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Summary. The general theory of linear symplectic relations presented

in [1] is applied to the analysis of sympleoctze relations representing f
physical devices controlling linear static systems. The analysis of positi-

ve relations [3] is used to single out those symplectic relations which

can represent real physical devices. Applications of symplectic geome-

iry to conirol theory were initiated in [2].
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1. Special symplectic spaces. Lagrangian subspaces

Let Q be a real vector space and let Q* denote the dual space. The
canonical pairing of Q with Q* is a mapping

(,2:Q80*~>R
defined by
(9. 2=f(q) .

We denote the direct sum Q ® Q* by P The canonical projections of
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P onto @ and Q* are denoted by
'wQ P> Q
and
Toe ! P— 0%
The 2-form w € P* ® P* defined by
(geNA(g' ef) w=(q (g

gives P the structure of a symplectic vector space. For each subspace
K of P we denote by K% the subspace

{gefepr{(gefHN(g'ef), w)=0
foreach g'©f €K} .

We have the following easy to verify relations

K88 =K,

dim (K) + dim (K ¢ ) = dim (P),
K+L)E=K8NLE
(KNL)8 =K8 +L§ |

08 =p,

P8 =0,

where K and L are subspaces of P and O is the subspace of P con-
.taining only the zero vector.

Definition 1.1. - A subspace K of P is said to be

a) isotropic if K& DK,
b) coisotropic if K8 C K,
c) Lagrangian if K8 =K.

Proposition 1.1. - To each subspace K of P there corresponds a
mapping




X:C—>D*, C=1rQ(K),D=7rQ (K%)
such that

K={gqef€EP;qE€C and
q'.N={q'.x(q)) foreach ¢' €D} .

Proof. 1If g €C then there exists an element f of 0* such that
g © f € K. The equation

{q'.x(@)N={q", f foreach q'€D

defines 1 mapping x : C— D* because if fi and f, are two elements
of Q% such that g@f, €K and g @f €K, and g’ belongs to D then
there exists an element ' of Q* such that ¢' ® f' € K% and

G, 0~ [ =4 )~ q. )+ q )~ g, 1
={(gef)N@G ef) w—gef,)A
Ag ef), w)=0.

From this construction of x it follows already that

KC {gefeP;, g€ C and
{q'.f)={q'.x(q) foreach q'E€D}.

Now let ¢ €C and let f satisfy {(g', f)={(q’, x (g} for each q' €D,
Then there exists f" € Q* such that gef"€K Hence, for each
g ef €Ks

Uge )N ef"), ) =4g" )~ (g f"
=4q', x(gP—<q. 1"
=g, " —q. "
=lgef VA ef"), w)=0,

It follows that g @ f belongs to K88 =K
Q.E.D.
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Definition 1.2. - The mapping x : C—>D* is called the generating
form of the subspace

K={g®fEP; g€C and {q’, f1={q', x (@) foreach g €D}

and the subspace K is said to be generated by x.

Proposition 1.2. - If K is generated by a form X : C~- D* then
K§ is generated by the adjoint form x*:D->C*.

Proof. Let K' be the subspace of P generated by x*. Let g@f€ K
and ¢' @ f €K% . Then

(q' g fI=qgefIN(G ef) w)=0.
Hence
(g, f={g". P =4q" x(@N={a.x*@).

Since g can be any element of C it follows that g'ef €K’.
Consequently K% C K'. Now let gof€K and g'ef'€K'. Then

(qeH)NG ef), w)=(q. N —{af)
={q', x(g —{g. x*(@')
=0.
Hence g’ @f € K% . Consequently K CK%. Q.E.D.

Proposition 1.3. - Let K and K' be subspaces of P generated by
forms x : C—D* and x':C'—»D'* respectively. Then K CK ifand

only if C'CC, D' DD and
(g, x(g'N=4q,x"(q)
for each g €D and q¢' €C".

Proof. a) Let relations €' € C, D' DD and {q, x(g) =4 x'@»
for each g €D and ¢’ €C' hold. If ¢' @f' €K' then foreach ¢ €D

q.f1=4%q.x' (@' )N={q.x (g'».
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It follows that -g' ®f' €K b) Let K' C K. 1t follows that C'CC
and D'DD. If €D and q' €C' then there exists an element f' of
Q* such that ¢' ®f' €K’ and

(q. x'(gP=4q.fN=(g. x(@').
Q.ED.

