
MECCAN1CA RAZ1ONAJLE E FIS1CA MATEMATICA

/ •
CM

Control of linear systems
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Summary. The general theory of linear symplectic relations presented
in [1] is applied to the analysis of sympledctic relations representing
physical devices controlling linear static systems. The analysis of positi-
ve relations [3] is used to single out those symplectic relations which
can represent real physical devices. Applications of symplectic geome-
try to control theory were initiated in [2].
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1 . Special symplectic spaces. Lagrangian subspaces

Let Q be a real vector space and let Q* denote the dual space. The
canonical pairing of Q with Q* is a mapping

defined by

( q , f ) = f ( q ) .

We denote the direct sum Q ® Q* by P. The canonical projections of
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P onto Q and Q* are denoted by

and

The2-form u>£P*®P* defined by

A (q1 ©/'), w> = V,

gives P the structure of a symplectic vector space. For each subspace
K of P we denote by A" § the subspace

for each q' ®f EfQ .

We have the following easy to verify relations

K*$ =K,

dim (K) + dim (K » ) = dim (/>),

P§ =o,

where ^T and L are subspaces of P and O is the subspace of P con-
.taining only the zero vector.

Definition 1.1. - A subspace K of P is said to be

a) isotropic if
tycoisotropicif K$ C K,
c) Lagrangian if

Proposition 1.1. - To each subspace K of P there corresponds a
mapping



such that

K={q®fEP;qEC and

<q',f) = <q',x(q)> for each q' ED} .

Proof. If q E C then there exists an element / of Q* such that
q ® f E K . The equation

<q',x(q)) = <q',f> for each q' ED

defines a mapping x :C-*D* because if fv and /2 are two elements
of Q* such that q ©/, EK and # ©/^ EK, and #' belongs to D then
there exists an element /' of Q* such that q' ©/' G #§ and

<<?' /2 >-<?' /, > = V, /2 > ~ <1, /> + <?, /'> ~ <?', /i >

= <G? ®/2 ) A (q' ©A w) - «? ©/, ) A

From this construction of x it follows already that

K C {q ©/£/>; q E C and

(q',f} = (q',x(q)} for each <?'€£>}.

Now let q E C and let / satisfy (q', /> = <q', x (q)> for each q ED.
Then there exists /" E Q* such that q®f"EK. Hence, for each

-<?,/'>

= <(<?©/") A 6?'©/'), w) = 0.

It follows that q ©/ belongs to #§§ = K.
Q.E.D.



Definition 1.2. - The mapping x:C-+D* is called the generating
form of the subspace

K={q®feP; q&C and (qr, f} = (q', x(q)) for each q' &D]

and the subspace K is said to be generated by x.

Proposition 1.2. - If K is generated by a form x : C~+D* then
K§ is generated by the adjoint form x* : D -* C* .

Proof. Let K' be the subspace of P generated by x*. Let
and 4 '© / 'GAT 5 . Then

(q, />-<<?, /') = ((q ©/) A ($' ©/'), w> = 0.

Hence

<?,/')= <<?',/> = <<?',

Since q can be any element of C it follows that q'®f'£.K'.
Consequently K§ C K' . Now let q®f£K and <?'©/'£ £'. Then

<(<?®/) A (<?'©/'), w> = <?',/>-<?,/'>

= <<?', x (*)>-<<?. **(<?')>

= 0.

Hence <?'©/' E£§ . Consequently K' C #§ . Q.E.D.

Proposition 1.3. - Let K and #' be subspaces of P generated by
forms x:C-»/>* and x':C' -*/>'* respectively. Then A" C A: if and
only if C'CC, D' DDand

for each q£D and g'€C'.

