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It is shown that in a certain class of superspaces, namely in the set of all complete
Riemannian metrics on a finite-dimensional manifold, one can introduce differentiable
structure modelled on ^-S-space.

1. Introduction

During the last years a considerable growth of interest in the problem of quantization of
gravitational theories may be observed. This interest was raised mainly by the work of
Wheeler, who opened a new way of attacking the problem. This consist in considering a new
kind of structures, which he called superspaces. The principle ideas may be found in Wheeler
[5], Bergmann [1] and others. The weak point of those considerations was that they neglect
the question of existence of a differentiable structure in the superspace. This is what we aim
to do in this note. We shall take into account the simplest case where the superspace con-
sidered is the set of (all) complete Riemannian metrics (only the complete metrics are phys-
ically interesting) on a finite-dimensional manifold M. A structure of the differentiable
manifold, modelled on a Frechet-Schwartz space, is introduced on that superspace. Differ-
entiation is understood in the sense of [3].

The autor is greatly indebted to dr J. Kijowski for suggesting the problem and valuable
discussions and to Professor K. Maurin for his lively interest in this work.

2. Complete metrics on M
Let M be a paracompact C°°-manifold. It is well known [4] that there exists a positive-

definite complete Riemannian metric on it. Let us denote by 3P the set of all those metrics.
We wish to introduce a differentiable structure in 8P. At first let us recall some well-known
facts.

LEMMA 1. (M, g) is a complete manifold if and only if every bounded and dosed set is
compact.

LEMMA 2. (M, g) is a complete manifold if and only if (M, g) is geodesically complete.
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Assume now 'that g' and g are complete metrics on M. Since the set is compact and
closed independently of the choice of metric, we have:

LEMMA 3. The set V <=• M is g-bounded if and only if it is g'-botmded.
Thus if (M, g) is complete and we want (M, g') to be complete, then the implication

(V is g'-bounded) => (V is g-bounded)

must hold, or equivalently, for each r'>0 there exists r=f(rr) such that for a certain point
X0e M we have the implication

(xeK'(x0,r'))^(xeK(x0,r)).

K and K' denote balls in (M, g) and (M, gO, respectively. We can choose the function
r=/(r')>0 to be strictly increasing.

The above condition can be written in one of the following forms:
a) foreachr'>0, there exists r=f(r')>Q such that

d'(x,x0)^r' implies d(x,x0)^.f(r');

b) there exists a strictly increasing function f: R+ -*R+ such that d(x, x0)^f(d'(x, x0J);
c) there exists a strictly increasing function f:R+->R+ such that f — ̂ -» oo and d'(x, x0)

</ (</(*, *„));
d and d' denote the distance in (M, g) and (M, g1), respectively; obviously one can

choose /=/-1.

THEOREM 1. Let g be a complete metric on M and g'^s2g for certain e>0, explicitly
that means: for each vector field u satisfying g'(u, u)~^s2g(u, u); then (M, g') is complete.

Proof: We have ^/g'(u, u)^e\Ig(u,u) and there from IMI'^IMI- I Ml' anc* I Ml denote
the length of the smooth curve y in the metric corresponding to g' and g, respectively.
In particular, if y is a geodesies in (M, g') connecting x and x0 , then

The last inequality follows from the fact that in (M, g) and (M, eg1) geodesies are identical.
Taking into account point b) above, the proof follows.

We put h:=g'—g; then for h>8g, d> — 1, (M,g') is complete.

3. Differentiate structure in 3?
For each g e ̂ , we introduce the set Tg, consisting of all 2-covariant C°° tensor-fields h,

satisfying the condition \h\g for certain £>0. Tg is obviously a vector space.
In Tg we introduce a topology of uniform convergence with respect to g and almost

uniform convergence of all derivatives. It is easy to see that Tg equipped with this topology
is a Frechet-Schwartz space. On the sets
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we define embeddings (see Theorem 1):

Those mappings determine a topology in 01.

LEMMA 4. If g+h=h+f, where heUg<= Tg,he Usf<=Tf (f,ge0), then ge Tf and

/S T>'
Proof: From the above, g=f—h+h, therefore

« and
JL "~~ £

PROPOSITION. Tf=Tg as topological vector spaces.

Let us take two maps Ke and Kf such that the mapping Kf o K~ 1 : T0-+Tf is well defined.
From Lemma 4 it follows that Tf=Tg. Since Kf o K~I is a translation, it is difierentiable.
This completes the proof of the following theorem.

THEOREM 2. The triplet (0>, T, K), where T=\J Tg,K=\J Kg, is a differentiable (J -̂S)-
manifold of the class C™ in the sense of [3]. a£S> 9sS>

REFERENCES
[1] Bergmann, P. G., Status of canonical quantization, preprint.
[2] Kijowski, 3., Studia Math. 32 (1969), 93.
[3] Kijowski, J. and W. Szczyrba, ibid. 30 (1968), 247.
[4] Nomizu, K., and H. Ozeki, Proc. Amer. Math. Soc. 12 (1961), 889.
[5] Wheeler, J. A., Einstein Vision, Berlin, 1968.


