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A generalized version of magnetostatics in differentiable manifolds is formulated. Different boundary value
problems are treated as different representations of the same object as graphs of self-adjoint mappings. The
Hodge theorem for a domain with the local segment property is proved.

Introduction

This paper adapts to magnetostatics the general approach to linear field theories
outlined in References 12 and 13. The main idea of this approach is to treat different
boundary value problems as different representations of the same object as graphs
of self-adjoint mappings from Hilbertizable spaces to their duals. A generalized
version of magnetostatics in differential manifolds instead of affine spaces is for-
mulated. The potential can be a form of any degree. Only continuous operators
appear in this formulation of magnetostatics. Consequently, difficulties typical for
formulations based on unbounded operators are avoided.6'7'10'14 In contrast to
standard approaches, no use of Riemannian metrics is made. This results in a clearer
conceptual structure and simpler proofs of fundamental theorems. One of the
theorems establishes the relation between the dimensions of spaces of harmonic forms
and the dimensions of the de Rham cohomology spaces for domains with the local
segment property. A similar theorem for domains with the global segment property
was obtained by Picard.7'8

This work is a contribution to the programme of symplectic formulations of field
theories conducted jointly with Professor Tulczyjew. The major part of this work was
completed at the Istituto di Fisica Matematica 'J.-L. Lagrange' of Torino and was
supported by Gruppo Nazionale per la Fisic Matematica del C.N.R. The author is
greatly indebted to Professor Galletto and Professor Benenti for hospitality and
encouragement. Discussions with Professor Picard helped to eliminate serious
misconceptions.

0170-4214/88/040427-11S05.50 Received 8 January 1987
© 1988 by B. G. Teubner Stuttgart-John Wiley & Sons, Ltd.



428 P. Urbanski

1. A geometric formulation of electro- and magneto-statics

Let us consider the de Rham complex on a smooth, real manifold M of dimension
m:

O^R-*C°(M)^C1(M)^.C2(M)^. . . Cm(M)-»0.

Let Q be a compact m-dimensional submanifold of M with a boundary. For each
0</c<m the de Rham complex induces a sequence of linear operators of
Hilbertizable spaces

where Xq's = Hs(Q; A' T* M) are Sobolev spaces of sections of corresponding bundles.
The sequence of conjugate operators will be denoted by

X 2-X ,"t+1 YA Jc. 1< A k + 1.0* Ak + 2, - 1 >

where Xqs is the space dual to Xq-s. Elements of X 1 ' l ( X ° - 1 ) are interpreted as
magnetic potentials (electrostatic potentials) and elements of A'2 '0 (X1-0) are mag-
netic inductions (electrostatic fields). Elements of X± % 1 (X0 a) and X2io (^1,0) are

electric currents (electric charges) and magnetic fields (displacement density), respecti-
vely. It is known, that Xk<0 can be identified with the space of L2-sections of the
bundle of fc-vector densities on M (if M is oriented this bundle can be replaced by the
bundle of (m — k) forms). The magneto- and electro-statics of a material in the region Q
is a relation between potentials and sources expressed as a linear subspace L of
Xk' l ® Xk j . We list a number of properties of this subspace. The subspace £ is the
graph of a linear, continuous and self-adjoint mapping

and this mapping has the form

\ df\dk,
where

is a linear, continuous, self-adjoint and strictly positive mapping. As a consequence of
self-adjointness both A and A are differentials of positive quadratic functions. Let nk

denote a fibre preserving quadratic mapping of A*+ 1 T*M into the bundle of scalar
densities. This mapping represents the magnetic (electric) permeability of the material.
The mapping A is the differential of the action function

Consequently A is the differential of the function L = L°dk.

