), (ξi)↑(ηi) .

For each vector ζ ∈ T(ηi)
o

T(m)E define the vector

Siζ ∈ T(ηi)
o

T(m)E by

Siζ = (0, . . . , 0, Tτm(ζ), 0, . . . , 0)↑(ηi) .

Si is a type (1, 1) tensor field on
o

T(m)E, called a

vertical endomorphism
In coordinates

Si = dya ⊗ ∂
∂yai

.
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Grassmannians

Regular velocities
o

T(m)E: equivalence classes of maps
Rm → E
Grassmannian bundle J1(E,m): equivalence classes of
images of maps Rm → E (m-dimensional subspaces of
TE)

Two regular velocities j10σ , j10σ̂ represent the same subspace
when

j10σ̂ = j10(σ ◦φ)

for some diffeomorphism φ : Rm → Rm with φ(0) = 0.

Oriented Grassmannians J1(E,m)+: diffeomorphism φ
preserves orientation on Rm.
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Grassmannians (2)

The projections give principal bundles

ρ :
o

T(m)E → J1(E,m) (group GL(m,R))

ρ+ :
o

T(m)E → J1(E,m)+ (group GL(m,R)+)

Fundamental vector fields are ∆ij = Si(dj)
In coordinates ∆ij = yaj ∂

∂yai
Any fibration π : E → M defines open submanifolds
J1π ⊂ J1(E,M) and J1π ⊂ J1(E,M)+.

Special case: J1(E, 1) = PTE and J1(E, 1)+ = PTE+.
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Higher-order regular velocities

k-th order regular velocities
o

Tk(m)E:
k-jets (at the origin) of non-singular maps Rm → E

Coordinates yaI on
o

Tk(m)E (I multi-index, 0 ≤ |I| ≤ k)

Total derivatives di and vertical endomorphisms Si:

di =
k−1∑
|I|=0

yaI+1i

∂
∂yaI

, Si =
k−1∑
|I|=0

(
I(i)+ 1

)
dyaI ⊗

∂
∂yaI+1i

.
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Higher-order regular velocities (2)

Principal bundles:

ρk :
o

Tk(m)E → Jk(E,m) , ρk+ :
o

Tk(m)E → Jk(E,m)+ .

Groups are the jet groups Lkm, Lk+m :

Lkm = {jk0φ : φ : Rm → Rm diffeomorphism}
Lk+m = {jk0φ ∈ Lkm : |J(φ)| > 0}

Fundamental vector fields ∆Ij = SI(dj) (0 ≤ |I| ≤ k).
Put iIj for contraction with ∆Ij and dIj for Lie derivative by ∆Ij.
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Vector forms

We often use vectors of operators, tensors, forms, ...
di, Si, ϑi, . . .

These fit into a framework of vector forms.

We consider forms on
o

Tk(m)E taking values in the vector space
Rm∗ and its exterior powers.

Put Ωr ,sk =
(Ωr o

Tk(m)E
)
⊗
(∧sRm∗) .

Let the standard basis for Rm∗ be denoted by (dti). Then

Φ = φi1···is ⊗ dti1 ∧ . . .∧ dtis ∈ Ωr ,sk ;

the scalar forms φi1···is are skew-symmetric in their indices.
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Vector forms (2)

Operators on vector forms:

d : Ωr ,sk → Ωr+1,s
k , dT : Ωr ,sk → Ωr ,s+1

k+1

d(φ⊗ω) = dφ⊗ω,
dT(φ⊗ω) = diφ⊗ dti ∧ω.

Properties: ddT = dTd, d2
T = 0.

Also

iT : Ωr ,sk → Ωr−1,s+1
k+1 , iT(φ⊗ω) = (di φ)⊗ dti ∧ω

where
dT = diT + iTd .
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The bicomplex
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The homotopy operators for dT

The map dT : Ωr ,sk → Ωr ,s+1
k+1 is not exact (even locally).

But it is globally exact modulo pull-backs (for r ≥ 1).

The homotopy operators are P, P̃ : Ωr ,sk → Ωr ,s−1
(r+1)k−1:

P(Φ) = P j(s)(φi1···is)⊗ { ∂∂tj
(
dti1 ∧ . . .∧ dtis

)}
P̃ (Φ) = P̃ j(s)(φi1···is)⊗ { ∂∂tj

(
dti1 ∧ . . .∧ dtis

)}
where P = P̃ when acting on vector 1-forms, or on first-order
forms.
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The homotopy operators for dT (2)

The scalar operators P j(s) and P̃ j(s) are given by

P j(s) =
rk−1∑
|J|=0

(−1)|J|(m− s)!|J|!
r |J|+1(m− s + |J| + 1)!J!

dJSJ+1j ,

P̃ j(s) =
rk−1∑
|J|=0

(−1)|J|(m− s)!|J|!
r(m− s + |J| + 1)!J!

dJ S̃J+1j

where, for a scalar form θ,

S1j11j2···1jr θ = iSj1 iSj2 · · · iSjr θ
S̃1j11j2···1jr θ = iSj1Sj2···Sjr θ .

