- h	ntroduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
C	00	0000	00	0000	000000
C	00	00	0		000
C)	00	00		00000

Some geometric aspects of the calculus of variations in several independent variables

D. J. Saunders

Banach Center Warszawa

28 April 2010

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

Abstract

In this talk I shall describe some recent research on parametric problems in the calculus of variations (of which the minimal surfaces problem is perhaps the most basic example).

I shall also explain the relationship between these problems and the type of problem more usual in physics, where there is a given space of independent variables.

Aspects to be covered will include an interpretation of the first variation formula in terms of cohomology.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneou
•0	0000	00	0000	000000
00	00	0		000
0	00	00		00000

What are 'parametric' variational systems?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Compare two problems:

- 1. Find the trajectory of a free unit-mass particle in 3-dimensional space;
- 2. Find the shortest curve between two points in three-dimensional space.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneou
•0	0000	00	0000	000000
00	00	0		000
0	00	00		00000

What are 'parametric' variational systems?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q (>

Compare two problems:

- 1. Find the trajectory of a free unit-mass particle in 3-dimensional space;
- 2. Find the shortest curve between two points in three-dimensional space.

Solutions:

- 1. A map $[0,T] \rightarrow \mathbb{R}^3$, $t \mapsto (a^i t + b^i)$
- 2. A straight line segment $[(p^i), (q^i)] \subset \mathbb{R}^3$.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneo
•0	0000	00	0000	000000
00	00	0		000
0	00	00		00000

What are 'parametric' variational systems?

Compare two problems:

- 1. Find the trajectory of a free unit-mass particle in 3-dimensional space;
- 2. Find the shortest curve between two points in three-dimensional space.

Solutions:

- 1. A map $[0,T] \rightarrow \mathbb{R}^3$, $t \mapsto (a^i t + b^i)$
- 2. A straight line segment $[(p^i), (q^i)] \subset \mathbb{R}^3$.

Lagrangians:

1.
$$\frac{1}{2} \left((\dot{u}^1)^2 + (\dot{u}^2)^2 + (\dot{u}^3)^2 \right)$$

2. $\sqrt{(\dot{y}^1)^2 + (\dot{y}^2)^2 + (\dot{y}^3)^2}$ positively homogeneous

roduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
	0000	00	0000	000000
	00	0		000
	00	00		00000

What are 'parametric' variational systems? (2)

In physics, variational problems are commonly defined on fibred manifolds $\pi: E \to M$.

(For the free particle, this is $\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$.)

Intro

Extremals are local sections of π , and the Lagrangian is defined on a jet bundle $J^1\pi$ (or $J^k\pi$) of jets of local sections of π .

oduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
	0000	00	0000	000000
	00	0		000
	00	00		00000

What are 'parametric' variational systems? (2)

In physics, variational problems are commonly defined on fibred manifolds $\pi: E \to M$.

(For the free particle, this is $\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$.)

Intro

Extremals are local sections of π , and the Lagrangian is defined on a jet bundle $J^1\pi$ (or $J^k\pi$) of jets of local sections of π .

In geometry, variational problems are commonly defined on manifolds *E* without a given fibration.

Extremals are submanifolds of *E*, defined 'parametrically'.

kground Vector forms	Variational problems	s Homogeneous problems
00	0000	000000
0		000
00		00000
	00	00 0000

What are 'parametric' variational systems? (2)

In physics, variational problems are commonly defined on fibred manifolds $\pi: E \to M$.

(For the free particle, this is $\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$.)

Intro

Extremals are local sections of π , and the Lagrangian is defined on a jet bundle $J^1\pi$ (or $J^k\pi$) of jets of local sections of π .

In geometry, variational problems are commonly defined on manifolds *E* without a given fibration.

Extremals are submanifolds of *E*, defined 'parametrically'.

So where is the Lagrangian defined?

There are different types of jet bundle.

To understand the difference, think of the relationships between a vector space, an affine space and a projective space.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

There are different types of jet bundle.

To understand the difference, think of the relationships between a vector space, an affine space and a projective space.

Take a vector space V, with $\dim V = n + 1$, basis (e_0, e_1, \ldots, e_n) and corresponding coordinate functions $(\dot{y}^0, \dot{y}^1, \ldots, \dot{y}^n)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

There are different types of jet bundle.

To understand the difference, think of the relationships between a vector space, an affine space and a projective space.

Take a vector space V, with $\dim V = n + 1$, basis (e_0, e_1, \ldots, e_n) and corresponding coordinate functions $(\dot{y}^0, \dot{y}^1, \ldots, \dot{y}^n)$.

The set $A = \{v \in V : \dot{y}^0(v) = 1\}$ is an *n*-dimensional affine space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

There are different types of jet bundle.

To understand the difference, think of the relationships between a vector space, an affine space and a projective space.

Take a vector space V, with $\dim V = n + 1$, basis (e_0, e_1, \ldots, e_n) and corresponding coordinate functions $(\dot{y}^0, \dot{y}^1, \ldots, \dot{y}^n)$.

The set $A = \{v \in V : \dot{y}^0(v) = 1\}$ is an *n*-dimensional affine space.

The set $P = (V - \{0\})/(\mathbb{R} - \{0\})$ is an *n*-dimensional projective space.

There are different types of jet bundle.

To understand the difference, think of the relationships between a vector space, an affine space and a projective space.

Take a vector space V, with $\dim V = n + 1$, basis (e_0, e_1, \ldots, e_n) and corresponding coordinate functions $(\dot{y}^0, \dot{y}^1, \ldots, \dot{y}^n)$.

The set $A = \{v \in V : \dot{y}^0(v) = 1\}$ is an *n*-dimensional affine space.

The set $P = (V - \{0\})/(\mathbb{R} - \{0\})$ is an *n*-dimensional projective space. There is a natural injection $A \rightarrow P$.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
0.	00	0		000
0	00	00		00000

Let $\pi : E \to \mathbb{R}$ be a fibred manifold, with dim E = n + 1 and coordinates $(y^0 = t, y^1, \dots, y^n)$.

Jet manifolds: $J^1\pi$ contains jets of local sections of π , and $J^1(E, 1)$ contains jets of immersed submanifolds in E.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
0.	00	0		000
0	00	00		00000

Let $\pi : E \to \mathbb{R}$ be a fibred manifold, with dim E = n + 1 and coordinates $(y^0 = t, y^1, \dots, y^n)$.

Jet manifolds: $J^1\pi$ contains jets of local sections of π , and $J^1(E, 1)$ contains jets of immersed submanifolds in E.