Corollary 1.1. - Let K be a subspace of P generated by a form

x : C— D*.Then

a) K is isotropic if and only if CCD and {q',x(g)=1%q x (g') for
all g, q' €C,

b)K is coisotropic if and only if CDOD and {q', x(gN=4%q.x@gy
forallg, g' €D,

¢) K is Lagrangian if and only if C=D and x is selfadjoint.

Let K be a Lagrangian subspace of P generated by a formx : €~ C*
Since x is selfadjoint it is equal to the differential dF of a quadratic

1
function F:C—>R:qr->—2—(q,x(q)). A function F:C—R is

quadratic it the mapping

§F:CXC~R:(qq)>Flg+q)Fl@)~F(@)

1
is bilinear and F(g)= Ty 8 F(g, g). The differential dF : C~ C* ofa

quadratic function F:C — R is defined by
{q', dF@)=6F(q. q4").

Definition 1.3. - The Lagrangian subspace K of P generated by the
differential of a quadratic function F:C - R is said to be generated
by F and F is called the generating function of K.

2. Physical interpretation '

Lagrangian subspaces can be used to describe the behaviour of physi-
cal systems. Let @ be the configuration space of a linear static physical
system. Virtual displacements of the system are also elements of Q.
The dual space Q* is the force space. The constitutive law of the system
is a relation between configurations and external forces which must be




applied to the System in order to maintain these configurations. The
constitutive law is represented geometrically as a subspace S of the
phase space P=Q ® Q*. In the simplest case the constitutive law asso-
ciates with each configuration a unique force. This means that S in the
graph of a mapping @ : @ — Q*. The system is said to be reciprocal if
o is selfadjoint. The concept of reciprocity has a natural generalization
to the general case of a static physical system characterized by a sub-
space S of the phase space P.

Definition 2,1. - A linear physical system is said to be reciprocal if
its constitutive law is represented by a Lagrangian subspace S of the
phase space P.

Definition 2.2. - The generating function U of a Lagrangian subspace
S representing the constitutive law of a linear physical system is called

the internal energy.

The internal energy of linear physical systems is usually positive.
We will examin consequences of this fact. Numerous examples of
physical systems and their constitutive laws can be found in [2].

3. Elementary operations

Let O and Q' be vector spaces and let ¢: Q' = @ be an injection.
Then *: Q* —~Q'* is a surjection whose kernel is the anihilator of the

image of .

Definition 3.1. - Let K be a subspace of P=Q © @* and let p (K)
be a subspace of P'=Q' ® 0'* defined by

pK)=1{q'ef €EP'; t(g")®fEK for some
fEQ* suchthat *(f)=f1.

The transition from the space K to p,(K) is called the reduction
of K with respect to the injection ¢.

Proposition 3.1. - If K is a subspace of P generated by aform x : C
- D* then K'=p,(K) is generated by a form x':C'—>D'*, where
C=¢1(0),D' =71 (D) and x' is defined by
(g, x"(g"P =4u(g), x ((g")
for eachq €D' and each ¢' €EC' .
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Proof. - Let K be the subspace of P generated by x'. If g'ef €K’
then there exists an f€ @* such that f'=¢*(f), (g)9f€K and
for each g €D’ we have

{q. f1=4q > (P
={u(q), ?
={u(g), x t(g"))
={g, x"(@)N.

Hence, é' of' €K. It follows that K’ C K. Now let g'®f' € K
Then for each ¢ €D’ we have

(q. f7=(q, x" (@' P =C(q), x (@)

It is possible to find an element f of Q* such that ¢*(f)=f" and
(g, f>={g, x (1(g")) for each q in D. Hence, t(q') ® fE K. It follows
that g'of' €K' and KCK'. Q.E.D.

The following statements are corollaries of Proposition 1.2 and

Proposition 3.1.

Corollary 3.1. - For each subspace K of P we have

(PL(K))§ =pL(K§ ).

Corollary 3.2. - Let C be a subspace of @ and let K be a Lagrangian
subspace of P generated by a quadratic function F:C—R. Then
p,(K) is a Lagrangian subspace of P’ generated by the pullback
F':C'»R of Fto C'=¢1(C).