Theorem 1.1. For each k (i)ker A = kerd t, (ii)im A = (kerd t)° if and only ifdkXk~i is
closed in Xk+1-°.
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Proof. Since A is positive , ker A = ker dk. Since A is self-adjoint (ker dk)° is the closure
of im A. But im A is closed if and only if the norm induced by L on Xk-l/kerdk is
equivalent to the norm of a quotient space. Because A is strictly positive (defines a
norm equivalent to that of X k + l - ° ) and

dk:Xk'1/kerdk-+Xk+l'°

is an injection, these norms are equivalent if and only if dkXk-1 is closed in Xk+1'°.
Q.E.D.

The equality im A = (ker A)° means that the induced mapping

is an isomorphism. It is reasonable to say that a theory with this property is elliptic,
even if the corresponding Euler-Lagrange operator is not elliptic. The question arises
whether ellipticity is a general property of static (linear) systems. In the case of
generalized magnetostatics a partial answer is given by the following proposition.

Proposition 1.1. Let Q have a smooth boundary. Then d k X k ' 1 is closed in Xk+l>0.

This proposition is a simple consequence of the Kodaira-Morrey decomposition
theorem.5 It is well known14 that in the case of a non-smooth boundary the situation
is much more complicated and that there is no use of the Morrey theory. The question
of the ellipticity of the generalized magnetostatics remains open even in simplest
situations (e.g. domains with edges).

2. Reductions

Let A' be a closed subspace of Xk'l. The mapping

\:=i*M:X->X*,

where i: X -iX*-1 is the canonical injection, will be called the reduced mapping.
We study conditions under which the image of Ax is closed. Reasoning used in the

proof of Theorem 1.1. shows that

Proposition 2.1. im Ax is closed if and only if dk(X) is closed in Xk+l'°.

In the case of a smooth boundary d k X k - l is closed in Xk+1-° and the statement
'dk(X) is closed in xk+1-°' is equivalent to the statement 'image of A" in Xk- l/ker A is
closed'. This proves the following.

Proposition 2.2. Let Q have a smooth boundary. Then im Ax is closed if and only if
X + ker A is closed in X"-1.

There are two cases in which X + ker A is obviously closed:

(i) X c: ker A or, equivalently, (X)° => im A,
(i) X => ker A or, equivalently, (X)° c: im A.

In the following section we discuss special cases of reductions with respect to a
closed subspace X. These reductions correspond to homogeneous Dirichlet-type
boundary value problems for potentials.
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3. Dirichlet-type reductions

Let X"-1 be the closure in A"1-1 of C?(U; A"T*M).

Definition 3.1. The reduction with respect to the closed subspace X <= Xk-i is said to be
of Dirichlet-type if

Proposition 3.1. Let £1 have a smooth boundary. Then the image of A.x is closed for X

equal to Xk'

The proof of this proposition is an immediate consequence of Proposition 2.2.
O

Proposition 3.2. Let £1 have a smooth boundary. If X-Xk'1 then the image of A.x is
closed.

O

Proof. According to Proposition 2.1 it is enough to know that dk(X ' l ) is closed. But
this is indeed the case.5 Q.E.D.

Since d k ( X k ' v ) is closed it follows that X11-1 +kerdk = d k l ( d k ( X k - 1 ) ) is closed.

Theorem 3.1. Let £2 have a smooth boundary. For each Dirichlet-type reduction the
image of the reduced mapping A.x is closed.

Proof. We have dk(X) = d k ( X k - 1 ) because dk(Xk-1 + kerdk) = d k ( X k - 1 ) . Since
d k ( X k ' 1 ) is closed it follows that the image of Ax is closed. Q.E.D.

o

It is well known4 that in the case of a smooth boundary Xk' : is the kernel of the
mapping

where b((j>) is the restriction of (j> to the boundary. The following theorem gives a
similar characterization of Xk< 1 + ker dk.

Theorem 3.2. Let a: 6£i->Q denote the canonical injection and let Hk(Q.) be the kth de
Rham cohomology group. Then

and the cohomology class oftx*A is in «*(//*(£}))}.

