Liouville structures

Włodzimierz. M. Tulczyjew and Paweł Urbański

urbanski@fuw.edu.pl

Faculty of Physics University of Warsaw

DARBOUX's THEOREM

Darboux, G., Sur le problème de Pfaff, Bull. Sci. Math 6 (1882)

DARBOUX's THEOREM

Darboux, G., Sur le problème de Pfaff, Bull. Sci. Math 6 (1882)

Let (M, ω) be a symplectic manifold of dimension 2n. Every point a of M has an open neighbourhood U, which is the domain of a chart (U, φ) with local coordinates x^1, \ldots, x^{2n} , such that the 2-form ω has the local expression

$$\omega = \sum_{i=1}^{n} \mathrm{d}x^{n+i} \wedge \mathrm{d}x^{i}$$

on U.

But...

the symplectic structure is not the only important structure of a cotangent fibration.

But...

the symplectic structure is not the only important structure of a cotangent fibration.

A structure isomorphic to a cotangent vector fibration is an essential ingredient of every variational formulation of a physical theory.

But...

the symplectic structure is not the only important structure of a cotangent fibration.

A structure isomorphic to a cotangent vector fibration is an essential ingredient of every variational formulation of a physical theory.

For reasons of interpretation this structure can not be replaced by the corresponding cotangent fibration.

Definition

A Liouville structure is a vector fibration isomorphism

This is a preliminary definition.

Let

be a vector fibration.

Let

be a vector fibration. There is a canonical symplectomorphism

 $\mathsf{T}^*E\longleftrightarrow\mathsf{T}^*E^*$

There are TWO different Liouville structures on T^*E .

Let (P, ω) be a symplectic manifold.

Let (P, ω) be a symplectic manifold. $(TP, d_T\omega)$ is also a symplectic manifold.

 $\mathrm{d}_\mathsf{T} = \mathrm{i}_\mathsf{T}\mathrm{d} + \mathrm{d}\mathrm{i}_\mathsf{T}$

Let (P,ω) be a symplectic manifold. $(\mathsf{T} P,\mathrm{d}_\mathsf{T}\omega)$ is also a symplectic manifold.

 $\mathrm{d}_\mathsf{T} = \mathrm{i}_\mathsf{T}\mathrm{d} + \mathrm{d}\mathrm{i}_\mathsf{T}$

We have a vector bundle isomorphism, which is also a symplectomorphism

Linear forms

Let

be a vector fibration.

Linear forms

Let

be a vector fibration.

A form μ on E is linear if $\mathcal{L}_Z \mu = \mu$, where Z is the Euler vector field on E.

Linear forms

Let

be a vector fibration.

A form μ on E is linear if $\mathcal{L}_Z \mu = \mu$, where Z is the Euler vector field on E.

A 1-form ϑ is linear if it is a linear mapping of vector fibrations

A 2-form μ is linear if the associated linear map $\widetilde{\mu}$

is also a linear mapping of vector fibrations

Alternative definitions of a Liouville structure

• A bilinear non degenerate pairing

$$\langle , \rangle : P \times_{(\pi, \tau_Q)} \mathsf{T} Q \to \mathbb{R}.$$

 $\langle \alpha(p), v \rangle_Q = \langle p, v \rangle.$

Alternative definitions of a Liouville structure

• A bilinear non degenerate pairing

$$\langle , \rangle : P \times_{(\pi, \tau_Q)} \mathsf{T}Q \to \mathbb{R}$$

$$\langle \alpha(p), v \rangle_Q = \langle p, v \rangle.$$

• Linear symplectic form ω on P.

$$\langle , \rangle : P \times_{(\pi,\tau_Q)} \mathsf{T}Q \to : (p,v) \mapsto \omega(\chi_{\pi}(O_{\pi}(\pi(p)), p), \mathsf{T}O_{\tau_Q}(v)).$$

Here $\alpha^* \omega_Q = \omega$.

Alternative definitions of a Liouville structure

• A bilinear non degenerate pairing

$$\langle , \rangle : P \times_{(\pi, \tau_Q)} \mathsf{T}Q \to \mathbb{R}$$

$$\langle \alpha(p), v \rangle_Q = \langle p, v \rangle.$$

• Linear symplectic form ω on P.

$$\langle , \rangle : P \times_{(\pi,\tau_Q)} \mathsf{T}Q \to : (p,v) \mapsto \omega(\chi_{\pi}(O_{\pi}(\pi(p)), p), \mathsf{T}O_{\tau_Q}(v)).$$

- Here $\alpha^* \omega_Q = \omega$.
- Linear and vertical 1-form ϑ (a Liouville form) with non degenerate

$$\omega = \mathrm{d}\vartheta.$$

Here $\alpha^* \vartheta_Q = \vartheta$.