Proof, a) Let relations C' C C, D'DjD and <q, x(q")} = <q,x'(q' j)
for each q&D and ^'ec' hold. If q' ®f 6 A:' then for each q&D



It follows that 'q ®f'£K. b) Let K' C K. It follows that C' C C
and D'DD. If q^D and q €C" then there exists an element /' of
Q* such that <?' ©/' e A:' and

, . >

Corollary 1.1. - Let K be a subspace of P generated by a form
x : C-+D*. Then
a) K is isotropic if and only if C C D and (q, x (<?)> = (q, x (q )> for

all <?, #' £ C, (

b)£ is coisotropic if and only if C3D and (q, x 0? )> = <<?, x (? )>
forall?, ?'€A

c) A: is Lagrangian if and only if C = D and x is selfadjoint.
Let K be a Lagrangian subspace of P generated by a form x : C -* C*.

Since x is selfadjoint it is equal to the differential dF of a quadratic

function F : C^R : q^ — (q,x(q)}. A function F:C-*R is

quadratic it the mapping

is bilinear and F(<?) = -y 6 Ffo, ?). The differential cfF : C -» C* of a

quadratic function F:C~+R is defined by

Definition 1.3. - The Lagrangian subspace K of P generated by the
differential of a quadratic function F:C-*R is said to be generated
by F and F is called the generating function of A?.

2. Physical interpretation

Lagrangian subspaces can be used to describe the behaviour of physi-
cal systems. Let Q be the configuration space of a linear static physical
system. Virtual displacements of the system are also elements of Q.
The dual space Q* is the force space. The constitutive law of the system
is a relation between configurations and external forces which must be



applied to the System in order to maintain these configurations. The
constitutive law is represented geometrically as a subspace S of the
phase space P=Q® Q*. In the simplest case the constitutive law asso-
ciates with each configuration a unique force. This means that S in the
graph of a mapping a : Q -> Q*. The system is said to be reciprocal if
a is selfadjoint. The concept of reciprocity has a natural generalization
to the general case of a static physical system characterized by a sub-
space S of the phase space P.

Definition 2,1. - A linear physical system is said to be reciprocal if
its constitutive law is represented by a Lagrangian subspace S of the
phase space P.

Definition 2.2. - The generating function U of a Lagrangian subspace
S representing the constitutive law of a linear physical system is called
the infernal energy.

The internal energy of linear physical systems is usually positive.
We will examin consequences of this fact. Numerous examples of
physical systems and their constitutive laws can be found in [2].

3. Elementary operations

Let Q and Q' be vector spaces and let t : Q' -> Q be an injection.
Then t* : Q* -+Q'* is a surjectioh whose kernel is the anihilator of the
image of t.

Definition 3.1 . - Let K be a subspace of P= Q © Q* and let p t(AT)
be a subspace of P' = Q' © Q' * defined by

Pt(K)={q'®feP'; t(q')®f£K for some

f&Q* such that e* (/)=/'} .

The transition from the space K to pt(K) is called the reduction
of K with respect to the injection i .

Proposition 3.1 . - If K is a subspace of P generated by a form x : C ->
-»Z>* then K' = pl(K) is generated by a form x' :C' -»/)'*, where

,D' = r1 (D) and x' is defined by

for each q £ D' and each q e C' .



Proof. - Let K be the subspace of P' generated by x '. If q'®f € K'
then there exists an /€£?* such that /'=i*(/)> t(q')®f£K and
for each q ED' we have

= <*,*' (<?')>•

Hence, q'®f'EK. It follows that /T C £ Now let q'®f'EK.
Then for each q ED' we have

It is possible to find an element / of Q* such that t* (/)=/' and
<q,f) = <q,x(t(q"))> for_each <? in D. Hence, i(<?')©/e.£. It follows
that q'ef'EK' and KCK'. Q.E.D.

The following statements are corollaries of Proposition 1.2 and
Proposition 3.1.

Corollary 3.1.- For each subspace K of P we have

Corollary 3.2. - Let C be a subspace of g and let AT be a Lagrangian
subspace of P generated by a quadratic function F:C^R. Then
PL(K) is a Lagrangian subspace of P' generated by the pullback
F':C'^R of F to C' = t-' (C).