Note that P2 = 0 but P̃2 6= 0.
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Variational problems on fibred manifolds

Let π : E → M be a fibred manifold, with dimM =m and
dimE =m+n, where M is orientable.

A Lagrangian is an m-form λ = Ldmx on the jet bundle Jkπ ,
horizontal over M.

The fixed-boundary variational problem defined by λ is the
search for submanifolds σ(C) ⊂ E satisfying∫

C
((jσ)∗Xkλ) = 0

for every variation field X on E satisfying X|σ(∂C) = 0.
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Lepage equivalents

Let λ = Ldmx be a Lagrangian m-form on Jkπ .

Another m-form θ on Jlπ (where l ≥ k) is a Lepage form if:

iYdθ is a contact form whenever the vector field Y is vertical
over E.

It is a Lepage equivalent of λ if:

it is a Lepage form, and π∗l,kλ− θ is a contact form.

Every Lagrangian m-form has a Lepage equivalent, defined
on J2k−1π .
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Examples of Lepage equivalents

For the case m = 1 (single integral variational problems):
For a first-order Lagrangian λ = Ldx on J1π :

θ = Ldx + ∂L
∂ẏα

(dyα − ẏαdx)

is the unique Lepage equivalent, the Poincaré-Cartan form,
also defined on J1π .

For a higher-order Lagrangian λ = Ldx on Jkπ :

θ = Ldx+
k−1∑
p=0

( k−p−1∑
q=0

(−1)q
dq

dxq
∂L

∂yα(p+q+1)

)
(dyα(p)−yα(p+1)dx)

is the unique Lepage equivalent, defined on J2k−1π .
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Examples of Lepage equivalents (2)

For the case m ≥ 2 (multiple integral variational problems)
and a first-order Lagrangian λ = Ldmx on J1π :

θ1 = Ldmx +
∂L
∂yαi

ωα ∧ dm−1xi

θ2 =
1

Lm−1

m∧
i=1

(
Ldxi + ∂L

∂yαi
ωα

)

θ3 =
min{m,n}∑
r=0

1
(r !)2

∂rL
∂yα1

i1 · · · ∂y
αr
ir
ωα1 ∧ · · · ∧ωαr ∧ dm−rxi1···ir

(where ωα = dyα −yαj dxj) are globally-defined Lepage
equivalents.
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Homogeneous variational problems

We now consider m-dimensional variational problems on E,
with fixed boundary conditions.

It is sufficient to consider submanifolds of the form σ(C)
where σ : Rm → E and C ⊂ Rm is a compact m-dimensional
submanifold.

This is because variational problems are local.

‘An m-dimensional submanifold of E is extremal with fixed
boundary conditions if, and only if, every small piece of it is
extremal with fixed boundary conditions.’
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Homogeneous Lagrangians

A vector function Λ = Ldmt ∈ Ω0,m is called a Lagrangian
for a parametric variational problem. It is called
homogeneous if it is equivariant with respect to the action of
the jet group Lk+m , where k is the order of the Lagrangian.

If Λ is homogeneous then the scalar function L satisfies

dijL = δijL , dIjL = 0 for |I| ≥ 2 .

The fixed-boundary variational problem defined by Λ is the
search for submanifolds σ(C) ⊂ E satisfying∫

C
((jσ)∗XkL)dmt = 0

for every variation field X on E satisfying X|σ(∂C) = 0.
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Equivalents of Lagrangians

Let Λ ∈ Ω0,m be a homogeneous Lagrangian.

Any scalar m-form Θm ∈ Ωm,0 is called an integral equivalent
of Λ if Λ = ((−1)m(m−1)/2

m!

)
imT Θm .

Any vector r -form Θr ∈ Ωr ,m−r is called an intermediate
equivalent if

Λ = (−1)r(r−1)/2(m− r)!
m!

irTΘr 0 ≤ r ≤m− 1 .

If Θr+1 is an equivalent of Λ then

Θr = (−1)r

m− r iTΘr+1

is also an equivalent.
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Integral equivalents

Λ = ((−1)m(m−1)/2

m!

)
imT Θm

Why ‘integral equivalent’?

If σ : Rm → E then (jσ)∗Λ = (jσ)∗Θm
so that ∫

C
(jσ)∗Λ = ∫

C
(jσ)∗Θm .

Thus Λ = Θ0 and Θm have the same extremals.
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Euler forms
Let Θm be an integral equivalent of Λ.

Define the scalar (m+ 1)-form Em ∈ Ωm+1,0 by

Em = dΘm
and the vector forms Er ∈ Ωr+1,m−r by

Er = dΘr − (−1)rdTΘr+1 0 ≤ r ≤m− 1 .

The forms Er are called the Euler forms of Θm.

By a straightforward calculation

Er =
(−1)r+1

m− r iTEr+1 0 ≤ r ≤m− 1 .
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Equivalents and Euler forms
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Lepagian forms

Let Λ be a homogeneous Lagrangian.