The bundle $J^1\pi \to E$ is an affine bundle, and there is a canonical injection $J^1\pi \to TE$. The image is given by $\dot{y}^0 = 1$.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
0.	00	0		000
0	00	00		00000

Let $\pi : E \to \mathbb{R}$ be a fibred manifold, with dim E = n + 1 and coordinates $(y^0 = t, y^1, \dots, y^n)$.

Jet manifolds: $J^1\pi$ contains jets of local sections of π , and $J^1(E, 1)$ contains jets of immersed submanifolds in E.

The bundle $J^1\pi \to E$ is an affine bundle, and there is a canonical injection $J^1\pi \to TE$. The image is given by $\dot{y}^0 = 1$.

The bundle $J^1(E, 1) \rightarrow E$ is isomorphic to the projective tangent bundle $PTE \rightarrow E$.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
0.	00	0		000
0	00	00		00000

Let $\pi : E \to \mathbb{R}$ be a fibred manifold, with dim E = n + 1 and coordinates $(y^0 = t, y^1, \dots, y^n)$.

Jet manifolds: $J^1\pi$ contains jets of local sections of π , and $J^1(E, 1)$ contains jets of immersed submanifolds in E.

The bundle $J^1\pi \to E$ is an affine bundle, and there is a canonical injection $J^1\pi \to TE$. The image is given by $\dot{y}^0 = 1$.

The bundle $J^1(E, 1) \rightarrow E$ is isomorphic to the projective tangent bundle $PTE \rightarrow E$.

We identify $J^1\pi$ with an open submanifold of $J^1(E, 1)$ by mapping the jet of a local section to the jet of its image.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
0.	00	0		000
0	00	00		00000

Let $\pi : E \to \mathbb{R}$ be a fibred manifold, with dim E = n + 1 and coordinates $(y^0 = t, y^1, \dots, y^n)$.

Jet manifolds: $J^1\pi$ contains jets of local sections of π , and $J^1(E, 1)$ contains jets of immersed submanifolds in E.

The bundle $J^1\pi \to E$ is an affine bundle, and there is a canonical injection $J^1\pi \to TE$. The image is given by $\dot{y}^0 = 1$.

The bundle $J^1(E, 1) \rightarrow E$ is isomorphic to the projective tangent bundle $PTE \rightarrow E$.

We identify $J^1\pi$ with an open submanifold of $J^1(E, 1)$ by mapping the jet of a local section to the jet of its image.

The bundle $\mathring{T}E \to J^1(E, 1)$ is a principal bundle with structure group $\mathbb{R} - \{0\}$.

Introduction Geom	etrical background Vector	forms Variational pr	oblems Homogeneous problems
0000	00	0000	000000
00 00	0		000
• 00	00		00000

An example

Finsler geometry (special case: Riemannian geometry) Manifold *E*, coordinates y^a ($0 \le a \le n$) Lagrangian *L* defined on $\mathring{T}E$

Positive homogeneity:

$$\dot{y}^a \frac{\partial L}{\partial \dot{y}^a} = L$$

Variational problem: find extremals γ of $\int j^1 \gamma^*(L) dt$

Introduction Geometrical ba	kground Vector forms	Variational problems	Homogeneous problems
00 0000	00	0000	000000
00 00	0		000
• 00	00		00000

An example

Finsler geometry (special case: Riemannian geometry) Manifold *E*, coordinates y^a ($0 \le a \le n$) Lagrangian *L* defined on $\mathring{T}E$

Positive homogeneity:

$$\dot{y}^a \frac{\partial L}{\partial \dot{y}^a} = L$$

Variational problem: find extremals γ of $\int j^1 \gamma^*(L) dt$

If γ is an extremal then so is $\gamma \circ \phi$ where

$$\phi: \mathbb{R} \to \mathbb{R}$$
 diffeomorphism, $\phi' > 0$

The problem may also be formulated on $PTE^+ = \mathring{T}E/\mathbb{R}^+$ (double cover of *PTE*).

Introduction	Geometrical background
00	●000
00	00
0	00

Variational problems

Homogeneous problems

Regular velocities on a manifold

Finsler geometry is defined on the slit tangent bundle $T^{\circ}E$.

First-order multiple integral problems are defined on a sub-bundle of the Whitney sum $\bigoplus^m TE$.

The bundle of regular velocities on *E* is $\mathring{T}_{(m)}E = \{(\xi_1, \dots, \xi_m) \in \bigoplus^m TE : (\xi_i) \text{ linearly independent}\}.$

Equivalently:

 $\mathring{T}_{(m)}E$ is the bundle of non-degenerate velocities — 1-jets (at the origin) of non-singular maps $\mathbb{R}^m \to E$.

Coordinates: (y^a) on E, (y^a, y^a_i) on $\mathring{T}_{(m)}E$ $(1 \le i \le m)$.

roduction	Geometrical background
	0000
	00
	00

Homogeneous problems

Regular velocities on a manifold (2)

Contact forms on $\mathring{T}_{(m)}E$:

 $\omega \in \Omega(\mathring{T}_{(m)}E)$ where the pull-back $(j^1\sigma)^*\omega$ by a prolongation of $\sigma : \mathbb{R}^m \to E$ always vanishes.

In coordinates, contact 1-forms are sums of $(m + 1) \times (m + 1)$ determinants:

(Compare the contact 1-forms $du^{\alpha} - u_i^{\alpha} dx^i$ on a jet bundle.)

duction	Geometrical	background
	0000	
	00	
	00	

Variational problems

Homogeneous problems

Regular velocities on a manifold (3) For each function $f : E \to \mathbb{R}$, define the functions $d_i f : \mathring{T}_{(m)} E \to \mathbb{R}$ by

$$d_i f(j_0^1 \sigma) = \frac{\partial (f \circ \sigma)}{\partial t^i}$$
 where $\sigma : \mathbb{R}^m \to E$.

 d_i is a vector field along $au_m : \mathring{T}_{(m)} E o E$, called a

total derivative

A 1-form $heta \in \Omega^1 \mathring{T}_{(m)} E$ is a contact form exactly when

$$\langle d_i, \theta \rangle = 0, \qquad 1 \le i \le m.$$

In coordinates

$$d_i = y_i^a \frac{\partial}{\partial y^a}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

roduction	Geometrical background
	0000
	00
	00

Variational problems

Homogeneous problems

Regular velocities on a manifold (4) The Whitney sum $\bigoplus^m TE \rightarrow E$ is a vector bundle. Denote its vertical lift operator to (η_i) by

$$\bigoplus^m T_{\tau_m(\eta_i)} E \to T_{(\eta_i)} \left(\bigoplus^m TE \right) , \qquad (\xi_i) \mapsto (\xi_i)^{\dagger(\eta_i)} .$$