Let 7: Q- Q' be a surjection.

Definition 3.2. - Let K be a subspace of P=Q @ @* and let p_(K)
be a subspace of P =Q' @ Q'* defined by

p,(K)=1{q'ef €F;q@a*(f')EK for some
g €Q such that 7(g)=q'}.

The transition from the space K to p, (K) is called the reduction of K
with respect to the surjection 7.




Proposition 3.2. - If K is a subspace of P generated by a form x : C >
=>D* then K'=p, (K) is generated by the form x': C' - D'* where
C= {q; EQ';q; €7 (C), there exists g; € C such that
7(q,) =q; and {g", x(¢, » =0 for each q" €D
such that w(g")=0} ,

D'= {q; € Q';c;v'2 €w(D), there exist g, €D such that
7(g,)= q; and {(g,, x(¢"P=0 foreach 4" €C
such that 7 (g")=0} ,
and x' is defined by
@y X' @ N=4qs x(q, ),
where gq,, qg,»q; and q; are the elements used in the definitions of
C' and D'

Proof. - Let x" : C" > D" be the generating form of K. Since the
image of #* is the anihilator of the kernel of 7 is follows from
Definition 1.2 that

K'={q'of'eP';q €7 (C) and there exists g €Q such

that w(g)=4",{q", x(g) =0 for each qg" €D

such that 7(¢g")=0 and (4", x (g)) = {a(qg") f"

for each ¢" €D} .
Hence, C"=C'". Moreover, since 0 ®f €K' ifand only if f' €(DH°,
it follows that w(D)DD" D D'. It foliows already that for ¢' €’
and q" €D" we have (", x'(g')) = {¢", x"(g'». It remains to be
shown that D' =D". From Proposition 1.2 and Proposition 1.3 it fol-
lows that D" D D" is equivalent to P (K8)D(p (KNE.Let g'of €

€(p,(K)%. Then (g" f')- {g'.f")=0 for each q"eof" € p, (K).
It follows that there exists an element g®fE€ K3 such that

G". P —q a*(f"p= @g"), fY—4q' "

for each ¢"€Q and f"eg'*. Consequently f=n*f', n(g)=4q'
and D'=p", Q.E.D.




Lo

Corollary 3.3. - For each subspace K of P we have

(px (KN? =p, (K¥).

Corollary 3.4. - Let C be a subspace of ¢ and let K be a Lagrangian
subspace of P generated by a quadratlc function F:C—R. Then
p,, (K) is a Lagrangian subspace of P' generated by the function
F':C'— R, where

C'={q' € Q'; there exists g €Q suchthatw(g)=q and
(q",dF(g)»=0 for each q" €C such that 7(g")= 0}

and F '(q') = F(g), where g and g’ are the elements used in the defi-

nition of C".

Let @, and @, be vector spaces. We denote by @ the space Q1 e Q,.
The space Q* is canonically isomorphic to the space Q EBQ The
isomorphism

v:0}eQ;~>Q*
is defined by
(g, 0q,,7(L 820 =4q:. i) +4q,, 27 .

Spaces QerzeQ @Q and P, 8P, = QleQ*eQzeQ* are
also isomorphic. We w:ll 1dent1fy the space P= QGBQ* with the
space P, ® P,.

The following proposition is an immediate consequence of the
definition of the generating form of a subspace.

Prop0s1t10n 3.3. - Let K, and K, be subspaces of P; and P2 respecti-
vely generated by forms x; : C; —>D and x,:0, —>D where C,
and D, are subspaces of @;, and Cz and D, are subspaces of Q,.
Then K=K, @ K, is a subspace of P generated by the form

x:C, ©C, >D} oD} :q;,©q,7x,(q:)®x, (q2) .

Corollary 3.5. - If K, and K, are subspaces of P, and P, respectively
then

(K, ©K,)® =K} @K}

B oy .




Corollary 3.6. - Let K 1 and K, be Lagrangian subspaces of P, and
P, respectively genétated by functions Fy:C,>Rand F;:C, 2R,
where €; and C, are subspaces of Q: and @, respectively. Then
K=K, ®K, is a Lagrangian submanifold of P generated by the func-

tion

F:C,8C,>R:q, 99, F, (1) +F;(q,).