Let Θr be an equivalent of Λ (1 ≤ r ≤m).

Say that Θr is Lepagian if the corresponding Euler form
E0 ∈ Ω1,m satisfies

SE0 = 0 ,

so that E0 is horizontal over E.

Theorem The vector 1-formΘ1 = PdΛ
is an integral equivalent of Λ (m = 1) or an intermediate
equivalent (m ≥ 2), and is Lepagian. It is called the Hilbert
equivalent of Λ.
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The Hilbert equivalent

Θ1 = PdΛ is a Lepagian equivalent of Λ = Ldmt.
Outline of proof: if Φ = φ⊗ dmt ∈ Ω1,m use

PΦ = P jφ⊗ dm−1tj , P j =
∑
J

(−1)|J|

(|J| + 1)J!
dJSJ+1j .

To show iTPdΛ = Λ, use:

commutators [ik, dj] = 0, [iIk, S
j] = iI+1j

k ,

homogeneity iIkdL = dIkL = 0 (|I| ≥ 1),
vanishing of Si on functions ikdL and ijkdL,

homogeneity again ijkdL = d
j
kdL = δ

j
kdL.
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The Hilbert equivalent

Θ1 = PdΛ is a Lepagian equivalent of Λ = Ldmt.
Outline of proof: if Φ = φ⊗ dmt ∈ Ω1,m use

PΦ = P jφ⊗ dm−1tj , P j =
∑
J

(−1)|J|

(|J| + 1)J!
dJSJ+1j .

To show SE0 = S(dΛ− dTPdΛ) = 0 use:
commutators [Sj , di] = δji to give a collapsing sum
so that SdTP(dΛ) = S(dΛ).

If Θ̃1 is another Lepagian vector 1-form equivalent to Λ, with
corresponding Euler form Ẽ0, then

Ẽ0 = E0 , Θ̃1 −Θ1 = dTΦ (Φ ∈ Ωr ,m−2)
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The First Variation Formula
Given a variation field X on E with X|C = 0, and its
prolongation X̂,∫

C
(jσ)∗dX̂Λ = ∫C(jσ)∗diX̂Λ+

∫
C
(jσ)∗iX̂dΛ

=
∫
∂C
(jσ)∗iX̂Λ+ ∫C(jσ)∗iX̂dΛ

=
∫
C
(jσ)∗iX̂E0 +

∫
C
(jσ)∗iX̂dTΘ1

But∫
C
(jσ)∗iX̂dTΘ1 =

∫
C
(jσ)∗dTiX̂Θ1 =

∫
C
d(jσ)∗iX̂Θ1 = 0

because prolongations commute with total derivatives. Thus∫
C
(jσ)∗dX̂Λ = ∫C(jσ)∗iX̂E0 =

∫
C
(jσ)∗iXE0

because E0 is horizontal over E.
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Integral equivalents for m ≥ 2

Let Λ = Ldmt be a homogeneous Lagrangian with m ≥ 2,
and write its Hilbert equivalent Θ1 as

Θ1 = ϑi ⊗ dm−1ti ;

the scalar 1-forms ϑi are called the Hilbert forms of Λ.

If Λ never vanishes, define the Carathéodory equivalentΘ̃m ∈ Ωm,0 by

Θ̃m = 1
Lm−1

m∧
i=1

ϑi .

Theorem The Carathéodory equivalent Θ̃m is an integral
equivalent of Λ.
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The Carathéodory equivalent

Given Θ̃m = (1/Lm−1)ϑ1 ∧ · · · ∧ ϑm, we must show that

imT Θ̃m = (−1)m(m−1)/2m!Λ .
Outline of proof, using ikϑi = δikL: suppose

isTΘ̃m = (−1)s(2m−s−1)/2

(m− s)!Lm−s−1

{
∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m−s)⊗

⊗ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)
}

(where Sm is the permutation group) and use induction.
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The variation formula for Θ̃m
From the induction formula

im−1
T Θ̃m = (−1)m(m−1)/2 (m− 1)!Θ1

where Θ1 is the Hilbert equivalent.

Thus Θ̃m is Lepagian.

Then, as dΘm = Em,∫
C
(jσ)∗dYΘM = ∫

C
(jσ)∗iYEm

=
∫
C
(jσ)∗iYE0

for any vector field Y on
o

Tk(m)E vanishing on jσ(∂C),
because contractions by vector fields anticommute, so that
imT iYEm = (−1)miY imT Em.
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Another integral equivalent

Let Λ be a first-order Lagrangian, and put

Θr+1 = (−1)rPdΘr (1 ≤ r < m) .

Each Θr is a first-order vector form.

Using commutator relations, we obtain

Θr = (−1)r

m− r iTΘr+1

so that Θm is a Lepagian integral equivalent of Λ, the
fundamental equivalent of Λ.

Thus dΘm = Em = 0 if, and only if, E0 = 0.
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Other matters

• Regularity

• Symmetry

• Helmholtz equations
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