For each vector $\zeta \in T_{(\eta_i)} \mathring{T}_{(m)} E$ define the vector $S^i \zeta \in T_{(\eta_i)} \mathring{T}_{(m)} E$ by

$$S^{i}\boldsymbol{\zeta} = (0,\ldots,0,T\boldsymbol{\tau}_{m}(\boldsymbol{\zeta}),0,\ldots,0)^{\dagger(\eta_{i})}$$

 S^i is a type (1,1) tensor field on $\mathring{T}_{(m)}E$, called a

vertical endomorphism

In coordinates

$$S^i = dy^a \otimes \frac{\partial}{\partial y^a_i}.$$

Introduction	Geometrical background
00	0000
00	•0
0	00

Variational problems

Homogeneous problems

Grassmannians

Regular velocities $\mathring{T}_{(m)}E$: equivalence classes of maps $\mathbb{R}^m \to E$

Grassmannian bundle $J^1(E, m)$: equivalence classes of images of maps $\mathbb{R}^m \to E$ (*m*-dimensional subspaces of *TE*)

Two regular velocities $j_0^1\sigma$, $j_0^1\hat{\sigma}$ represent the same subspace when

$$j_0^1\hat{\sigma}=j_0^1(\sigma\circ\phi)$$

for some diffeomorphism $\phi : \mathbb{R}^m \to \mathbb{R}^m$ with $\phi(0) = 0$.

Oriented Grassmannians $J^1(E, m)^+$: diffeomorphism ϕ preserves orientation on \mathbb{R}^m .

Introduction	Geometrical background	Vector for
00	0000	00
00	0.	0
0	00	00

Variational problems

Homogeneous problems

Grassmannians (2)

The projections give principal bundles

$$\begin{split} \rho &: \mathring{T}_{(m)} E \to J^1(E,m) \qquad (\text{group } GL(m,\mathbb{R})) \\ \rho^+ &: \mathring{T}_{(m)} E \to J^1(E,m)^+ \qquad (\text{group } GL(m,\mathbb{R})^+) \end{split}$$

Fundamental vector fields are $\Delta_j^i = S^i(d_j)$

In coordinates

$$\Delta_j^i = \gamma_j^a \frac{\partial}{\partial \gamma_i^a}$$

Any fibration $\pi : E \to M$ defines open submanifolds $J^1\pi \subset J^1(E,M)$ and $J^1\pi \subset J^1(E,M)^+$.

Special case: $J^{1}(E, 1) = PTE$ and $J^{1}(E, 1)^{+} = PTE^{+}$.

Introduction	Geometrical background	1
00	0000	
00	00	
0	•0	

or forms \

Variational problems

Homogeneous problems

Higher-order regular velocities

k-th order regular velocities $\mathring{T}^{k}_{(m)}E$: *k*-jets (at the origin) of non-singular maps $\mathbb{R}^{m} \to E$ Coordinates \mathscr{Y}^{a}_{I} on $\mathring{T}^{k}_{(m)}E$ (*I* multi-index, $0 \leq |I| \leq k$) Total derivatives d_{i} and vertical endomorphisms S^{i} :

$$d_i = \sum_{|I|=0}^{k-1} y_{I+1_i}^a \frac{\partial}{\partial y_I^a}, \qquad S^i = \sum_{|I|=0}^{k-1} (I(i)+1) dy_I^a \otimes \frac{\partial}{\partial y_{I+1_i}^a}.$$

・ロト・日本・日本・日本・日本・日本

Introduction	Geometrical background	Vector form:
00	0000	00
00	00	0
0	0.	00

Variational problems

Homogeneous problems

Higher-order regular velocities (2)

Principal bundles:

 $\rho^k: \mathring{T}^k_{(m)} E \to J^k(E,m)\,, \qquad \rho^{k+}: \mathring{T}^k_{(m)} E \to J^k(E,m)^+\,.$

Groups are the jet groups L_m^k , L_m^{k+} :

 $L_m^k = \{ j_0^k \phi : \phi : \mathbb{R}^m \to \mathbb{R}^m \text{ diffeomorphism} \}$ $L_m^{k+} = \{ j_0^k \phi \in L_m^k : |\mathcal{J}(\phi)| > 0 \}$

Fundamental vector fields $\Delta_j^I = S^I(d_j) \ (0 \le |I| \le k)$.

Put i_j^I for contraction with Δ_j^I and d_j^I for Lie derivative by Δ_j^I .

Introduction	Geometrical background
00	0000
00	00
0	00

Variational problems

Homogeneous problems

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つく()

Vector forms

We often use vectors of operators, tensors, forms, ... $d_i, S^i, \theta^i, \ldots$

These fit into a framework of vector forms.

Introduction	Geometrical background	V
00	0000	
00	00	0
0	00	0

Variational problems

Homogeneous problems

Vector forms

We often use vectors of operators, tensors, forms, ... $d_i, S^i, \theta^i, \ldots$

These fit into a framework of vector forms.

We consider forms on $\mathring{T}^k_{(m)}E$ taking values in the vector space \mathbb{R}^{m*} and its exterior powers.

Put

$$\Omega_k^{r,s} = \left(\Omega^r \mathring{T}^k_{(m)} E\right) \otimes \left(\bigwedge^s \mathbb{R}^{m*}\right) \,.$$

Let the standard basis for \mathbb{R}^{m*} be denoted by (dt^i) . Then

$$\Phi = \phi_{i_1 \cdots i_s} \otimes dt^{i_1} \wedge \ldots \wedge dt^{i_s} \in \Omega_k^{r,s};$$

the scalar forms $\phi_{i_1 \cdots i_s}$ are skew-symmetric in their indices.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	0.	0000	000000
00	00	0		000
0	00	00		00000

Vector forms (2)

Operators on vector forms:

$$\begin{split} d: \Omega_k^{r,s} &\to \Omega_k^{r+1,s}, \qquad d_{\mathrm{T}}: \Omega_k^{r,s} \to \Omega_{k+1}^{r,s+1} \\ d(\phi \otimes \omega) &= d\phi \otimes \omega, \\ d_{\mathrm{T}}(\phi \otimes \omega) &= d_i \phi \otimes dt^i \wedge \omega. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Properties: $dd_{\rm T} = d_{\rm T}d$, $d_{\rm T}^2 = 0$.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	0.	0000	000000
00	00	0		000
0	00	00		00000

Vector forms (2)

Operators on vector forms:

$$\begin{split} d: \Omega_k^{r,s} &\to \Omega_k^{r+1,s}, \qquad d_{\mathrm{T}}: \Omega_k^{r,s} \to \Omega_{k+1}^{r,s+1} \\ d(\phi \otimes \omega) &= d\phi \otimes \omega, \\ d_{\mathrm{T}}(\phi \otimes \omega) &= d_i \phi \otimes dt^i \wedge \omega. \end{split}$$

Properties: $dd_{\rm T} = d_{\rm T}d$, $d_{\rm T}^2 = 0$.

