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Credo

* A master model for all variational principles of classical
physics is provided by the principle of virtual work well
known In statics of mechanical systems.
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Credo

A master model for all variational principles of classical

physics is provided by the principle of virtual work well
known In statics of mechanical systems.

* Ingredients:

© configuration manifold @),
o constrained set C' c TQ,
o virtual work function o: C! — R,
* with the properties:
o foreach g € C° = 7¢(C') theset C; =T,QNC'is a
cone, i.e. Av € C; foreachv e Cj, A >0,

° virtual work function is positive homogeneous, i.e.
o: (Av) = Ao(v) for A > 0.
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The principle of virtual work

IS Incorporated in the definition of the constitutive set

S={f eT'Q;q=mq(f) € C°, Yoec: a(v) — (f,v) > 0}.
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The main reference

Wiodzimierz M. TULCZYJEW
"The Origin of Variational Principles"

Banach Center Publications 59, "Classical and Quantum
Integrability”, Warszawa 2003
also math-ph/0405041
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Legendre-Fenchel transformation

Let
o: C — R

be a positive homogeneous function defined on a cone C'in a
vector space V.
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Legendre-Fenchel transformation

Let
o: C — R

be a positive homogeneous function defined on a cone C'in a
vector space V.
The set

S ={F € V*; Yoec o(v) — (f,v) > 0}

IS the Legendre-Fenchel transform of o.
The constitutive set S derived from the work function o Is
obtained by applying the Legendre-Fenchel transformation to
functions

0q: C’; — R.

The Legendre-Fenchel transforms S, are then combined

S=|J &

qeCP°

Madrid, 6.09.2006 — p. 5/1



The inverse Legendre-Fenchel transformation

Let S be a subset of V*. We introduce the set

C' ={v e V;sup (f,v) < c}.
fes
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The inverse Legendre-Fenchel transformation

Let S be a subset of V*. We introduce the set

C' ={v e V;sup (f,v) < c}.

Jes

and the function

o: C — sup (f,v)
fes
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Properties of the L-F transformation

* The L-F transform .S of a positive homogeneous function
o: C' — R is convex and closed.

* The inverse L-F transform o: C' — R of a subset S ¢ V* is
convex and closed (the overgraph of o is closed).

* The L-F transformation and the inverse L-F transformation
establish a one to one correspondence between positive
homogeneous closed convex functions defined on cones In

V' and non empty closed convex subsets of V*.

It follows that the constitutive set
provides a complete characterization of

a convex static system
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Partially controlled systems

There is the internal configuration space () and the control
configuration space

Q , (1)
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Partially controlled systems

There is the internal configuration space () and the control
configuration space

=

@ - R ’ (4)
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Q
The constitutive set S derived from the potential U

o = {f < T*Q§ 366@ 77(6) — WQ(f)7v6€T§§ <dU7 6> — <f7 TU(@»}

Madrid, 6.09.2006 — p. 8/1



Partially controlled systems

There is the internal configuration space () and the control
configuration space

=

@ - R ’ (5)
!

Q
The constitutive set S derived from the potential U

o = {f < T*Q§ 3566 77(6) — WQ(f)7v6€T§§ <dU7 6> — <f7 TU(@»}

A point g € Q 'contributes’ to S if and only if (dU,v) = 0 for each
vertical v € T7Q.
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Generating families

The potential U is interpreted as a family of functions defined on
fibres of the fibration 7.
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Generating families

The potential U is interpreted as a family of functions defined on
fibres of the fibration 7.

The family (U, n) is called a generating family of the set S.
The critical set of the family (U, n):

Cr(U,n) = {q € Q; Voer.g I Tn(@) =0 then (dU,v) = 0}
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Convex generating families

Simplified version, without constraints.
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Convex generating families

Simplified version, without constraints.
@ -
!
Q

For each g the function 77: TgQ — R is convex.

Ql

TQ >R, (7)

Q
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Convex generating families

Simplified version, without constraints.
@ -
!
Q

For each g the function 77: TgQ — R is convex.

|
al

TQ >R, (8)

Q

S={f¢€ T*Q§ EI@E@ n(q) = WQ(f)7v6€Ta§ \0,7) 2 {f, Tn(@)) }
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Convex generating families

Simplified version, without constraints.
@ -
!
Q

For each g the function 77: TgQ — R is convex.

|
Ql

TQ >R, 9)

Q

S={f¢€ T*Q§ 3666 n(q) = WQ(f)7v6€Ta§ \0,7) 2 {f, Tn(@)) }

The critical set

Cr(@,n) = {7 € Q; Vet If Tn(@) =0 then &(v) > 0}
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Convex generating families

'Contribution’ of g € Cr(a,n) to S

Sq=1{f € T°Qimq(f) = (@), Yyer.5 (7,7) = (f, (D))}
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Convex generating families

'Contribution’ of g € Cr(a,n) to S

Sq=1{f € T°Qimq(f) = (@), Yyer.5 (7,7) = (f, (D))}

Proposition.
Sg={f € T"Q;mq(f) =n(q) = ¢ Vser,q (05, v) = (f,v)}
where

o5: TqQ — R: v — il%fﬁ(@), v € T7Q, Tn(v) = v.
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Convex generating families

'Contribution’ of g € Cr(a,n) to S

Sq=1{f € T°Qimq(f) = (@), Yyer.5 (7,7) = (f, (D))}

Proposition.

