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Introduction

The generalized potential theory is a generalization of electro-and-
magnetostatics and is closely connected with the theory of harmonic forms
on Riemannian manifolds. The method of integral equations and the me-
thod of orthogonal projections are main tools in this theory ([1]-[3], [5],
[12]). In the present paper we propose an approach which is related to di-
rect (variational) methods in the theory of elliptic boundary value problems
(51, [6]). The main idea of this method is to treat different boundary value
problems as continuous, selfadjoint mappings from certain hilbertizable spa-
ces to their dual spaces. In contrast to the method of orthogonal projection
no use of Riemannian structure is made and difficulties typical for methods
based on the analysis of unbounded operators are avoided (compare with
[7], [8]). This results in a clearer conceptual structure and simpler proofs
of fundamental theorems ([7], [8]). The method presented here is based on
the general approach to linear field theories outlined in references [9], [10].

This work is a contribution to programme of symplectic formulations
of fiéld theories conducted jointly with Professor Tulczyjew.

1. A geometric framework for the generalized potential theory

Let us consider the de Rham complex on a smooth, real manifold M of
dimension #:

(*) Division of Mathematical Methods in Physics, University of Warsaw - Hoza 74, 00-682 War-
szawa, Poland.
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_d d
0-R—-> CWM) - C(M) ~...oC" (M)~ 0
and the dual complex of densities ([4]):
F F
0T M) <T' M) «—... < T"(M) < 0.

Let © be a compact, n-dimensional submanifold of M with a bounda-
ry and let k be an integer, 0 < k < n. X (¥) will denote the hilbertizable
space of l‘ k-forms (k-densities) on M. There is a canonical duahty bet-
ween: Xangd Y: for Be X and He ¥ we define

(B,H)=J&; B 1H.

Thus ¥ can be identified with the space dual to X.

Let X (Y) be a hilbertizable space of (k — 1)-forms ((k + 1)-densities) on
Q such that smooth forms (densities) are dense in X (Y) and the operator
d: X — X (5: Y~ ¥) is continuous. The closure in X (¥) of the subspace
of smooth forms (densities) which vanish at the boundary will be denoted
by X, (Yo). The de Rham complex and the complex of densities induce se-
quences of continuous operators

& d, &*

d . % (N
X>Z=718, X~ R — 1

and

a_§ d(’) .o
Xt— T~ Y, Xy~ P~ Y

where stars denote dual spaces and conjugate operators, dy(d) is the re-
striction of d(6) to X,(¥p). It is evident that 6*dy=0 and d* §,=0.

Definition 1.1 A space X of (k— 1)-forms is admissible if subspaces d (X)
and d(X,) are closed in X. A space Y of (k- 1)-densities is admissible
if subspaces 6(Y) and 6 (Yy) are closed in Y.

Examples:

i) If Q is a domain with a smooth boundary then Sobolev spaces of forms
and densities with the index 1 are admissible.

ji) If Q is a Lipshitz domain then for any Riemannian structure on M
the space H (d, 8) of L>-forms such that their differential and codifferen-
tial are L*forms is admissible ([7]).
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Proposition 1.2 Let X;(i=1, 2) be admissible spaces of (k— 1)-forms and
let d; denotes the operator d with the domain X,. There is a canonical
identification of d* (Y) and d’;(?) as topological vector spaces.

Proof. We have imd,=imd, and, conseqﬁently,
ker d% =(im d,)° = (im d,)° =kerd*. It follows that d* Y) =d%(¥) . Sin-
ce d*(Y) is closed in X% induced mappings

a%: Y/ker d%(Y) - d% (Y)

are isomorphisms and the needed equality follows.
Q.E.D.
Similar arguments show that images of d%, 6*, 85 do not depend on
the choice of X and Y.

2. Boundary value problems

Let 0 < k < n remains fixed. The generalized potential theory deals with
linear, continuous and selfadjoint mappings

A: X — X*
where X is as in Section 1. These mappings have form
A=d* Ad

where A: X — Y is alinear, continuous and strictly positive mapping. The
mapping A is the differential of the action function

L:X>R:B-{poB

p is a fibre preserving quadratic mappmg of A" T* M into the bundle of
scalar densities.

Theorem 2.1. i) ker A=kerd, n) im A=(ker d)° if and only if im d is clo-
sed in X.

Proof. Since A is positive ker A=kerd. Since A is selfadjoint (ker d)°
is the closure of im A. But im A is closed if and only if the norm induced
by A on X/kerd is equivalent to the norm of a quotient space. Because
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A is strictly positive and
d:X/kerd > X

is an injection, these norms are equivalent if and only if d(X) is closed
in X. Q.E.D.

Corollary 2.2 If X is admissible, then the equation A4 =J has a solution
if and only if J¢€ (ker d)°.

A similar theorem is true if we replace A by d% Ad,. Frequently the
following system of equations is considered:

*) d*AB=J

s B=m .

If X and Y are admissible, then for 7 € (ker 8y)° and J € (ker d)° there
exist B;€ X and A€ X such that 8% B,=m and A=J—d*iB,. Since
6% d=0 we have, that b=dA+B, is a solution of (*). Thus we have

Theorem 2.2. The problem (*) has a solution if and only if J¢€ (ker d)°,
m € (ker 65)°. The kernel of the problem is isomorphic to the quotient spa-
ce kerdh/imd. :

The problem (*) corresponds to the Neumann boundary value problem
in the generalized potential theory. The space ker 6%/imd is isomorphic -
to the space of the Rham k-th cohomology ([11]). The Dirichlet boundary
value problem

dtA B=j
5*B=M

can be considered in a similar way.
3. Application to magnetostatics (n=3, k=1).

Let @ be a domain in R? with a smooth boundary. We identify forms
and densities with vector fields and functions. For smooth fields J can be
represented by a pair (j, /) where j is a vector field on € and j; is a vec-
tor field on 99, tangent to 9Q. The Neumann boundary value problem
is the following
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curl H=j
divB=m
H=pB inQ
Hxn=j;, on 9.
n is the unit vector normal to the boundary and p is the symmetric map-
ping corresponding to the quadratic form x. The Dirichlet boundary value
problem is the following
“curl H=j
divB=m
H=pB inQ
Bxn=m; on 9.
Theorem 2.2 gives criteria for the existence of solutions of the problems.

In particular, since the Sobolev space H! (Q; R%) is admissible, j € (ker d)
and (m, mg) € (ker 6*) if the following conditions are satisfied

J€L*(@; R%, divj=0 and j is orthogonal to the generators
of the de Rham first cohomology group,

(m,m) € L> (@) x H'*(30Q) and {2 m— | m,=0.
an
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