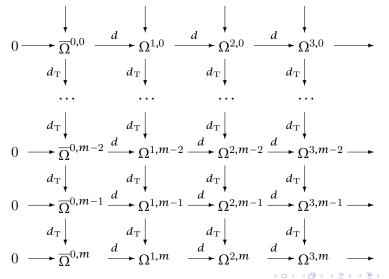
Also

 $i_{\mathrm{T}}:\Omega_k^{r,s} o \Omega_{k+1}^{r-1,s+1}, \qquad i_{\mathrm{T}}(\phi \otimes \omega) = (d_i \,\lrcorner\, \phi) \otimes dt^i \wedge \omega$

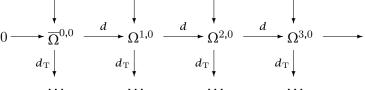
where

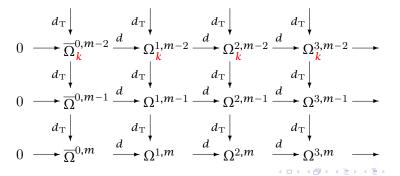
$$d_{\mathrm{T}} = di_{\mathrm{T}} + i_{\mathrm{T}}d.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

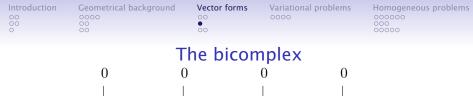


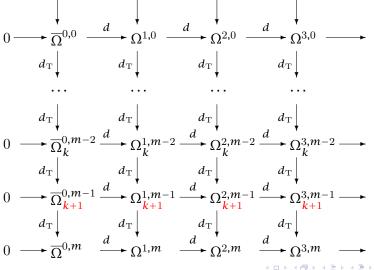
ヨ のへで





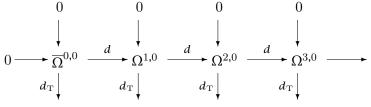
うくで

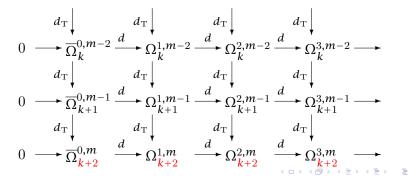




 $\mathcal{O} \mathcal{O} \mathcal{O}$

э





Introduction	Geometrical background
00	0000
00	00
0	00

Vector forms

Variational problems

Homogeneous problems

The homotopy operators for d_{T}

The map $d_{\mathrm{T}}: \Omega_k^{r,s} \to \Omega_{k+1}^{r,s+1}$ is not exact (even locally).

Introduction	Geometrical background
00	0000
00	00
0	00

Homogeneous problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

The homotopy operators for d_{T}

Vector forms

.

The map $d_{\mathrm{T}}: \Omega_k^{r,s} \to \Omega_{k+1}^{r,s+1}$ is not exact (even locally). But it is globally exact modulo pull-backs (for $r \ge 1$).

Introduction	Geometrical background	Vector forms	Variational problems
00	0000	00	0000
00	00	0	
0	00	•0	

Homogeneous problems

The homotopy operators for $d_{ m T}$

The map $d_{\mathrm{T}}: \Omega_k^{r,s} \to \Omega_{k+1}^{r,s+1}$ is not exact (even locally). But it is globally exact modulo pull-backs (for $r \ge 1$). The homotopy operators are $P, \widetilde{P}: \Omega_k^{r,s} \to \Omega_{(r+1)k-1}^{r,s-1}$:

$$P(\Phi) = P_{(s)}^{j}(\phi_{i_{1}\cdots i_{s}}) \otimes \left\{ \frac{\partial}{\partial t^{j}} \, \, \, \, \left(dt^{i_{1}} \wedge \dots \wedge dt^{i_{s}} \right) \right\}$$
$$\widetilde{P}(\Phi) = \widetilde{P}_{(s)}^{j}(\phi_{i_{1}}\cdots i_{s}) \otimes \left\{ \frac{\partial}{\partial t^{j}} \, \, \, \, \, \left(dt^{i_{1}} \wedge \dots \wedge dt^{i_{s}} \right) \right\}$$

where $P = \widetilde{P}$ when acting on vector 1-forms, or on first-order forms.

troduction	Geometrical background	Vector forms
	0000	00
0	00	0
	00	0

Homogeneous problems

The homotopy operators for $d_{\rm T}$ (2) The scalar operators $P^j_{(s)}$ and $\widetilde{P}^j_{(s)}$ are given by

$$\begin{split} P_{(s)}^{j} &= \sum_{|J|=0}^{rk-1} \frac{(-1)^{|J|} (m-s)! |J|!}{r^{|J|+1} (m-s+|J|+1)! J!} d_{J} S^{J+1_{j}},\\ \widetilde{P}_{(s)}^{j} &= \sum_{|J|=0}^{rk-1} \frac{(-1)^{|J|} (m-s)! |J|!}{r (m-s+|J|+1)! J!} d_{J} \widetilde{S}^{J+1_{j}} \end{split}$$

where, for a scalar form θ ,

$$S^{1_{j_1}1_{j_2}\cdots 1_{j_r}}\theta = i_{S^{j_1}}i_{S^{j_2}}\cdots i_{S^{j_r}}\theta$$
$$\widetilde{S}^{1_{j_1}1_{j_2}\cdots 1_{j_r}}\theta = i_{S^{j_1}S^{j_2}\cdots S^{j_r}}\theta.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ⊙

troduction	Geometrical background	Vector forms
С	0000	00
C	00	0
	00	0.