Sg = {fe T*Q57TQ(f) =n(q) = q, VﬂeTqQ <0§, v) 2 (f,v)}

where

o5: TqQ — R: v — il%fﬁ(@), v € T7Q, Tn(v) = v.

og IS well defined and convex.

If Cr(@,n) is a section of n, the family (7, n) can be reduced to a
functiono: TQ — R
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Example 1

A point with configuration ¢; Is tied to a fixed point gg with a
spring of spring constant k. Points ¢; and ¢, are tied with a

spring of spring constant k,. The point ¢; Is subject to friction
and left free.

n: (C]1,CI2) = (CI2)
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Example 1

A point with configuration ¢; Is tied to a fixed point gg with a
spring of spring constant k. Points ¢; and ¢, are tied with a
spring of spring constant k,. The point ¢; Is subject to friction
and left free.

n: (C]1,CI2) = (CI2)

The work form of the system is

V(q1, q2,v1,v2) = k1(q1 — qo|v1) + pl|vi|| + k2(g2 — q1|ve — v1)

A point (q1, ¢q2) is critical if ||k1(qg1 — qo) + k2(q1 — q2)|| < p
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Example 1

For a critical point (¢, g2)

iﬂf’l?(gla q2, V1, UQ) — ]CQ(QQ o Q1‘U2)

V1
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Example 1

For a critical point (¢, g2)

iﬂf’l?(gla q2, V1, UQ) — kQ(QQ o Q1‘U2)

V1

S(Ql;QQ) — {f — k2(Q2 — Q1)}.
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Example 2

A point with configuration ¢; Is tied to a fixed point gg with a
spring of spring constant k. Points ¢; and ¢, are tied with a

spring of spring constant k,. The point ¢; Is left free and point ¢
IS subject to friction.

n: (CI1,(12) = (QQ)
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Example 2

A point with configuration ¢; Is tied to a fixed point gg with a
spring of spring constant k. Points ¢; and ¢, are tied with a

spring of spring constant k,. The point ¢; Is left free and point ¢
IS subject to friction.

n: (CI1,(12) = (QQ)

The work form of the system is

¥ (q1,q2,v1,v2) = k1(q1 — qo|v1) + pl|ve|| + k2(g2 — q1|ve — v1)
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Example 2

A point with configuration ¢; Is tied to a fixed point gg with a
spring of spring constant k. Points ¢; and ¢, are tied with a

spring of spring constant k,. The point ¢; Is left free and point ¢
IS subject to friction.

n: (CI1,(12) = (QQ)

The work form of the system is
V(q1,q2,v1,v2) = k1(q1 — qolv1) + pl|ve|| + k2(g2 — q1|v2 — v1)
There is one critical point in a fibre

ko
k1 + ko

q1 = qo + (g2 — qo0)-
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Example 2

For a critical point (¢, g2)

k1ko
k1 + ko

inf J(q1, g2, v1,v2) = pflva + (g2 — q1|v2)
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Example 2

For a critical point (¢, g2)

k1 ko
k1 + ko

inf J(q1, g2, v1,v2) = pflva + (g2 — q1|v2)

The family can be reduced to the function

k1ko
k1 + ko

(q2,v2) — pllva|l + (g2 — q1]|v2).
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Convex relation

Let a relation R: T*Q; — T*Q4 be generated by a convex
function G: TK — R, K C Q1 X ()9, i.€.

be R(a)if (b,ve) — (a,v1) < G(vy,v2)
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Convex relation

Let a relation R: T*Q; — T*Q4 be generated by a convex
function G: TK — R, K C Q1 X ()9, i.€.

be R(a)if (b,ve) — (a,v1) < G(vy,v2)

Let D C T*Q, be generated by a function o: TC; — R.

Theorem. Let K and C'; X ()2 have clean intersection and let
Y = KN (C1 x Q2) then the family

P TY — R: (C]1aQ27’UlaU2) — G(QlaQQavhUQ) =+ O_(/Ul)

is a generating family of R (D).
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Application

Legendre transformation for dissipative systems.
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