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INTRODUCTION

. This paper is a continuation of research devoted to the Trigorous
development of caleulus of variation ([14], [15]). Owing to the studies
begun by Eells and his school and continued by Kijowski and Komorow-
ski many important families of functions have been. equipped with the
(natural) differentiable structure, e.g. the set ¥~ of smooth sections over
compact domains of a bundle V is a ¢ manifold modelled on the F-S
space. ’ ' ‘

Such an approach has enabled Palais and Smale to work out the
general Morse theory, and Kijowski and Komorowski to formulate the
strict Lagrange formalism in eclassical field theory.

So far we have dealt with smooth fields and smooth local functionals.
However, in classical field theo'riés one is forced to deal with singularities
of fields (e.g. an electromagnetic field of a single particle), singularities
of Lagrangian and non-local effects (e.g. the scale microeffect [31], the

. memory effect [31], interacting fields [23]).

These needs force us to consider theories in which both singular
fields and singular non-local functionals appear. We can do this in the
case of a vector bundle V, taking section-distributions [24] instead of
sections. ' ; )

If V is a vector bundle, 7 is also a vector bundle and the family
' of section-distributions forms a conjugate bundle ¥"'. Hence, the natural
problem is that of equipping ¥~ with a differentiable structure. Although
v cannot be equipped with a topology, it carries a natural strueture of
a manifold over Marinescu spaces ([11]). Te this goal we solve a more
- general problem of existence of a differentiable structure in a conjugate
pbundle to a C*-vector bundle modelled on F-S spaces (Chapter III).
For this purpose we develop the differential calculus in the Marineseu
spaces which are products of normed Marineseu spaces and infrabarrelled
"DF loeally convex vector spaces (Chapters I and II). ' )

As an example we consider in Chapter IV the bundle of section- -
distributions. -

By the Lagrange density funetion we mean the function of bundles
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v sp—>L(v)e?’. A Lagrangian associated with L is a function ¥ >9
—=Z(v): = (L(v), v). It is shown that if L is of class C* then 7 is of class (.

The author would like to express his gratitude to Professor K.Maurin
for his inspiring interest and constant encouragement in this work. He
is also indebted to Dr. J. Komorowski for suggesting the problem and many
profitable conversations, and to Dr. J. Kijowski and Dr. W. Szezyrba for
critical reviews of the manuscript. '



CHAPTER 1

DIFFERENTIATION IN CARTESIAN PRODUCTS OF NORMED
AND DF-TYPE INFRABARRELLED SPACES

In Chapter ITI we shall deal with manifolds modeled on spaces
which are in some sense “families” of products of normed and DF-type
infrabarrelled locally eonvex vector spaces (L.c.v. spaces). In this chapter
we shall outline the theory of differentiation in such products. This theory
is based on W. Szezyrba’s theory of differentiation in metrizable, quasi-
normable and DF-8 l.c.v. spaces. ' .

§ 1. Preliminaries. We shall deal with locally convex vector spaces
which are assumed to be Hausdorff. We shall denote them by block letters
E, F, G. The field of scalars will be real or complex and fixed throughout
the whole paper. 4 (E) will denote the base of absolutely convex neigh-
bourhoods of zero in E. If Ue & (E) then | ||y will denote the gauge function
of U, and By will denote the normed space B|y@w, where N(U)
1= {eec H: |l¢||y = 0} with the norm induced by || ||g- The symbol % (E)
will stand for the family of all absolutely convex, closed and bounded
subsets of E. If Be #(H) then Ep will denote the linear span of B with
the topology defined by B. The symbols E., and B, will denote the weak
and the strong conjugate, respectively, to B spaces. The spaces of all
continuous linear, bilinear, and n-linear mappings from FE,E>H,
ExX ... xE into F will be denoted by L(H, F), L(E, E; F) and
L*(E, F), respectively.

§ 2. Fundamenial definitions. Let T be a mapping T: B> Q—F,
where @ is open in E.

DEFINITION. We say that the mapping T: B > Q—F has the Gdteaux
(weak) derivative at @ point ¢, Qif there exists a linear mapping VT (¢)
¢ L(B, F) such that the mapping

E o Ush—ry(h): = T(eo+h)—T(e)) — VT (e)he F
for each heU has the following propetty: '

. {1
hm(—t—reo(th)) =0, where te K (R or C), Ue /' (E) and 6+ Uc Q.
=0
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The definition above is identical with the definition of the Géateaux
derivative in normed spaces. The Fréchet derivative may be defined
in many different ways, but we will use the definition given in Marinescu
[20] and Keller [12].