Homogeneous problems

The homotopy operators for $d_{\rm T}$ (2) The scalar operators $P^j_{(s)}$ and $\widetilde{P}^j_{(s)}$ are given by

$$P_{(s)}^{j} = \sum_{|J|=0}^{rk-1} \frac{(-1)^{|J|}(m-s)!|J|!}{r^{|J|+1}(m-s+|J|+1)!J!} d_{J}S^{J+1j}$$

$$\widetilde{P}_{(s)}^{j} = \sum_{|J|=0}^{rk-1} \frac{(-1)^{|J|}(m-s)!|J|!}{r(m-s+|J|+1)!J!} d_{J}\widetilde{S}^{J+1j}$$

where, for a scalar form θ ,

$$S^{1_{j_1}1_{j_2}\cdots 1_{j_r}}\theta = i_{S^{j_1}}i_{S^{j_2}}\cdots i_{S^{j_r}}\theta$$
$$\widetilde{S}^{1_{j_1}1_{j_2}\cdots 1_{j_r}}\theta = i_{S^{j_1}S^{j_2}\cdots S^{j_r}}\theta.$$

Note that $P^2 = 0$ but $\widetilde{P}^2 \neq 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

troduction	Geometrical backgroun	d Vector f
0	0000	00
0	00	0
	00	00

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Variational problems on fibred manifolds

Let $\pi : E \to M$ be a fibred manifold, with $\dim M = m$ and $\dim E = m + n$, where M is orientable.

A Lagrangian is an *m*-form $\lambda = L d^m x$ on the jet bundle $J^k \pi$, horizontal over *M*.

roduction	Geometrical background	Vector forms
	0000	00
	00	0
	00	00

Homogeneous problems

Variational problems on fibred manifolds

Let $\pi : E \to M$ be a fibred manifold, with $\dim M = m$ and $\dim E = m + n$, where M is orientable.

A Lagrangian is an *m*-form $\lambda = L d^m x$ on the jet bundle $J^k \pi$, horizontal over *M*.

The fixed-boundary variational problem defined by λ is the search for submanifolds $\sigma(C) \subset E$ satisfying

$$\int_C ((j\sigma)^* X^k \lambda) = 0$$

for every variation field X on E satisfying $X|_{\sigma(\partial C)} = 0$.

うしん 同一人用 イモット 一切 くう

Introduction	Geometrical background	\
00	0000	0
00	00	(
0	00	(

/ector forms

Variational problems

Homogeneous problems

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Lepage equivalents

Let $\lambda = L d^m x$ be a Lagrangian *m*-form on $J^k \pi$.

Another *m*-form θ on $J^l \pi$ (where $l \ge k$) is a *Lepage form* if: $i_Y d\theta$ is a contact form whenever the vector field *Y* is vertical over *E*.

Introduction	Geometrical background	Vector fo
00	0000	00
00	00	0
0	00	00

Homogeneous problems

Lepage equivalents

Let $\lambda = L d^m x$ be a Lagrangian *m*-form on $J^k \pi$.

Another *m*-form θ on $J^l \pi$ (where $l \ge k$) is a *Lepage form* if: $i_Y d\theta$ is a contact form whenever the vector field *Y* is vertical over *E*.

It is a *Lepage equivalent* of λ if: it is a Lepage form, and $\pi_{lk}^* \lambda - \theta$ is a contact form.

Introduction	Geometrical background	Vector forms
00	0000	00
00	00	0
0	00	00

Homogeneous problems

Lepage equivalents

Let $\lambda = L d^m x$ be a Lagrangian *m*-form on $J^k \pi$.

Another *m*-form θ on $J^l \pi$ (where $l \ge k$) is a *Lepage form* if: $i_Y d\theta$ is a contact form whenever the vector field *Y* is vertical over *E*.

It is a *Lepage equivalent* of λ if: it is a Lepage form, and $\pi_{Lk}^*\lambda - \theta$ is a contact form.

Every Lagrangian m-form has a Lepage equivalent, defined on $J^{2k-1}\pi$.

Introduction	Geometrical background	Vector forms	Variational problems
00	0000	00	0000
00	00	0	
0	00	00	

Homogeneous problems

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q (>

Examples of Lepage equivalents

For the case m = 1 (single integral variational problems): For a first-order Lagrangian $\lambda = L dx$ on $J^{1}\pi$:

$$\theta = L \, dx + \frac{\partial L}{\partial \dot{y}^{\alpha}} (dy^{\alpha} - \dot{y}^{\alpha} dx)$$

is the unique Lepage equivalent, the *Poincaré-Cartan form*, also defined on $J^1\pi$.

Introduction	Geometrical background	Vector forms	Variational problems	Но
00	0000	00	0000	oc
00	00	0		OC
0	00	00		00

Homogeneous problems

Examples of Lepage equivalents

For the case m = 1 (single integral variational problems): For a first-order Lagrangian $\lambda = L dx$ on $J^{1}\pi$:

$$\theta = L \, dx + \frac{\partial L}{\partial \dot{y}^{\alpha}} (dy^{\alpha} - \dot{y}^{\alpha} dx)$$

is the unique Lepage equivalent, the *Poincaré-Cartan form*, also defined on $J^1\pi$.

For a higher-order Lagrangian $\lambda = L dx$ on $J^k \pi$:

$$\theta = L dx + \sum_{p=0}^{k-1} \left(\sum_{q=0}^{k-p-1} (-1)^q \frac{d^q}{dx^q} \frac{\partial L}{\partial y^{\alpha}_{(p+q+1)}} \right) (dy^{\alpha}_{(p)} - y^{\alpha}_{(p+1)} dx)$$

is the unique Lepage equivalent, defined on $J^{2k-1}\pi$.

Introduction	Geometrical background
00	0000
00	00
0	00

Vector forms

Variational problems

Homogeneous problems

Examples of Lepage equivalents (2)

For the case $m \ge 2$ (multiple integral variational problems) and a first-order Lagrangian $\lambda = L d^m x$ on $J^1 \pi$:

$$\theta_{1} = L d^{m}x + \frac{\partial L}{\partial y_{i}^{\alpha}} \omega^{\alpha} \wedge d^{m-1}x_{i}$$

$$\theta_{2} = \frac{1}{L^{m-1}} \bigwedge_{i=1}^{m} \left(L dx^{i} + \frac{\partial L}{\partial y_{i}^{\alpha}} \omega^{\alpha} \right)$$

$$\theta_{3} = \sum_{r=0}^{\min\{m,n\}} \frac{1}{(r!)^{2}} \frac{\partial^{r}L}{\partial y_{i_{1}}^{\alpha_{1}} \cdots \partial y_{i_{r}}^{\alpha_{r}}} \omega^{\alpha_{1}} \wedge \cdots \wedge \omega^{\alpha_{r}} \wedge d^{m-r}x_{i_{1}\cdots i_{r}}$$

(where $\omega^{\alpha} = dy^{\alpha} - y_{j}^{\alpha} dx^{j}$) are globally-defined Lepage equivalents.