Let TT : ̂  -* Q' be a surjection.

Definition 3.2. - Let AT be a subspace of P=Q®Q* and let p^
be a subspace of Pf = Q' ® Q'* defined by

ps (K) = {q' ©/' EP'iq® TT* </') € K for some

q£Q such that IT (q) = q'} .

The transition from the space K to pff (AT) is called the reduction of AT
with respect to the surjection v.



Proposition 3.2. - If K is a subspace of P generated by a form x : C-*
-*/)* then K' ' = p^(K) is generated by the form x' : C" -»£>'*, where

C*= (<?', e2';<?', €?r(O, there exists 9, GC such that

ir(3i')-q'i a«d V,x(<?i)> = 0 for each <?" e#

such that n(q") = 0} ,

D' = {q'2 £ Q';q'2 e?r(/>), there exist q2&D such that

ff 6? 2 ) = ?2 and ^2 • * ̂ "^ = ® *°r each *?" e ̂
such that 7r((?") = 0} ,

and x' is defined by

where <? ] f ?2» ?j and <?2 are the elements used in the definitions of
C and D'.

Proof. - Let x" : C" -+D" be the generating form of K' . Since the
image of if* is the anihilator of the kernel of vr is follows from
Definition 1 .2 that

K' ~{q' ®f'eP' ; q ejr(Q and there exists q£Q such

that TT (^) = q, (q", x (q)} = 0 for each q" £ D

such that 7r(<?") = 0 and (q",x(q)} = (it(q"lf'}

for each q" &D] .

Hence, C" = C'. Moreover, since 0 ©/' € #' if and only if /' &(D')°,
it follows that ir(D) DD" DD'. It follows already that for q' 6C'
and ?"€.£)' we have (q", x'(q')) = (q", x"(q')}. It remains to be
shown that D'=D". From Proposition 1.2 and Proposition 1.3 it fol-
lows that D' DD" is equivalent to pn (K$ ) D (/?„ (AT))§ . Let <?'©/'£
e(pff(^))§. Then (q",f')-<q',f") = Q for each q" ® f" E p^ (K).
It follows that there exists an element <? @/G #§ such that

<q". /) - (q, TT* (/")> = <7T(9"), /') - {q'. /">

for each q"£Q and /"eg'*. Consequently /=»*/',
and D'=£>".

Q.E.D.



Corollary 3.3. - For each subspace K of P we have

Corollary 3.4. - Let C be a subspace of Q and let K be a Lagrangian
subspace of P generated by a quadratic function F:C-+R. Then
£„(£") is a Lagrangian subspace of P' generated by the function
F':C'-*R, where

C'= {<?'£ 0'; there exists < ? G Q such that it (q) = q and

<<?", dF(<?)> = 0 for each q" EC such that ?r(<f) = 0}

and F'(q') = F(q), where # and q' are the elements used in the defi-
nition of C'.

Let Qi and Q2 be vector spaces. We denote by Q the space Ql © <22-
The space (3* is canonically isomorphic to the space Q* ®Q*. The
isomorphism

is defined by

Spaces 0 i©<2 2 e 0?®02 and PI ©P2 = Q, ©£* ®(22 ® fi* are

also isomorphic. We will identify the space P=Q®Q* with the
space P, ©/V

The following proposition is an immediate consequence of the
definition of the generating form of a subspace.

Proposition 3.3. - Let &i and K2 be subspaces of PI and P2 respecti-
vely generated by forms x, : Cv -*•£>* and xz :C2 ~+D*, where Cj
and DI are subspaces of Q± , and C2 and D2 are subspaces of Q2 .
Then K = KI ® K2 is a subspace of /* generated by the form

x : Ct ®C2 -+D* ®D* : qv ®q2 ̂ xt (q,)®x2 (q2 ) .