4. Composition of physical systems

Let S and S’ be constitutive sets of static systems with configuration
manifolds @ and Q'. The combined sysiem, composed of the two
systems, is a static system with configuration manifold 090 and
constitutive set S8S'CQeQ0* @ Q'@Q'*=(Qe Q') e (@ o Q).

Let S, and S, be constitutive sets of two static systems with confi-
guration spaces Q@ Q; and Q, ® 2 respectively. The constitutive
set S, 08, of the coupled system is defined by

S208,={(q:®f,)e(q, ©f,)€(Q, ®07)e(Q; ®07);
there exists g®fEQ © Q* such that
(gef)e(q, ©f,)ES,
and (g, 0f,)e(@e(-f))ES,}.

IfS,CQeQ* and §, C (Q'2Q)e(Q ©Q)*, the the constitutive
set S, 0 §; of the coupled system is defined by

S;08,={q'of' €Q'©Q"*; there exists gefes,
such that (g'@f') @ (ge(-f))ES,}.

It is useful to observe that the coupled system is obtained by apply-
ing two reductions to the constitutive set S, @S, of the combined
system. The first reduction is with respect to the injection

0,e09Q,~>0,900Q00(, 1q;9g8q, 5426494641 .

This is followed by the reduction with respect to the canonical pro-

jectionof 0, ©Q®Q, onto Q, ® ;.
This observation together with Proposition 3.1, 3.2 and 3.3 leads

to the following proposition.
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Proposition 4.1. Let S, and S, be constitutive sets of two static
systems with configuration spaces Q© @, and @, @ @ respectively.

Let x,:C, ~>D’: and x,: C, —>D: be generating forms of S, and
S, . The constitutive set of the coupled system S, 0 S, is generated by
the form x : C— D*, where
C={q,9q, €Q, ©Q,; there exists g €Q such that
4©q, €C, and g, ©g €C,, and
(0oq", x,(q,©9q)+(3"©0,x, (geg, =0
for each ¢" €Q such that 0 @ ¢" €D, and ¢" ® 0 €D, }

D= {Q; @ q; €0, 9 Q,; there exists ¢’ €@ such that
q'eq; €D, and q; ®q' €D,,and
{g,04",x, (024" +(q'®q . x, (4" 20N =0
for each ¢" €Qsuch that 0eg" €C, and ¢" ®0E€C, }

and x is defined by
(‘?; eq;,x(qz &g, )=
=(g, @4’ %, (g, 29 +{q'®q,,x; (©q, ),

where q,, 4, q, q;, q; and g’ are elements related as in the defini-
tions of C and D.

Corollary 4.1. If S, and S, are subspaces of (Q©Q,)®(Q®Q,)*
and (@@ Q,)®(Q @ Q,;)* respectively then

5:05)% =5] oS} .

Corollary 4.2. If S; and S, are constitutive sets of reciprocal sy-
stems generated by functions F, : C; >R and F,: C, = R respecti-
vely then the coupled system is reciprocal and the constitutive set
S, 08, isgenerated by the function F : C— R, where
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C=1q,9q, €Q, ®(,; there exists g € @ such that
999, €C,, 9, ©q €C; and
(0eq' dF, (g, ®q)+{q' ®0,dF, (g®q, »=0
for each ¢’ such thatg' ® 0 € C, and 0 @ g’ €C,}
and F is defined by
Fg;©q,)=F,(q,®q9)+F, (@2q,),
where g,, g, and q are related as in the definition of C.

If S, CgeQ* and S, C(Q ©Q)e(Q @Q)* the Proposition
4.1 and the two corollaries hold in suitably modified versions.

5. Symplectic relations

Let O and Q' be vector spaces. We denote by P and P’ the symplectic

spaces Q©Q* and Q' ® Q'* respectively. For each subspace S of
P P we denote by S the subspace

S={(g'ef)e(gef)EF oP;
(g'ef')e(@e(-f)ESt.

Definition 5.1. The generating form of a linear relation p: P—>F
is the generating form of the subspace graph p C P' @ P.

Definition 5.2. A linear relation p : P— P is said to be symplectic
if graph p is a Lagrangian subspace of P oP.

Definition 5.3. The generating function of a symplectic relation
p:P—P' is the generating function of the Lagrangian subspace graph p.

