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MOTTO

”Tis much better to do a little with certainty

& leave the rest for others that come after,

than to explain all things by conjecture

without making sure of any thing.”

Isaak Newton
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HENDRIK BRUGT GERHARD
CASIMIR (1909 - 2000)

H. B. G. Casimir
"On the attraction between two perfectly conducting
plates"
Proc. K. Ned. Akad. Wet. 51, 793-795 (1948).
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H. B. G. Casimir, D. Polder
"The influence of retardation on the London-van der
Waals forces"
Phys. Rev. 73, 360-372 (1948).
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TYPES OF THE CASIMIR EFFECT

electromagnetic

in quantum field theory

in particle physics

in cosmology

in critical phenomena

dynamical Casimir effect
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STATING THE PROBLEM:

Derive the Casimir effect in an imperfect (interacting) Bose
gas filling the volume contained between two infinite
parallel plane walls.
Hamiltonian of the imperfect Bose gas:

H = H0 +
a

V

N 2

2

H0 = kinetic energy (perfect gas Hamiltonian)
a/V > 0 =repulsive mean-field interaction per pair of
bosons
V = volume occupied by the system.
H is superstable!
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METHOD OF ANALYSIS

Bose gas occupies volume V = L2D of a rectangular box
with linear dimensions L× L×D .
D denotes the distance between two L× L square walls.
The excess grand canonical free energy per unit wall area
is defined by

ωs(T,D, µ) = lim
L→∞

[

Ω(T, L,D, µ)

L2

]

−Dωb(T, µ)

where ωb(T, µ) denotes the grand canonical potential per
unit volume evaluated in the thermodynamic limit.
The Casimir force equals

F (T,D, µ) = −∂ωs(T,D, µ)

∂D
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BOUNDARY CONDITIONS

One-particle kinetic energy ǫ(k) = (k2
x + k2

y + k2
z)~

2/2m

z-axis perpendicular to L× L walls

periodic

kz =
2π

D
nz, nz = 0,±1,±2, ...

Dirichlet
kz =

π

D
nz, nz = 1, 2, ...

Neumann
kz =

π

D
nz, nz = 0, 1, 2, ...

kx, ky -periodic b.c.
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IMPORTANT RELATION

Grand canonical potential

Ω(T, L,D, µ) = −kBT ln Ξ(T, L,D, µ)

Ξ(T, L,D, µ) is related to the analytic continuation of the
perfect gas partition function Ξ0 by

Ξ(T, L,D, µ) = exp

[

βL2D

2a
µ2

]

√

L2Dβ

2πa

×(−i)

∫ α+i∞

α−i∞

dt exp

[

βL2D

a

(

t2

2
− tµ

)]

Ξ0(T, L,D, t)

(α < 0)
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BULK PROPERTIES OF THE
IMPERFECT BOSE GAS

The bulk grand canonical free-energy density

ωb(T, µ) = − lim
L→∞

1

L3
kBT ln Ξ(T, L, L, µ) = −p(T, µ)

can be calculated with the use of the steepest descent
method.
If µ < µc = an0,c

p(T, µ) =
1

2
an2(T, µ) + p0(T, µ− an(T, µ))

where n(T, µ) is the unique solution of the equation

n = n0(T, µ− an)
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BULK PROPERTIES OF THE
IMPERFECT BOSE GAS

If µ > µc = an0,c

p(T, µ) =
µ2

2a
+ p0(T, 0)

In the two-phase region

n =
µ

a

and the density of condensate is equal to
( µ

a
− n0,c

)
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IMPERFECT BOSE GAS:
CONDENSATION

ζ(3/2)

DENSITY OF CONDENSATE
[ m− ζ(3/2) ]

n = m

m ≥ ζ(3/2)

= λ3ρ

= βµ
-2 -1 0 1 2 3 4

m

1

2

3

4

n

βa/λ3
= 1
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CASIMIR FORCE: PERIODIC
BOUNDARY CONDITIONS

The steepest descent method yields the asymptotic form of
the excess free energy density. The Casimir force in the
one-phase region near the condensation point equals

F (T,D, µ)

kBT
= − 1

πD3
[2Ψ(x) − xΨ′(x) ]

with

Ψ(x) =

∞
∑

n=1

1 + 2nx

n3
exp(−2nx)

x =
D

κper

, κper == λ
anc

(anc − µ)

2π1/2

ζ(3/2)
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CASIMIR FORCE IN THE PRESENCE
OF CONDENSATE

In the two-phase region (in the presence of condensate)
one observes a power-law decay

F (T,D, µ)

kBT
= −2ζ(3)

π

1

D3
, µ > anc

exactly the same, and with the same amplitude as in the
perfect Bose gas.
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IMPERFECT AND PERFECT GAS:
COMPARING CRITICAL BEHAVIOR

Divergence of the range of exponential forces at the
approach to condensation:

imperfect (mean-field) Bose gas

κ ∼ (anc − µ)−1

perfect Bose gas
κ0 ∼ (−µ)−1/2
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ONE-PARTICLE DENSITY MATRIX
FOR α = −µ/KBT > 0

THE CASE OF A PERFECT GAS:

< x2|ρ̂1|x1 >= F (|x2 − x1|)

λ3F (x) =

∞
∑

j=1

1

j3/2
exp

[

−α j − πx2

jλ2

]

=
λ

x
exp

(

−2

√
πα x

λ

)

+
∞
∑

s=1

λ

x
exp

[

−A+(s)
x

λ

]

2 cos
[

−A−(s)
x

λ

]

with

A±(s) =
√
2π(α2 + 4π2s2)1/4

[

1± α

(α2 + 4π2s2)1/2

]

.
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BULK CORRELATION LENGTH AND
RANGE OF CASIMIR FORCES

Correlation function of a perfect Bose gas

λ6[n2(r;µ, T )− n2] =

[

∞
∑

j=1

1

j3/2
exp

[

−α j − πr2

jλ2

]

]2

α = −µ/kBT, λ = h/
√

2πmkBT

Large distance (r ≫ λ) asymptotics

λ6[n2(r;µ, T )− n2] ∼=
(

λ

r

)2

exp

(

− r

ξ0(µ)

)

.

ξ0(µ) =
h

4π
√
2m

1√−µ
= range of Casimir force !
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PAIR CORRELATIONS IN AN
IMPERFECT BOSE GAS

The hierarchy equations for the thermodynamic Green
functions in the one-phase region µ < anc imply the
equality between the imperfect gas correlation function and
the perfect gas correlation function calculated for the
shifted chemical potential [µ− an(T, µ)].
The range of exponentially decaying correlations equals

ξimp =
λ

4

(

− kBT

π[µ− an(T, µ)]

)1/2

and diverges ∼ λ

2ζ(3/2)

(

1− µ

an0,c

)−1

,

when µ approaches its critical value µc = an0,c from below.
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ELEMENTS OF CALCULATION

Knowledge of the asymptotic behavior of Bose functions

gr(α) =
∞
∑

q=1

exp(−αq)

qr

when α → 0

g1/2(α) ∼=
√

π

α
, g−1/2(α) ∼=

1

α

√

π

α

permits to evaluate derivatives of the density with respect
to the chemical potential at the condensation point
µ = µimp,c = nca .
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BULK CORRELATIONS AND
CASIMIR FORCES

κ = range of Casimir forces.
ξ = range of bulk correlations

perfect gas
κ0,periodic = 2κ0,Dirichlet = 2κ0,Neumann = ξ0

critical exponent ν = 1/2

imperfect (mean field) gas
κperiodic = 2κDirichlet = 2κNeumann = 2

√
πξ

critical exponent ν = 1
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