Corollary 3.5. - If Kr and K2 are subspaces of Pj and P2 respectively
then



Corollary 3.6. - Let A^ and K2 be Lagrangian subspaces of Pj and
P2 respectively generated by functions Ft : Cj -*R and F2 : C2 -*•/?,
where Q and C2 are subspaces of gj and Q2 respectively. Then
K = KI ® K2 i§ a Lagrangian submanifold of P generated by the func-
tion

4. Composition of physical systems

Let S and S' be constitutive sets of static systems with configuration
manifolds Q and Q'. The combined system, composed of the two
systems, is a static system with configuration manifold Q © Q' and
constitutive set S ® S' C Q ® Q* ® Q' e Q' * = (Q ® Q') ® (Q © Q')*.

Let Si and S2 be constitutive sets of two static systems with confi-
guration spaces Q®Qi and Q2 © Q respectively. The constitutive
set S2 o 5, of the coupled system is defined by

there exists # ©/€ Q®Q* such that

and G?2©/2)©G?©(-/))eS2}.

If S, C g©0* and S2 C (Q' ®Q)®(Q' ®Q)*, the the constitutive
set 52 o Sv of the coupled system is defined by

S2 oSi ={q'®f'£Q'®Q'*; there exists
such that (q'®f')®(q®(-f))£S2} .

It is useful to observe that the coupled system is obtained by apply-
ing two reductions to the constitutive set S2 ®Sl of the combined
system. The first reduction is with respect to the injection

This is followed by the reduction with respect to the canonical pro-
jection of Qz ® Q © Qi onto Q2 © Q! .

This observation together with Proposition 3.1, 3.2 and 3.3 leads
to the following proposition.



Proposition 4.1. Let Sj and S2 be constitutive sets of two static
systems with configuration spaces £?©(?, and Q2 © Q respectively.
Let x, : Cj -*/>* and xz : C2-+D* be generating forms of Sj and
S2 . The constitutive set of the coupled system S2 o Sj is generated by
the form x : C-*D*, where

C= [q2 ® ql € Q2 © Ql ; there exists q e Q such that

q®qi e Q and «?2 ® <? 6 C2 , and

for each q" € Q such that 0 ® q" <ED2 and q" © 0 € £>i

?i e Qa ® d; there exists q G g such that

and ' ®

for each q" £ Q such that 0 ®q" G C2 and <?" © 0 E Cj

and x is defined by

<?2 ®q\,x(q2 ©?,)> =

where ^ a , ^2, 9, qr q2 and <?' are elements related as in the defini-
tions of C and D.

Corollary 4. 1 . If St and S2 are subspaces of (Q ® Ql ) © (Q ® Qv )*
and (Q © 0, ) © (Q e 0j )* respectively then

Corollary 4.2. If Si and S2 are constitutive sets of reciprocal sy-
stems generated by functions FI : C, -+R and F2: C2-+R respecti-
vely then the coupled system is reciprocal and the constitutive set
S2 o S, is generated by the function F : C -* R, where



© q\ Q2 © Qi ; there exists q € Q such that

Cj, ?2 ©<? GC2 and

<0 ©<?', c?F2 6?2 ® ?)> + <?' ® 0, rfFi (q ©<?, )> = 0

for each q such that <?' © 0 & Cl and 0 © q £ C2}

and F is defined by

where ^, , q2 and <? are related as in the definition of C.
If S, C<2©(2* and S2 C (Q'©g)©(e '©Q)*, the Proposition

4. 1 and the two corollaries hold in suitably modified versions.

5. Symplectic relations

Let Q and Q' be vector spaces. We denote by P and F" the symplectic
spaces Q © Q* and _Q' © 2'* respectively. For each subspace S of
P' ® P we denote by S the subspace

Definition 5.1. The generating form of a linear relation p: P-^P1

is the generating form of the subspace graph p C P' © P.

Definition 5.2. A linear relation p : P^-P1 is said to be symplectic
if graph p is a Lagrangian subspace ofP'®P.