Example 5.1. Let ¢: @' = Q be an injection. The relation p,: P~
~ P’ whose graph is defined by

graphp,={(qg'©f)e(qef)EP 2P,
g=u(g) f = ()

TSRS




is a symplectic relation. The symbol p, (K) used in Section 3 denotes
the image of K by the relation g,.

Example 5.2. Let 7:Q~ Q' be a surjection. A symplectic relation
pn is defined by

graph p, ={(q'@f)®(gef)EP &P,
g =a(q),f=a* ().
If graph p =S then the relation p will be denoted by pg.

Proposition 5.1. Let S a be subspace of P’ @P and K a subspace of
P. Then

Pg (K)=SoK.
Proof. From the definition of pg we have
pg (K)= {q'®f ' EP';there exists ¢ ® f€ P such that
gofEKand(g'@f)®(q ef)ES}.

By comparing this with the definition of a coupled system we obtain

the equality pg(K)= Sok Q.E.D.
The following corollary is a direct consequence of Proposition 5.1

and Corollary 4.1.

Corollary 5.1. If p: P—P' is a symplectic relation and K is a sub-
space of P then

p (K$)=( &S,
p (P) is coisotropic,
p (0) is sotropic .

The proof of the following proposition is analogous to the proof of
Proposition 5.1.

Proposition 5.2. If S and S’ are subspaces of P’ @ P and P @ P
respectively then




Ps' OBs = Pgos -

Corollary 5.2. If p, : P> P' and p, : P~ P" are symplectic rela-
tions then p, o p; is symplectic.

For each subspace K of a direct sum @; ® @, we denote by 'K the
subspace of @, @ Q; defined by

'K=1{q,249,€0,90;; 49,24, €K} .

If p:Q, >Q, is alinear relation then “p : @, = @, is the relation
defined by graph ‘p = ! (graph p).

Proposition 5.3. Let S be a subspace of P’ © P generated by a form
x : C—D*. Then 'S is generated by the form X : ?C— (! D)* defined
by

(g, 94,,5(@2q'V=4q,©q,. x(@'®q) .
Proof. Obvious.

Corollary 5.3. If S C P'® P is a Lagrangian subspace generated by
a function F: C—- R then ’S is a Lagrangian subspace generated by
the function F :'C~ R defined by

Fgeg')=F(d ®q).

Corollary 5.4. If p: P~ P' is a linear relation generated by a form
x C~-D* then ‘p is generated by —X.

Corollary 5.5. If p:P~P is a symplectic relation generated by
a function F:C—R then *p is a symplectic relation generated by
—-F.

6. Control modes.
Let Q be a vector space.
Definition 6.1. A conitrol system (I, R) for physical systems with

configuration space Q is a pair of reciprocal physical systems with con-
stitutive sets 7 and R and configuration space 4 ® @ and @ respecti-




vely. We associate with  a symplectic relation
bt gegr—>A9A*.
The following conditions are satisfied:

0, (Qegr)=A0A*
7, (p (R)=A.
The system with constitutive set 7 is called the control interface and
the system with constitutive set R is called the response reference.

et / and J© R be generated by functions Fy: C—>R and F; o
A — R. We asociate with the pair (/, R) a relation

Pury QeQT>ARAT

generated by the function

F :C-R:(aeq)> F;(a®q)—Fp 5 (a).

(LR)

Definition 6.2. Two control system (/, R) and (I, R") are said to be
equivalent if p gty = P(1,R)- AD equivalence class of control sysiem

is called a control mode.

Proposition 6.1. Two control systems (/, R) and ( ' R") are equiva-
lent if and only if

A4 %P Ry T4 °PUR)
and

tp(["R') (p(I"R') (R')):: tp(I’R) (p(}.R) (R)) .

Proof. Let two control systems (/, R) and (I',/}{;) be equivalent.
From pg.py=Pur) it follows that @y ©pyp) =7, P R)

Proposition 4.1 and Proposition 5.1 imply
Py RY (R)=A@0 and p g, (R)=4A ®0.