Introduction	Geometrical	backgrou
00	0000	
00	00	
0	00	

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Homogeneous variational problems

We now consider m-dimensional variational problems on E, with fixed boundary conditions.

It is sufficient to consider submanifolds of the form $\sigma(C)$ where $\sigma : \mathbb{R}^m \to E$ and $C \subset \mathbb{R}^m$ is a compact *m*-dimensional submanifold.

Introduction	Geometrical backgrou
00	0000
00	00
0	00

Homogeneous problems

Homogeneous variational problems

We now consider m-dimensional variational problems on E, with fixed boundary conditions.

It is sufficient to consider submanifolds of the form $\sigma(C)$ where $\sigma : \mathbb{R}^m \to E$ and $C \subset \mathbb{R}^m$ is a compact *m*-dimensional submanifold.

This is because variational problems are local.

'An m-dimensional submanifold of E is extremal with fixed boundary conditions if, and only if, every small piece of it is extremal with fixed boundary conditions.'

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	00000
00	00	0		000
0	00	00		00000

Homogeneous Lagrangians

A vector function $\Lambda = L d^m t \in \Omega^{0,m}$ is called a *Lagrangian* for a parametric variational problem. It is called *homogeneous* if it is equivariant with respect to the action of the jet group L_m^{k+} , where k is the order of the Lagrangian.

If Λ is homogeneous then the scalar function L satisfies

$$d^i_j L = \delta^i_j L$$
, $d^I_j L = 0$ for $|I| \ge 2$.

・ロ・・ 日・・ ヨ・・ 日・ うらつ

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	00000
00	00	0		000
0	00	00		00000

Homogeneous Lagrangians

A vector function $\Lambda = L d^m t \in \Omega^{0,m}$ is called a *Lagrangian* for a parametric variational problem. It is called *homogeneous* if it is equivariant with respect to the action of the jet group L_m^{k+} , where k is the order of the Lagrangian.

If Λ is homogeneous then the scalar function L satisfies

$$d^i_j L = \delta^i_j L$$
, $d^I_j L = 0$ for $|I| \ge 2$.

The fixed-boundary variational problem defined by Λ is the search for submanifolds $\sigma(C) \subset E$ satisfying

$$\int_C ((j\sigma)^* X^k L) d^m t = 0$$

for every variation field *X* on *E* satisfying $X|_{\sigma(\partial C)} = 0$.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	00000
00	00	00		000 00000

Equivalents of Lagrangians

Let $\Lambda \in \Omega^{0,m}$ be a homogeneous Lagrangian.

Any scalar *m*-form $\Theta_m \in \Omega^{m,0}$ is called an *integral equivalent* of Λ if $\Lambda = \left(\frac{(-1)^{m(m-1)/2}}{m!}\right) i_{\mathrm{T}}^m \Theta_m.$

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

Equivalents of Lagrangians

Let $\Lambda \in \Omega^{0,m}$ be a homogeneous Lagrangian.

Any scalar *m*-form $\Theta_m \in \Omega^{m,0}$ is called an *integral equivalent* of Λ if $\Lambda = \left(\frac{(-1)^{m(m-1)/2}}{m!}\right) i_{\mathrm{T}}^m \Theta_m.$

Any vector r-form $\Theta_r \in \Omega^{r,m-r}$ is called an *intermediate* equivalent if

$$\Lambda = \frac{(-1)^{r(r-1)/2}(m-r)!}{m!} i_{\rm T}^r \Theta_r \qquad 0 \le r \le m-1.$$

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

Equivalents of Lagrangians

Let $\Lambda \in \Omega^{0,m}$ be a homogeneous Lagrangian.

Any scalar *m*-form $\Theta_m \in \Omega^{m,0}$ is called an *integral equivalent* of Λ if $\Lambda = \left(\frac{(-1)^{m(m-1)/2}}{m!}\right) i_{\mathrm{T}}^m \Theta_m.$

Any vector r-form $\Theta_r \in \Omega^{r,m-r}$ is called an *intermediate* equivalent if

$$\Lambda = \frac{(-1)^{r(r-1)/2}(m-r)!}{m!} i_{\mathrm{T}}^r \Theta_r \qquad 0 \le r \le m-1.$$

If Θ_{r+1} is an equivalent of Λ then

$$\Theta_r = \frac{(-1)^r}{m-r} \, i_{\rm T} \Theta_{r+1}$$

is also an equivalent.

Introduction	Geometrical background	Vector forms	1
00	0000	00	
00	00	0	
0	00	00	

Homogeneous problems

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Integral equivalents

$$\Lambda = \left(\frac{(-1)^{m(m-1)/2}}{m!}\right) i_{\mathrm{T}}^{m} \Theta_{m}$$

Why 'integral equivalent'?

Introduction	Geometrical background	Vector forms	Variation
00	0000	00	0000
00	00	0	
0	00	00	

Homogeneous problems

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Integral equivalents

$$\Lambda = \left(\frac{(-1)^{m(m-1)/2}}{m!}\right) i_{\mathrm{T}}^{m} \Theta_{m}$$

Why 'integral equivalent'?

If
$$\sigma : \mathbb{R}^m \to E$$
 then $(j\sigma)^*\Lambda = (j\sigma)^*\Theta_m$

Introduction	Geometrical background	Vector forms	Variational
00	0000	00	0000
00	00	0	
0	00	00	

Homogeneous problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Integral equivalents

$$\Lambda = \left(\frac{(-1)^{m(m-1)/2}}{m!}\right) i_{\mathrm{T}}^{m} \Theta_{m}$$

Why 'integral equivalent'?

If
$$\sigma : \mathbb{R}^m \to E$$
 then $(j\sigma)^*\Lambda = (j\sigma)^*\Theta_m$

so that

$$\int_{\mathcal{C}} (j\sigma)^* \Lambda = \int_{\mathcal{C}} (j\sigma)^* \Theta_m.$$

Thus $\Lambda = \Theta_0$ and Θ_m have the same extremals.