Definition 5.3. The generating function of a symplectic relation
p : P^-P' is the generating function of the Lagrangian subspace graph p.

Example 5.1. Let i : Q' -*• Q be an injection. The relation pL : P^
-* P1 whose graph is defined by

graph p t= {(q ©/') © (q ©/) EP' ®P;



is a symplectic relation. The symbol p£ (K) used in Section 3 denotes
the image of K by the relation pt.

Example 5.2. Let ir: Q -* Q' be a surjection. A symplectic relation
pw is defined by

graph p, ={(?'«/')«(?»/) 6/»'«/>;

<?'= »(<|),/= ir-M/)}-

If graph p = 5 then the relation p will be denoted by ps.

Proposition 5.1. Let S a be subspace of P' ©P and K a subspace of
P. Then

Proof. From the definition of ps we have

P5 (K) = (q ©/'€?.'; there exists q ©/e/> such that

?©/£# and (<?'©/') ©(<?©/) £5} .

By comparing this with the definition of a coupled system we obtain
the equality ps(K) = SoK. Q.E.D.

The following corollary is a direct consequence of Proposition 5.1
and Corollary 4. 1 .

Corollary 5.1. If p : P-+P' is a symplectic relation and AT is a sub-
space of P then

p (P) is coisotropic,

p (0) is sotropic .

The proof of the following proposition is analogous to the proof of
Proposition 5.1.

Proposition 5.2. If S and 5' are subspaces of f © P and P" © ff

respectively then



Ps-ops-ps,oS .

Corollary 5.2. If p, :P-*P' and p2 :P'->P" are symplectic rela-
tions then p2 o PI is symplectic.

For each subspace K of a direct sum Gi ® Qz we denote by f K the
subspace of Q2 ® Qt defined by

If p : Ql ->• Q2 is a linear relation then lp : Qz^Qi is the relation
defined by graph lp = * (graph p).

Proposition 5.3. Let S be a subspace of P' ®P generated by a form
x : C-*D*. Then *S is generated by the form x~: t C-» (fD)* defined
by

<?i ® ^j , x (<7 e q')} = ̂ ^ © <?, , x (q © ?)> .

Proof. Obvious.

Corollary 5.3. If S C P' ®P is a Lagrangian subspace generated by
a function F ̂ C-*R then *S is a Lagrangian subspace generated by
the function F:1C-^R defined by

Corollary 5.4. If p : P-*P' is a linear relation generated by a form
x C-»D* then ?p is generated by — jc.

Corollary 5.5. If p :/*-*/>' is a symplectic relation generated by
a function F : C -» R then f p is a symplectic relation generated by
-F.

6. Control modes.

Let Q be a vector space.

Definition 6.1. A control system (I, R) for physical systems with
configuration space Q is a pair of reciprocal physical systems with con-
stitutive sets / and R and configuration space A © Q and Q respecti-



vely. We associate with / a symplectic relation

P/ : ® ^

The following conditions are satisfied:

*A(P, (/?)) = A

The system with constitutive set / is called the control interface and
the system with constitutive set R is called the response reference.

Let / and I ° R be generated by functions F/ : C-*R and
A -» /?. We asociate with the pair (/,/?) a relation

generated by the function

F(IR) :C^R:(a®q)^FI(a®q)-F (a).

Definition 6.2. Two control system (/, R) and (/, /?') are said to be
equivalent if p ̂ - R >y = p// ^). An equivalence class of control system
is called a control mode.