Consequently, o' gy (01 Ry RN ="Pr) (Pa.r) R)):
Now, let (I, R} and (I', R") be control systems such that




g °L Ry T4 ° PRy

and

2ary @ary RN="0 5, 02y R .
From

Ta®Pu' Ry " Tg°Py Ry
we have

‘pury AOAY) =0 oy (T, (A))
=m0 pygry) (A)
=m0 py p))(A)
='pry (A 04%).
It follows from the decomposition theorem [1] that PR

=069p;p, for some symplectomorphism o :4 ©A4* >4 ®A* such
thatw, o o= 7, , The equality

gy Py RN = Pury ©rry R
implies
g(Ae0)=¢ (p([,R) (tp(]'g) 40))
=a0(pyr) CPyRr) B gy RN
=p(]"R’) (IP([" R') (p(I"R') (R’)))
=A 0.

It follows that the generating function of ¢ is the zero function defin-

ed on the diagonal in 4 ® 4. Hence, ¢ is the identity mapping.
Q.E.D.

It is evident that if (J, R) is a control system then (I, R"), where
R:=’ p(,'R)(p(,'R)(I’?)), is an equivaler.at control system and R'=
=P,y PRy (R)). The linear relation n=m, ©pry and the
Lagrangian subspace R’ =’p (p(R)) are said to represent the equivalence
class of (/, R). Not every pair (7, R), where 7 : P=QeQ*—A4 isa
linear relation and R is a Lagrangian subspace of g ® @*, represents
a control mode.

o
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Proposition 6.2 Let 7: P— A be a linear relation and let R be a
Lagrangian subspace of P. The pair (w, R) represents a control mode if
and only if the following conditions are satisfied

(1) 7(A) is a coisotropic subspace of P,
2) ? 7(0) is a Lagrangian subspace of P,
(3) #(R)=A and 7(0)=0,

4) RC'ia(4).

Proof. Let (, R) represent a control mode. Then there exists a con-
trol interface / such that #=74 © P (s R) = T4 ° Pr> (I, R) is a control
system and

‘g ACD=R.

Consequently, (1) and (2) follow from Corollary 5.2, (3) follows from
Definition 6.1 and (4) is a consequence of

R =EP(;,R )0 PRy (R)

and

t7(4)="p g, (424%) .

Now, let conditions (1)-(4) be satisflied and let L denote * #(0). Sin-
ce @ is a linear relation, (3) and (4) imply that 'z(A)=R+ L. We
define a subspace

I={a®eb)e(gef)EUAA*)B(Q0%);
gef€in(d),a=ngef)
and there exist ¢’ ®f' €L and q" @ f" € R such that
qof +q"ef =qof and
Wg' ©fYN (g, ef1) w)+4a,, bY=0 foreach
g, ®f; €R and a, €A such that 7 (q, ®f,)=a;} .‘

1t is evident that [ is an isotropic subspace of (4 ® A*) & (Q © @%). We




R TR

show that p;(P)= A®A*. Since p;(R)=A®0 it is enough to prove
that 0@ A4*C pl(P) We have p;(L)C 0@A4* and for g@fEP,

g®fERNL=(n(4))% if and only if p;(g ® f) = 0. Comparison of
dlmensmns shows that

dim (p;(L)) = dim (p;(R)) = dim 4 = dim 4*
and, consequently, p;(P)=A4 ® A*. It follows further that

dim /= dim (graph p;) = dim 4 + dim (* p,(0))
=dim 4 + dim R = dim @ + dim A.

Hence, [ is a Lagrangian subspace. The pair (/, R) is 2 control system

and the corresponding control mode is represented by (7, R).
Q.E.D.

7. Admissible control modes

In this section we examine consequences of the fact that the internal
energy of linear physical systems is positive.

Definition 7.1. A control system (f, R) is said to be admissible if
the generating functions of / and R are positive.

Definition 7.2. A control mode is said to be admissible if it can be
represented by an admissible control system.

The following proposition is a corollary to the decomposition theo-
rem for positive symplectic relations (Theorem 4.1 in [3]).

Proposition 7.1. Let f be a control interface generated by a positive
function. Then there exist subspaces @' and @” of Q such that P=
=QeQ*=P oP" where P'=Q'®(Q")° and P"=Q"©(Q")°, and
the following conditions are satisfied:

(1) I=r'el" where [I'C(A®9A*)©P and I["COepP"
are Lagrangian subspaces,

) p 4 e A*) = C ® B, where C and B are subspaces of Q'
and (Q")° respectively.