Proof. Let X denote the space {A eXk' l : A eker (dka*) and the cohomology class of
a* A is in x*(Hk(Cl))}. Since X and Xkil+kerdk are closed it is sufficient to prove
inclusions of dense subspaces of these spaces. Let Al and A2 be smooth sections in X
and ker<4, respectively, and let A = Al+A2. Since da*,4 = da*,42 = a*d/42 = 0 and
[a*^] = a*[^2] it follows that AeX. ^ Consequently Xk'1+kerdk <= X because
smooth sections are dense in ker dk and X k- ' .

We show that smooth sections are dense in X. We choose a neighbourhood fij of
8Q in Q diffeomorphic to 6Q x [0, 1[. We denote by Q£ the inverse image of 6H x [0, e[
by the diffeomorphism from Oj to 6£i x [0, 1[. Each AeXk'1 is decomposed into a
sum A = Ai +A2, where supp^2 c^i and Al=A'm fi1/2. A2 can be regularized in a
manner preserving the vanishing of A2 in fi1/4. Al is considered a fe-form on 8Q
x [0, 1[ and represented in the form Al=a>l /\dt + a>2 where t is the co-ordinate in
[0, 1[ and (a 2 does not contain dt. The form a>l is regularized in an arbitrary way and
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a>2 is regularized by a regularization procedure commuting with exterior differentiation
and satisfying the additional requirement that the regularization pulled back to the
boundary again commutes with the exterior differential (see 2 and 4 for details of this
procedure). The resulting regularization of A preserves X. It follows that smooth
sections are dense in X.

Let AeX be a smooth form. There is a smooth, closed /c-form A3 such that x*(A
— ,4 3 ) = d(/> for a smooth (k — 1 )-form </> on 9 Q. We can choose a smooth (k — 1 )-form $
on n such that ^>^fi = 4> and d(j)^n = (A — A 3 ) ^ f l . We do it in the following way: using
decomposition and representation of /c-forms as described above we have that, in the
neighbourhood of 6Q, A — A3 = dt A coj +co2 where a>2 does not contain dt. At the
boundary we put (/> = tcol + 4>, i.e. coefficients of the second component do not depend
on t. It follows that

d<£|En = dr A cuj |8n + d0 = (^-/l3)|en,

since d(f> = y.*(A-~ A3) — a>2\. We see that

a*d4> = dx*$ = d(l) = (X*(A-A3)
«~ o

and A — (A3+d<j))eXk'i. Since dA3 = 0 we obtain the required decomposition

with A- (A 3 + dcjj) eXk-1 and (A3 + d$)ekerdk. Q.E.D.

Remark. If M is a Euclidean space of dimension 3 the da* A corresponds to the
normal component of the field B (case k = 1 ) and to the tangent component of E (case k
= 0). Hence Theorem 3.1 gives the Fredholm alternative for the homogeneous bound-
ary value problems of electro- and magneto-statics:

curl E = 0, in Q

£s = 0, on 6Q
and

divB = 0, inn

Bn=o, on en.

4. Inhomogeneous Dirichlet-type boundary value problems

Inhomogeneous Dirichlet-type boundary value problems are usually treated by a
method of reduction described in Sections 2 and 3. Since these reductions disregard
sources on the boundary Bn the complete statics X cannot be analysed by this method.
We propose a different approach in which the complete subspace L is described in
terms of the graphs of self-adjoint operators whose images are closed. These operators
are chosen to solve Dirichlet-type boundary value problems. o

Let X be a subspace of X11'1 satisfying Xk'1 +ker dk => X^> Xk'1 as in Section 3. We
define a space Sj ={(A®y)®(J ®z}&(XkA ® Y)@(XkA © Y*): y = <t>(A) and

where Y=Xk'xl and 0>:Xk'1->Y is the canonical projection. The
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space Z j is the graph of the mapping

A! : Xk' 1 ® Y* -» Xk> ! 0 Y: A © zh->(A(/l)-<I>*z)

Theorem 4.1. Let the images ofA1 and Ax be closed. Then the image ofAl is closed and
ker A! is isomorphic to ker \.