Introduction Geometrical background Vector forms Variational problems Home	ogeneous problems
000 0000 00 0000 0000	•••
00 00 00 000	
0 00 00 00 000 0000	0

Euler forms

Let Θ_m be an integral equivalent of Λ .

Define the scalar (m + 1)-form $\mathcal{E}_m \in \Omega^{m+1,0}$ by

 $\mathcal{E}_m = d\Theta_m$

and the vector forms $\mathcal{F}_r \in \Omega^{r+1,m-r}$ by

 $\mathcal{E}_{r} = d\Theta_{r} - (-1)^{r} d_{\mathrm{T}} \Theta_{r+1} \qquad 0 \leq r \leq m-1.$

The forms \mathcal{L}_r are called the *Euler forms* of Θ_m .

Introduction Geometrical background Vector forms Variational problems Home	ogeneous problems
000 0000 00 0000 0000	•••
00 00 00 000	
0 00 00 00 000 0000	0

Euler forms

Let Θ_m be an integral equivalent of Λ .

Define the scalar (m + 1)-form $\mathcal{E}_m \in \Omega^{m+1,0}$ by

 $\mathcal{E}_m = d\Theta_m$

and the vector forms $\mathcal{F}_r \in \Omega^{r+1,m-r}$ by

$$\mathcal{E}_{\mathcal{F}} = d\Theta_{\mathcal{F}} - (-1)^{\mathcal{F}} d_{\mathrm{T}} \Theta_{\mathcal{F}+1} \qquad 0 \leq \mathcal{F} \leq m-1.$$

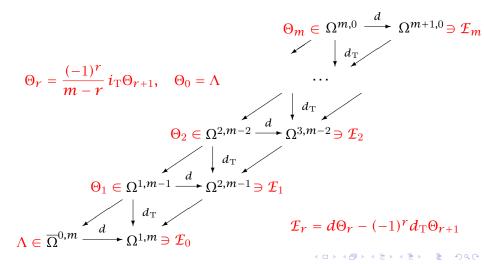
The forms \mathcal{L}_{r} are called the *Euler forms* of Θ_{m} .

By a straightforward calculation

$$\mathcal{E}_r = \frac{(-1)^{r+1}}{m-r} i_{\mathrm{T}} \mathcal{E}_{r+1} \qquad 0 \le r \le m-1.$$

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	00000
00	00	0		000
0	00	00		00000

Equivalents and Euler forms



Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

Lepagian forms

Let Λ be a homogeneous Lagrangian.

Let Θ_r be an equivalent of Λ ($1 \le r \le m$).

Say that Θ_r is *Lepagian* if the corresponding Euler form $\mathcal{E}_0 \in \Omega^{1,m}$ satisfies

$$S\mathcal{E}_0=0,$$

so that \mathcal{E}_0 is horizontal over *E*.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

Lepagian forms

Let Λ be a homogeneous Lagrangian.

Let Θ_r be an equivalent of Λ ($1 \le r \le m$).

Say that Θ_r is *Lepagian* if the corresponding Euler form $\mathcal{E}_0 \in \Omega^{1,m}$ satisfies

$$S\mathcal{E}_0=0,$$

so that \mathcal{E}_0 is horizontal over *E*.

Theorem The vector 1-form

$$\Theta_1 = Pd\Lambda$$

is an integral equivalent of Λ (m = 1) or an intermediate equivalent ($m \ge 2$), and is Lepagian. It is called the *Hilbert* equivalent of Λ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Geometrical background	Vector forms
00	0000	00
00	00	0
0	00	00

Homogeneous problems

The Hilbert equivalent

 $\Theta_1 = P d\Lambda$ is a Lepagian equivalent of $\Lambda = L d^m t$.

Outline of proof: if $\Phi = \phi \otimes d^m t \in \Omega^{1,m}$ use

$$P\Phi = P^{j}\phi \otimes d^{m-1}t_{j}, \qquad P^{j} = \sum_{J} \frac{(-1)^{|J|}}{(|J|+1)J!} d_{J}S^{J+1_{j}}.$$

To show $i_T P d\Lambda = \Lambda$, use: commutators $[i_k, d_j] = 0$, $[i_k^I, S^j] = i_k^{I+1_j}$, homogeneity $i_k^I dL = d_k^I L = 0$ ($|I| \ge 1$), vanishing of S^i on functions $i_k dL$ and $i_k^j dL$, homogeneity again $i_k^j dL = d_k^j dL = \delta_k^j dL$.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

The Hilbert equivalent

 $\Theta_1 = P d\Lambda$ is a Lepagian equivalent of $\Lambda = L d^m t$.

Outline of proof: if $\Phi = \boldsymbol{\phi} \otimes d^m t \in \Omega^{1,m}$ use

$$P\Phi = P^{j}\phi \otimes d^{m-1}t_{j}, \qquad P^{j} = \sum_{J} \frac{(-1)^{|J|}}{(|J|+1)J!} d_{J}S^{J+1_{j}}.$$

To show $S\mathcal{E}_0 = S(d\Lambda - d_T P d\Lambda) = 0$ use: commutators $[S^j, d_i] = \delta_i^j$ to give a collapsing sum so that $Sd_T P(d\Lambda) = S(d\Lambda)$.

If $\widetilde{\Theta}_1$ is another Lepagian vector 1-form equivalent to Λ , with corresponding Euler form $\widetilde{\mathcal{I}}_0$, then

$$\widetilde{\mathcal{E}}_0 = \mathcal{E}_0, \qquad \widetilde{\Theta}_1 - \Theta_1 = d_{\mathrm{T}} \Phi \qquad (\Phi \in \Omega^{r, m-2})$$

duction	Geometrical	backgrour
	0000	
	00	
	00	

Vector forms

Variational problems

Homogeneous problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

The First Variation Formula

Given a variation field X on E with $X|_C = 0$, and its prolongation \hat{X} ,

$$\int_{C} (j\sigma)^{*} d_{\hat{X}} \Lambda = \int_{C} (j\sigma)^{*} di_{\hat{X}} \Lambda + \int_{C} (j\sigma)^{*} i_{\hat{X}} d\Lambda$$
$$= \int_{\partial C} (j\sigma)^{*} i_{\hat{X}} \Lambda + \int_{C} (j\sigma)^{*} i_{\hat{X}} d\Lambda$$
$$= \int_{C} (j\sigma)^{*} i_{\hat{X}} \mathcal{E}_{0} + \int_{C} (j\sigma)^{*} i_{\hat{X}} d_{T} \Theta$$

But

$$\int_{C} (j\sigma)^* i_{\hat{X}} d_{\mathrm{T}} \Theta_1 = \int_{C} (j\sigma)^* d_{\mathrm{T}} i_{\hat{X}} \Theta_1 = \int_{C} d(j\sigma)^* i_{\hat{X}} \Theta_1 = 0$$

because prolongations commute with total derivatives. Thus

$$\int_C (j\sigma)^* d_{\hat{X}} \Lambda = \int_C (j\sigma)^* i_{\hat{X}} \mathcal{E}_0 = \int_C (j\sigma)^* i_X \mathcal{E}_0$$

because \mathcal{E}_0 is horizontal over E.