We have to show that

$$\alpha^*\vartheta_Q = \vartheta.$$

We have to show that

$$\alpha^*\vartheta_Q = \vartheta.$$

The form $\vartheta - \alpha^* \vartheta_Q$ is linear, vertical, and closed.

We have to show that

$$\alpha^*\vartheta_Q = \vartheta.$$

The form $\vartheta - \alpha^* \vartheta_Q$ is linear, vertical, and closed. A closed linear form is the differential of a linear form.

$$\vartheta - \alpha^* \vartheta_Q = \mathrm{d}f.$$

We have to show that

$$\alpha^*\vartheta_Q = \vartheta.$$

The form $\vartheta - \alpha^* \vartheta_Q$ is linear, vertical, and closed. A closed linear form is the differential of a linear form.

$$\vartheta - \alpha^* \vartheta_Q = \mathrm{d}f.$$

f is linear, df is vertical, hence f = 0.

Relations

A vector fibration relation is differential relation of fibrations

such that for each $(q',q) \in \operatorname{graph}(\sigma)$ the set $\operatorname{graph}(\rho) \cap (P'_{q'} \times P_q)$ is a vector subspace of $P'_{q'} \times P_q$.

Relations

A vector fibration relation is differential relation of fibrations

such that for each $(q',q) \in \operatorname{graph}(\sigma)$ the set $\operatorname{graph}(\rho) \cap (P'_{q'} \times P_q)$ is a vector subspace of $P'_{q'} \times P_q$. A Liouville structure morphism is a

vector fibration relation such that one of the following conditions is satisfied:

• If the Liouville structures are characterized by symplectic forms ω and ω' , then the relation ρ is a symplectic relation from (P, ω) to (P', ω') .

- If the Liouville structures are characterized by symplectic forms ω and ω' , then the relation ρ is a symplectic relation from (P, ω) to (P', ω') .
- If the Liouville structures are characterized by Liouville forms θ and θ', then the dimension of graph(ρ) is equal to the dimension of Q' × Q. and

 $(\vartheta' \ominus \vartheta)|\operatorname{graph}(\rho) = 0.$

- If the Liouville structures are characterized by symplectic forms ω and ω' , then the relation ρ is a symplectic relation from (P, ω) to (P', ω') .
- If the Liouville structures are characterized by Liouville forms *θ* and *θ'*, then the dimension of graph(*ρ*) is equal to the dimension of *Q'* × *Q*. and

 $(\vartheta' \ominus \vartheta)|\operatorname{graph}(\rho) = 0.$

• If the Liouville structures are characterized by

Propositions

Proposition. Let $\pi : P \to Q$ be a vector fibration. If K is a closed submanifold of P such that for each $q \in C = \pi(K)$ the intersection $K_q = K \cap P_q$ of K with $P_q = \pi^{-1}(q)$ is a vector subspace of P_q , then C is a submanifold of Q and the dimension of K_q is locally constant and the mapping

 $\overline{\pi}: K \to C: p \mapsto \pi(p)$

is a vector fibration.

Propositions

Proposition. Let $\pi : P \to Q$ be a vector fibration. If K is a closed submanifold of P such that for each $q \in C = \pi(K)$ the intersection $K_q = K \cap P_q$ of K with $P_q = \pi^{-1}(q)$ is a vector subspace of P_q , then C is a submanifold of Q and the dimension of K_q is locally constant and the mapping

 $\overline{\pi}: K \to C: p \mapsto \pi(p)$

is a vector fibration.

Proposition. If K is a submanifold of the cotangent bundle T^*Q with the properties

- 1. the dimension of K is equal to the dimension of Q,
- 2. for each $q \in C = \pi_Q(K)$ the intersection $K_q = K \cap \mathsf{T}_q^*Q$ of K with the fibre $\mathsf{T}_q^*Q = \pi_Q^{-1}(q)$ is a vector subspace of the fibre,
- 3. the Liouville form ϑ_Q vanishes on TK,

then $C \subset Q$ is a submanifold and $K = \mathsf{T}^{\circ}C$.