Proof. It follows from the construction of A t that A j is self-adjoint with respect to the
pairing

(A,jy-(y,Zy. (1)

Let ,4©zeker A! then <t(^) = 0, AA=<5*z and, consequently, AXA=0. Since <&* is
an injection z is uniquely determined by A. Now, let /leker Ax then AA = <b*z for
some zeY* and ^©0©0©zeZ 1 . It follows that ^ © z e k e r A j . We have shown
that ker Aj and Ax are isomorphic.

In order to prove that im A1 is closed it is sufficient to show that im A: =(ker Aj)0

where the polar is taken with respect to the pairing (1). The inclusion
im A ! <= (ker A j )° follows from A l being self-adjoint. Let J ® y e (ker A t )°. This means
that

</4, J>-<y, z> = 0 for each A®zeker A t . (2)

Since <t is surjective there is an element Al such that y = <b(Al). Hence

A@y®AA1®Qe'L1. (3)

It follows that

</l, Ay4 j> — <y, z> = 0 for each / l©zeker A t .

From (2) and (4) it follows that </l, J — AX1> = 0 for each ,4ekerAx. Since
imAx = (ker A^)0 there exist A2eXk'1 and Zj e Y* such that A>l2 = J-A
Hence

(5)

(3) and (5) imply (A^ + A2)®y®J®($*zl)eZ,1. Q.E.D.
o o

In the particular cases of X = Xk~l and X = Xk'1 +kerdk the quotient space
Y=X*xl can be given an explicit description. In the first case the space Y is the space
of boundary values of potentials, and in the second case Y can be identified with the
subspace of exact forms in H~ 1/2(8Q; Ak + 1 r*(5Q)). These forms represent in the case
of magneto(electro)-statics the normal (tangent) component of magnetic induction
(electrostatic field).

5. Hodge theorems

Frequently a boundary value problem is posed in terms of fields rather than
potentials, i.e. the operator d*A is considered instead of d* Adk. For example instead
of E = d(/> in electrostatics we consider curl E = 0 and div B = 0 instead of B = curl A in
magnetostatics. This means that the operator d£ A is restricted to a closed subspace of
Xk + l'°. In the following we discuss two interesting cases:



Boundary Value Problems for Static Maxwell's Equations 433

(i) df\s restricted to the kernel of the mapping dk + 1:Xk+1-° -» xk + 2'~l

(div B = 0 in magnetostatics).

(ii) d£ A is restricted to the kernel of the mapping (dk + : )* : X k + 1 ' ° -> Xk + 2 j where
Xk+2,i and Sk + l: Xk+2-1 -» Xk+1'° = Xk + 1 10 are spaces and operators
corresponding to the dual complex of densities (div B = 0, Bn = 0 in magneto-
statics).

For a fixed k we denote by Zk + 1 the subspace defined in (i) and by Zk + 1 the
subspace defined in (ii).

Proposition 5.1.

(i) The kernel of d* A. restricted to Zk+l is isomorphic to the quotient space
Zk + 1/Bk + 1, where Bk+l=dkXk-1.

(ii) The kernel of d* A restricted to Zk+1 is isomorphic to the quotient space
Zk + l/Bk0+l, where

Proof. It is enough to recall (Theorem 1.1) that the kernel of d£A. restricted to imdk

and, consequently, restricted to Bk+l is trivial. Q.E.D.
o

The following proposition refers to the reduction with respect to the subspace Xk' 1.
o .-,

Proposition 5.2. Let i\k~l -> X k - 1 be the canonical injection. The kernel ofi*d*A.
restricted to Zk+1 is isomorphic to the quotient space Zk+1/Bk+l, where
B°k+ 1 J |?t, 1= akX .

Proof. o We observe that C0°° (O; A* + 1 T* M ) n ker dk + x is a subspace of Z* + 1 . It follows
that Bk + l is a subspace of ZQ+ i . Then we argue as in the proof of Proposition 5.1.

Q.E.D.