Proposition 6.1. Two control systems (/, R) and (/', R') are equiva-
lent if and only if

and

Proof. Let two control systems (/, R) and (/', R,) be equivalent.
From P(I'.R') = P(l,R) it follows that *A o p(r_R<) =*A o

Proposition 4. 1 and Proposition 5.1 imply

^ • ' ^ ' > = ̂ ® ° and

Consequently, 'p(/'i^-) (Pv.R'jWft-'Pv.R) (P (/,/?)
Now, let (/, /?) and (/', jR') be control systems such that

f s



',/?•) ~*A

and

From

we have

V./o

It follows from the decomposition theorem [1] that Py R ' ) ~
= o°P(fiRy for some symplectomorphism o:A®A*->A®A* such
that TSA o a = irA, The equality

V./O

implies

It follows that the generating function of a is the zero function defin-
ed on the diagonal in A ®A. Hence, a is the identity mapping.

Q.E.D.

It is evident that if (/, /?) is a control system then (/, /?'), where
R' = rP(/,^) (P(/,/?) GR))» is an equivalent control system and R' =
~'P(r.R') (P(l',R') C'O)- The linear relation ^ = 5^ °p ( / ^ ) and the
Lagrangian subspace ̂ ' = rp (p(R)) are said to represent the equivalence
class of (/, R). Not every pair (if, R), where 7r: / '=0©Q*-*^4 is a
linear relation and R is a Lagrangian subspace of £?®6*> represents
a control mode.

V3



Proposition 6.2 Let TT :/>-»• A be a linear relation and let R be a
Lagrangian subspace of P. The pair (it, R) represents a control mode if
and only if the following conditions are satisfied

( 1 ) * TT (A ) is a coisotropic subspace of P,

(2) * it(Q) is a Lagrangian subspace of P,

(3) v(R) = A and 7r(0) = 0,

(4) RCl

Proof. Let (it, R) represent a control mode. Then there exists a con-
trol interface / such that it-nA o p (l^ = itA o p/5 (/, R) is a control
system and

Consequently, (I) and (2) follow from Corollary 5.2, (3) follows from
Definition 6. 1 and (4) is a consequence of

and

Now, let conditions (l)-(4) be satisflied and let L denote 'ff(O). Sin-
ce if is a linear relation, (3) and (4) imply that tn(A) = R + 1. We
define a subspace

I={(a®b)®(q®f)e(A®A*)®(Q®Q*);

and there exist q ® /' € I and 9" ® f" & R such that

q'®f +q"®f" = q®f and

<0?'®/')AG?j ©/,),w> + <ai ,6) = 0 for each

<?i ® /i e # and a, E ^4 such that jr 0?j ® /i ) = fli } -

It is evident that / is an isotropic subspace of (A ® A*) ® (Q ® Q*). We



show that PI (P) = A ®A*. Since pI(R) = A®Q it is enough to prove
that Q®A*CPl(P). We have pf(L)CQ®A* and for q®f£P,
q ®f£R n L = (f?r04))§ if and only if Pj(q ®f) = 0. Comparison of
dimensions shows that

dim (pj(L)) = dim (p;(/?)) = dim A = dim A *

and, consequently, pj(P) = A ®A*.lt follows further that

dim / = dim (graph p7) = dim A + dim (f pf (0))

= dim A + dim R = dim Q + dim A

Hence, / is a Lagrangian subspace. The pair (/, R) is a control system
and the corresponding control mode is represented by (n, R).

Q.E.D.

7. Admissible control modes

In this section we examine consequences of the fact that the internal
energy of linear physical systems is positive.

Definition 7.1. A control system (/, R) is said to be admissible if
the generating functions of / and R are positive.

Definition 7.2. A control mode is said to be admissible if it can be
represented by an admissible control system.

The following proposition is a corollary to the decomposition theo-
rem for positive symplectic relations (Theorem 4.1 in [3]).

Proposition 7.1. Let / be a control interface generated by a positive
function. Then there exist subspaces Q' and Q" of Q such that P =
= Q®Q*=P'®P" where P'= Q'®(Q")° and P" = Q"®(Q')°, and
the following conditions are satisfied:

(1) 1=1'® I" where I'C(A®A*)®P' and I"CO®P"
are Lagrangian subspaces,

(2) l p f , (A ® A*) = C ® B, where C and B are subspaces of Q'
and (Q")° respectively.