Corollary 7.1¢ Let (@, R) represent an admissible control mode.
Then m=n"0 7" where 7' : P >4 and 7" : p" > 0 are linear rela-
tions. Moreover R=R'®R", where R"="!z" (0) and R"'C 7' (4).

We note that for an admissible control mode represented by (w, R)
the generating function of R is not necessarily positive.

Theorem 7.1. Let (7, R) fepresent a control mode. This control mo-
de is admissible if and only if there exist subspaces Q' and Q" of o
such that @=Q'® Q" and the following conditions are satisfied

(O 7=m'oa", where % :P' 4 and 7" :P">0 are
linear relations,

2) ‘a'(4) = C ® B, where C is a subspace of Q' and B is a
subspace of (Q")°,

(3) the generating function of ’ 7 (0) is negative,

4) the generating function of R is positive on Q’,

5) B={fe@") ;¢ =0 for g such that ¢ €Q’' and

ge0E 7 (0)) .

Proof. Let (, R) represent an admissible control mode. It follows
from Proposition 7.1 and Corollary 7.1 that there exist Q' and Q" such
that Q=Q'® Q" and conditions (1) and (2) are satisfied. Condition
(3) follows from Corollary 5.3 and Corollary 4.2. We then have

m(d)= (CeB)+ 7" (0).
It foliows that

B=1{f€(Q"); {q.f’=0 for q such that gE€Q and
qe0€("n(4))8}.

Let (Z, R,) be an admissible control system representing (@, R). Since
the generating function of 7 is positive, (0@ b)e (go0)E/ implies
that (0 © 0) ® (g ® 0) €/. This means that q ©0 €7 (0) if and only if
q90€p,(0)= ("7 (4))8 and, consequently, (4) is satisfied. In order
to prove (5) we note that p. p, (R, )=p¢ gy (R)), where R' =
=P NR and R, =P NR, (P'=0"©(Q")°). I' and I" are related as
in Proposition 7.1. According to the decomposition theorem for sym




plectic relations ([1]), P gy = P2°P1 where
p; : P> (C/B%) e (B/C®)

is the composztzon of reductions with respect to the canonical injec-
tion ¢: C—~ Q' and the canonical surjection ¢: C - C/B° and P2 is
an isomorphism. It follows that the generating function of p, (R ) is
positive. Since p, is an isomorphism it follows that

‘pa0p20p; (R))=py (R,)

and, consequently, the generating function of the subspace p( I'R)°
° PrRY (R ) is positive. Hence,

¢ = ¢t 4 ”
Pur)®Pury RiI=CP gy © Py gy RIGRT,

where R" is related to R as in Corollary 7.1 and, consequently, we

have (5).

Now, suppose that a pair (w, R) represents a control mode and con-
ditions (1)-(5) are satisfied. Then (1) and (3) imply that 7" =p;~, where
I"C0eP" and its generating function is positive. We construct an
appropriate Lagrangian subspace

I'cedre(Q e(@Q")°).
Let aset C' be defined by
C'={a®qE€EASQ'; there exists fE(Q")° such that
7(gef)=a} |

and let F, : C; = R be the generating function of ‘7 (0). From Pro-
position 6.2 it follows that for each 2 €A there exisis g, ®f; such
that 91 €Q' and w(g; efl) a. Moreover, for two elements g, ©f,,
q 6]‘ such that g,;, ¢q EQ and w(g, ef,) ﬂ(q eaf) we have
@; 41)90’1 -f )G(’ir(A))§ ie, (q:—q,)€®B). Since F, is
negative and F) (q) 0 for g€Q' ﬂ(B) it follows that

F':C'>R:qea~—F, (@~ aq1)

correctly defines a function on C' if g, €Q" is such that there exist

AN
)




-

fEQ* satisfying ¢, ®fER and (g, ®f)=a We define I' as the
subspace generated by F'. From (4) and Corollary 4.2 it follows that
tpp(0@A™)= t7'(0) and ‘p;(0©0)= (‘7' (4))% and, consequently,
my o pp =" It follows that #=7,4 © P> where I=I'0 [". It is evi-
dent that (, R) is equivalent to (/, R "), where R'= (R NP')® Q"2 0).
Condition (5) implies that (, R') is an admissible control system and,

consequently, (7, R} isan admissible control mode.
Q.E.D.
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