Let M be equipped with a Riemannian metric tensor and let A be the canonical
identification of Xk+1 0 and xk+1'° defined by the metric. We recognize elements of
the subspace kerd*AnZ t + 1 as harmonic Neumann (fc + l)-forms and elements of
ker!*^AnZ'+1 as harmonic Dirichlet (k+ l)-forms. This justifies the following
definition.

Definition 5.1. Q is a Hodge domain if the following conditions are satisfied for each k:

(i) The dimension ofZk/Bk is equal to the dimension of Hk(Q)
O

(ii) The dimension of'Zk/Bk is equal to the dimension ofHk(£l) — the de Rham compact
cohomology class.

Proposition 5.3. Let Q be a Hodge domain. Then the dimension of the kernel of d£ A
restricted to Zk+1 is equal to dima(Hk+l(Q.)) where a: Hk + 1 -> Hk + 1 is the canonical
mapping.

The following theorem gives a non-trivial example of a Hodge domain.

Theorem 5.1. A domain Q with the local segment property1 is a Hodge domain.

Proof. We will prove only statement (ii) of Definition 5.1. The same method can be
used to prove a similar statement for the dual complex of densities. Then (i) follows by
duality.
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Let U be an open neighbourhood of fl. An element C of Xti l defines a current C in
U by the formula

The following formula holds for BeXk'°:

(SfB)~=dkB (6)

Suppose that there exists a sequence Rc of regularizing operators on U (in the sense
of de Rham9) satisfying

R£B - >B in H°(U; AT*M), (7)
£-* CO

for Be*''0 suppff £Bcintn. (8)

We assume also the existence of a sequence SE of homotopy operators
associated with Re, i.e. operators satisfying the following formula:

REB-B=Se(dB) + dScB. (9)

The operators Se are assumed to have property

for Be*''0 suppS^cQ. (10)

Let B be an element of A'*-0 such that <5?=0. From (6) and (9) it follows that dkR£B
= 0. The property (8) implies that

RcB = Hc + dk^Ac, (11)

where Hc represents a compact cohomology class of int Q and Ae is a smooth
fc-form on U with support in int fi.

Because of (9) we have

where the right-hand side is the differential of a form with support in fl (this follows
from the property (10)). Now, we observe that for each open domain Q, such that
Q j c i n t Q there exists a didiffeomorphism *P: U -» U such that T(Q)c:intQ and
T(p) = p for each p e f i 1 (for the construction of *P see below). It follows that for
Q! za supp (Hc — He') we have

and, consequently, /f£ and Hs, represent the same compact cohomology class. Hence,
we can take He- — H and formula (11) assumes the form

The property (7) implies that B = H + A, where AeBk. It remains to show that if
HeBk, then H represents the zero compact cohomology class, but this follows from
the well-known theorem of de Rham.9

Constructions of Rc, Se and *P.

In order to construct Re and S£ we use a modification of a construction due
to de Rham.9'2 First, we construct a localized regularizer in (Rm. Let
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0 ;] — 1, 1[-»R be a smooth function which is symmetric, non-decreasing on
] — 1,0] and satisfies

<t>(i)=\, </)(t) = exp((l-t2)-1-!) for|t |>3/4. (12)

We define a mapping <X>: D -> Rm, where

D = {\eUm:\xm <1, r(x) = ((x1)2 + (x2)2 + (xm~ 1 ) 2< 1},
by

<D(x) = 4>(|xm|)4>(r(x)).

It is evident that <t> is a diffeomorphism. Now, we define a mapping

)-y), forxeD,
0 . [rpm v [cp'w k o>m< f-v •. iw x w —> irc . (X, j / • • , . .