T



Corollary 7. If Let (TT, R) represent an admissible control mode.
Then ir = if' o /', where n ' : P1 -*A and if " : P" -+ 0 are linear rela-
tions. Moreover R=R'®R", where /?" = V(0) and R' CV (A).

We note that for an admissible control mode represented by (if, R)
the generating function of R is not necessarily positive.

Theorem 7. 1 . Let (JT, R) represent a control mode. This control mo-
de is admissible if and only if there exist subspaces Q' and Q" of Q
such that Q = Q' © Q" and the following conditions are satisfied

jr = 7r'ojr", where n':P'-*A and TT" : P" -* 0 are
linear relations,

V(/4) = C ® B, where C is a subspace of Q' and B is a
subspace of (Q")°,

the generating function of fjr(0) is negative,

the generating function of/? is positive on Q',

B = {/£ (g")° ; (q. f) = Q for ? such that q G 0' and

(1)

(2)

(3)

(4)

(5)

Proof. Let (?r, R) represent an admissible control mode. It follows
from Proposition 7.1 and Corollary 7.1 that there exist Q' and Q" such
that Q = Q' ®Q" and conditions (1) and (2) are satisfied. Condition
(3) follows from Corollary 5.3 and Corollary 4.2. We then have

tir(A) = (C®B) + tir" (0).

It follows that

B={f£(0")°; <<?,/> = 0 for q such that q&Q' and

Let (I, R I ) be an admissible control system representing (ir, R). Since
the generating function of / is positive, (0 © b) ® (q ® 0) G / implies
that (0 ® 0) ® (<? © 0) S /. This means that 3 © 0 e f if (0) if and only if

in Proposition 7.1. According to the decomposition theorem for sym

, /H



plectic relations ([!)), p(r/?') = Pa °Pi, where

p, :P'

is the composition of reductions with respect to the canonical injec-
tion i:C-*Q' and the canonical surjection <p:C-+C/B° and p2 is
an isomorphism. It follows that the generating function of pt (/?.,) is
positive. Since p2 is an isomorphism it follows that

and, consequently, the generating function of the subspace
0 P</' R'y (Ri ) *s positive. Hence,

where R" is related to R as in Corollary 7.1 and, consequently, we
have (5).

Now, suppose that a pair (ir, /?) represents a control mode and con-
ditions (l)-(5) are satisfied. Then (1) and (3) imply that 7r"=p/», where
/ " C O © P" and its generating function is positive. We construct an
appropriate Lagrangian subspace

Let a set C' be defined by

C' = {a ® q € A © Q' ; there exists /£ (Q")° such that

and let FI : Cj -»•/? be the generating function of f7r(0). From Pro-
position 6.2 it follows that for each a EA there exists q\®fi such
that fy £(?' and 7r(<?i ® /j) = a. Moreover, for two elements qv ©/, ,
3j ffi/j such that <|i,<?', €<?' and JT(<?I ®fi) = ir(q' , ®/,') we have
(<?,-<?;)© (A -/;)G(f7rU))§, i.e., (ql-q'1)&(BT. Since F, is
negative and F, (?) = 0 for <? G Q' O (5)° it follows that

F' :C'^-R :q®a^-Fi(q-ql)

correctly defines a function on C' if #, € Q' is such that there exist



/E0* satisfying ql ©/£/? and v(ql ©/) = & We define /' as the
subspace generated by F'. From (4) and Corollary 4.2 it follows that
tpr(Q®A*) = tTf'(Q) and fpj(0 ® 0) = (V(.4))§ and, consequently,
ff/j ° Pr ~7r'- ft follows that 7r = 7r^ ° p/, where / = /' o /". It is evi-
dent that (/, /?) is equivalent to (/, R'), where I?' = (R H P') © (0" © 0).
Condition (5) implies that (/, /?') is an admissible control system and,
consequently, (it, R) is an admissible control mode.

Q.E.D.
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