Introduction	Geometrical backgroun	d Vector for
00	0000	00
00	00	0
0	00	00

Homogeneous problems

A D F A B F A

Integral equivalents for $m \ge 2$

Let $\Lambda = L d^m t$ be a homogeneous Lagrangian with $m \ge 2$, and write its Hilbert equivalent Θ_1 as

$$\Theta_1 = \vartheta^i \otimes d^{m-1}t_i;$$

the scalar 1-forms ϑ_i are called the *Hilbert forms* of Λ .

If Λ never vanishes, define the Carathéodory equivalent $\widetilde{\Theta}_m \in \Omega^{m,0}$ by

$$\widetilde{\Theta}_m = \frac{1}{L^{m-1}} \bigwedge_{i=1}^m \mathfrak{P}^i.$$

Theorem The Carathéodory equivalent $\widetilde{\Theta}_m$ is an integral equivalent of Λ .

Introduction	Geometrical background	Ve
00	0000	00
00	00	0
0	00	00

tor forms

Variational problems

Homogeneous problems

The Carathéodory equivalent

Given $\widetilde{\Theta}_m = (1/L^{m-1}) \mathfrak{P}^1 \wedge \cdots \wedge \mathfrak{P}^m$, we must show that

$$i_{\mathrm{T}}^{m}\widetilde{\Theta}_{m} = (-1)^{m(m-1)/2} m! \Lambda.$$

Outline of proof, using $i_k \vartheta^i = \delta^i_k L$: suppose

$$i_{\mathrm{T}}^{s} \widetilde{\Theta}_{m} = \frac{(-1)^{s(2m-s-1)/2}}{(m-s)!L^{m-s-1}} \left\{ \sum_{\sigma \in S_{m}} (-1)^{\sigma} \mathfrak{g}^{\sigma(1)} \wedge \dots \wedge \mathfrak{g}^{\sigma(m-s)} \otimes dt^{\sigma(m-s+1)} \wedge \dots \wedge dt^{\sigma(m)} \right\}$$

(where S_m is the permutation group) and use induction.

The variation formula for $\widetilde{\Theta}_m$

From the induction formula

$$i_{\mathrm{T}}^{m-1}\widetilde{\Theta}_m = (-1)^{m(m-1)/2} (m-1)! \Theta_1$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where Θ_1 is the Hilbert equivalent.

The variation formula for $\widetilde{\Theta}_m$

From the induction formula

$$i_{\mathrm{T}}^{m-1}\widetilde{\Theta}_m = (-1)^{m(m-1)/2} (m-1)!\Theta_1$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where Θ_1 is the Hilbert equivalent. Thus $\widetilde{\Theta}_m$ is Lepagian.

00 0000 00 000 0000	eneous p
	5
00 00 0 00 000	
0 00 00 00 0000	

The variation formula for $\tilde{\Theta}_m$

problems

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From the induction formula

$$i_{\mathrm{T}}^{m-1}\widetilde{\Theta}_m = (-1)^{m(m-1)/2} (m-1)!\Theta_1$$

where Θ_1 is the Hilbert equivalent. Thus $\widetilde{\Theta}_m$ is Lepagian.

Then, as $d\Theta_m = \mathcal{E}_m$, $\int_C (j\sigma)^* d_Y \Theta_M = \int_C (j\sigma)^* i_Y \mathcal{E}_m$ $= \int_C (j\sigma)^* i_Y \mathcal{E}_0$

for any vector field Y on $\mathring{T}_{(m)}^k E$ vanishing on $j\sigma(\partial C)$, because contractions by vector fields anticommute, so that $i_T^m i_Y \mathcal{E}_m = (-1)^m i_Y i_T^m \mathcal{E}_m$.

Introduction	Geometrical background
00	0000
00	00
0	00

Vector forms

Variational problems

Homogeneous problems

Another integral equivalent

Let Λ be a *first-order* Lagrangian, and put

 $\Theta_{r+1} = (-1)^r P d\Theta_r \qquad (1 \le r < m) \,.$

Introduction	Geometrical background	Vector forms	Variational problems	He
00	0000	00	0000	00
00	00	0		00
0	00	00		00

Homogeneous problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Another integral equivalent

Let Λ be a *first-order* Lagrangian, and put

 $\Theta_{r+1} = (-1)^r P d\Theta_r \qquad (1 \le r < m) \,.$

Each Θ_r is a first-order vector form.

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

Another integral equivalent

Let Λ be a *first-order* Lagrangian, and put

$$\Theta_{r+1} = (-1)^r P d\Theta_r \qquad (1 \le r < m) \,.$$

Each Θ_r is a first-order vector form.

Using commutator relations, we obtain

$$\Theta_r = \frac{(-1)^r}{m-r} \, i_{\rm T} \Theta_{r+1}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q (>

so that Θ_m is a Lepagian integral equivalent of Λ , the *fundamental equivalent* of Λ .

Introduction	Geometrical background	Vector forms	Variational problems	Homogeneous problems
00	0000	00	0000	000000
00	00	0		000
0	00	00		00000

Another integral equivalent

Let Λ be a *first-order* Lagrangian, and put

$$\Theta_{r+1} = (-1)^r P d\Theta_r \qquad (1 \le r < m) \,.$$

Each Θ_r is a first-order vector form.

Using commutator relations, we obtain

$$\Theta_r = \frac{(-1)^r}{m-r} \, i_{\rm T} \Theta_{r+1}$$

so that Θ_m is a Lepagian integral equivalent of Λ , the *fundamental equivalent* of Λ .

Thus $d\Theta_m = \mathcal{E}_m = 0$ if, and only if, $\mathcal{E}_0 = 0$.

Introduction	Geometrical background
00	0000
00	00
0	00

Vector forms

Variational problems

Homogeneous problems

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Other matters

- Regularity
- Symmetry
- Helmholtz equations