[ x, for x £ Z),

and we show that it is smooth. It is enough to show (24.12.5 in Reference 2) that the
mapping

'-(DO(x)r1- forxeD,
[ 0, f o r x ^ D

is smooth. For this purpose we observe that the matrix elements of — (D<I>(x))~ * have
the form

.T

\_ u

where

xm, i =

Since the function t -» <£(t)/</>(0 vanishes near zero and is rational near 1 we conclude
that F is smooth. Let ge s be a family of non-negative functions on IRm approximating
the Dirac distribution such that \gE,s= 1 and the support of gc a is contained in the ball
of radius 6 centred at (0, . . . , 0, — e). We define a localized regularizer in Km by

(13)

where / is a multi-index. Now, we choose a homotopy T. [0, 1] x Rm -> Km connecting
identity and zero mappings on Rm:

f(2(s-l/2)y',y"), for l /2<s«Sl ,
(0, 2sy"), forO^s^l/2,

where y' denotes (y1, y2, . . . , ym~ 1 ). The corresponding homotopy operator SCtS is of
the form (see 24.12.7.10 in Reference 2)

N ; (14)

where u>[ is a differential form with coefficients depending only on 9 and derivatives of
9 such that co7(x, .) = 0 for
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Now, we define local regularizes in U (24.12.8 in Reference 2). The segment
property of Q implies the existence of a locally finite covering {0J of U with the
following properties:

Of is the domain of a map 0, such that $,-(0,-)
= {xelRm:r '<2, \xm\<2}-.D' and {(^^(D)} is the covering of U,
for 0, such that 0,n8Q^0 the set (/>((0(n6fi) is the graph of
a uniformly continuous function ft: |x': |x'|<2}->] — 1/4, l/4[,
and 0i(Oi

Let / i j : t / - » R be a smooth function such that supp h, , c 0, and ft,.(p)=l for
p e (/>;" ' (D ). We define a local regularizer /?£>d:

ht)B, (16)

and a homotopy operator SBtS:

S^B = (^*)-1(S..^r(M)) (17)

As in References 9 and 2 we define a regularizer

tf.,. = K.1 .«K.V--Ki.a and flM=lim /?',,. (18)
i-» oo

S^R^.-.R^Sl, and $.,,. = 2,$.,. (19)

The properties (7) and (9) follow from the general properties of the construction
(24. 1 2.9 in Reference 2). A particular choice of E and d is needed in order to satisfy (8)
and (10). Because of (12) and (15) the set ^(^(O.nSQ) is the graph of an uniformly
continuous function^: R"1"1 -» R and, consequently, for each e>0 there exist <5j(e)
such that the inequality

|(x'Ji(x') + e)-y | «$,(£) implies ym>f(y'). (20)

Since Q is compact we can assume that there is only a finite number of elements of the
covering {0J intersecting 6Q. Thus we can set c)(e) = inf(5j(e), /?£=/?e,aw. From the
property (20) and the definitions (13) and (16) it follows that if suppBcQ then
supp Rc ^ ( £ ) B<=Q and (supp /?£^(E)B)n0, is contained in the interior of Q. The
property (38) of Rt is evident in view of definition (18). The above choice of 6
guaranties that the integral

)eo{(0,(p), t(s, y))ds

which appears in the formula (14) is equal to zero for p^O, provided that supp B c Q
and, consequently, supp S^B <=. £1 Hence supp S'eB cr Q. and supp S£B cr Q.

In order to construct 4* we notice that if Qj c int Q then there exists a real number
a, l/4>a>0, such that for xeD and O^t^l (x',^(x')-af)^^i(^in0i)- Let gt be a
smooth approximant of fh i.e.

It follows, that the mapping cp sends the image of gf into the image of a smooth
function gt and sup | jj(x') — ^,-(x') < |a/2. Hence a mapping "F;: Rm -» Rm defined by the
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formula

is a diffeomorphism for sufficiently small c, and T,-(<D ° (^-(^n 0,)) c int O ° </>;(Qn O,),
*?,-(x) = x for x e <I> ° </>J(Q! n 0(). These properties of ¥, and differentiability of 0 imply
that the mapping

D ° 0,-)"1 ° "i*,-0^0 (j)i)(p) forpeO;

is a diffeomorphism such that ^(QnO,) c int Q and *Pj(p) = p for peQj . It follows,

that the mapping *P = lim *P; . . . *¥2*Pi has the needed properties. This completes the
i-* oo

proof of the theorem. Q.E.D.
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