Propositions

Proposition. Let $\pi : P \to Q$ be a vector fibration. If K is a closed submanifold of P such that for each $q \in C = \pi(K)$ the intersection $K_q = K \cap P_q$ of K with $P_q = \pi^{-1}(q)$ is a vector subspace of P_q , then C is a submanifold of Q and the dimension of K_q is locally constant and the mapping

 $\overline{\pi}: K \to C: p \mapsto \pi(p)$

is a vector fibration.

Proposition. If K is a submanifold of the cotangent bundle T^*Q with the properties

- 1. the dimension of K is equal to the dimension of Q,
- 2. for each $q \in C = \pi_Q(K)$ the intersection $K_q = K \cap \mathsf{T}_q^*Q$ of K with the fibre $\mathsf{T}_q^*Q = \pi_Q^{-1}(q)$ is a vector subspace of the fibre,
- 3. the Liouville form ϑ_Q vanishes on TK,

then $C \subset Q$ is a submanifold and $K = \mathsf{T}^{\circ}C$.

A morphism of Liouville structures is the 'phase lift' of a differential relation between base manifolds.

The tangent functor

The tangent functor T associates the structure

$$(\mathsf{T}P, \mathsf{d}_T\vartheta)$$
$$\mathsf{T}\pi \bigvee_{\mathsf{T}Q}$$

with a Liouville structure

 (P, ϑ) $\pi \downarrow$ Q

and the morphism

with a Liouville structure morphism

The Hamilton functor

The *Hamilton functor* H is a covariant functor from the category of symplectic manifolds to the category of Liouville structures.

The Hamilton functor

The *Hamilton functor* H is a covariant functor from the category of symplectic manifolds to the category of Liouville structures.

It associates the Liouville structure

$$(\mathsf{T}P,\mathsf{i}_T\omega)$$

$$\tau_P \bigg|_{P}$$

with a symplectic manifold (P, ω) .

and the morphism

$$(\mathsf{T}P, \mathbf{i}_{T}\omega) \xrightarrow{\mathsf{T}\varphi} (\mathsf{T}P', \mathbf{i}_{T}\omega')$$

$$\mathsf{T}\pi \bigvee_{P} \xrightarrow{\varphi} P' \qquad (237)$$

with a symplectomorphism $\varphi : (P, \omega) \to (P', \omega')$.

Generating functions

A Liouville structure offers the possibility of generating from generating objects subsets of a symplectic manifold (P, ω) for which the Liouville structure is established. Such subsets are usually Lagrangian submanifolds.

Generating functions

A Liouville structure offers the possibility of generating from generating objects subsets of a symplectic manifold (P, ω) for which the Liouville structure is established. Such subsets are usually Lagrangian submanifolds.

An example of a generating object is a constrained generating function

 $U: C \to \mathbb{R},$

defined on a submanifold of $C \subset Q$. The set

$$S = \left\{ f \in P \; ; \; \pi_Q(f) \in C \text{ and } \bigvee_{\delta q \in \mathsf{T}C} \text{ if } \tau_Q(\delta q) = \pi(f), \right.$$

then $\langle f, \delta q \rangle = \langle \mathrm{d}U, \delta q \rangle_C \}$

is the Lagrangian submanifold of (P, ω) generated by the constrained function U. This submanifold is an affine bundle over C, modelled on the vector bundle $T^{\circ}C$.

Let

be Liouville structures derived from a Liouville structure

 (P,ϑ) $\pi \bigg|_{Q}$

The pairing

$$\langle , \rangle : P \times_{(\pi, \tau_Q)} \mathsf{T}Q \to \mathbb{R}$$

is a differentiable function defined on the submanifold $P \times_{(\pi,\tau_Q)} \mathsf{T} Q \subset P \times \mathsf{T} Q$ and the diagonal Δ of $\mathsf{T} P \times \mathsf{T} P$ is the graph of the identity symplectomorphism in $(\mathsf{T} P, \mathrm{d}_T \omega)$.

The pairing

$$\langle , \rangle : P \times_{(\pi, \tau_Q)} \mathsf{T}Q \to \mathbb{R}$$

is a differentiable function defined on the submanifold $P \times_{(\pi,\tau_Q)} \mathsf{T} Q \subset P \times \mathsf{T} Q$ and the diagonal Δ of $\mathsf{T} P \times \mathsf{T} P$ is the graph of the identity symplectomorphism in $(\mathsf{T} P, \mathrm{d}_T \omega)$.

The diagonal Δ is generated by the function $-\langle \ , \ \rangle$.