DEFINITION. We say that the mapping T: F o Q—F is differentiable
tn the sense of Fréchet at the point ec Q if there exists Le L(E, F) such
that the mapping

Eo Qsh—sr,(h):=T(e+h)—T(e)—L(h)e ¥

has the following property: for each Ve #(F) there exists Ue /()

()l
such that for each M.-S. sequence {%,};.,, ;—0 in B, lim Hillkar])”I —
illo
h
Remark. Tf [hly — [r.(®)ily — 0 we put ety o

liPeller
‘The mapping L is defined uniquely (if it exists) and is denoted by T'(e)
or DT (e). We say that L is the Fréchet derivative of T at the point e.
We say that the derivative 7' is continuous at e, if the mapping ¢—T"(e)
e Ly(E, F) is continuous at ¢,. From the definition immediately follows

THEOREM 1. _

a) A mapping which is differentiable in the sense of Fréchet at the point
e is continuous at e. ,

b) A mapping differentiable in the sense of Fréchet at the point e has
the Gdteaux-derivative at this point and T'(e) = VI'(e).

c) If T and T, are differentiable at the point e, then aT +bT, (a, be K)
is differentiable at e and

(aT +bT,) (¢) = aT'(e)+bT;(e).

d) If the mapping Ty: E o Q,—F is differentiable at e and T,: F o Q,
—@ is differentiable at T (e), then T,0 T, is differentiable at e and (T,0T,) (e)
= T,(T1(e))o T (e).

Remark. In what follows by differentiability we shall understand
differentiability in the sense of Fréchet. J. Kijowski and W. Szczyrba
in ([13], [28]) have constructed a theory of differentiation in a certain
class of l.c.v. spaces.

In this paper we shall base oarselves on the theory of W. Szezyrba
for two classes of l.c.v. spaces: metrizable, and quasi-normable or Schwartz
of DF-type (DF-8) l.c.v. spaces.

Modifying the theorems given in [28] we shall obtain the theory
of differentiation in the Cartesian product of normed and infrabarrelled
DF-spaces.
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DEFINITIONS.

a) We say that an l.c.v. space E is quasi-normable if for each equi-
continuous set A c B there exists V < A (B) such that on A the
topology induced by B, coincides with the topology of uniform conver-
gence on V.

b) We say that an l.c.v. space B is DF-space if the following conditions
are fulfilled:

1° E admits a countable basis of bounded sets.

2° Every bounded set in E, which is a countable sum of equicontinuous
sets is also equicontinuous.

Property 2° is called c-infrabarrelledness. )

¢) We say that an l.c.v. space B is Schwartz (S) if for each Ue A (E)
there exists Ve & (E) such that V is precompact in Hy.

§ 3. Certain properties of mappings in some l.c.v. space. We shall
give below some theorems corresponding to theorems due to W. Szezyrba
(theorems 2 & 14 in [28]).

ProposITION 1. Let B, be a normed l.c.v. space and B, and G—any
l.c.v. space. Suppose we are given @ mapping

T: B, x By > QX E,—~G

satisfying the followifég conditions:
1° for each ec 2, T(e,)e L(E,, &),
2° the mapping 2>e—>T (e, )e Ly(By, G) 8 conlinuous at €.
Then T is continuous at (6,, b) (he Ey).

COROLLARY. Let B, and F be any l.c.v. spaces, and E.a normed 1.c.9.
space. Then Ly(Ey, Ly(By, F)) = Ly(By, By F).

Proof. We have L(E,, B,; F)< L(Ey, Ly(E,, F)). Leb feL(El,
Ly(H,, F)). From the proposition it follows that the mapping
(€1, €2)—f(€1) €2 18 continuous, hence algebraic equality. The equivalence
of topologies is obvious. M

If we want to change the roles of E, and H, in Proposition 1, we
must assume more about the mapping 1.

DEFINITION. We say that a mapping T7: B o Q-F is locally bounded
on 2 if for each ec Q there exists Ve 4 (E) such that, for each Be % (E),
T((e+ V)N B) is bounded in F.

DEFINITION. A mapping T: B > Q—F is called quasi-locally bounded
at e Q if for each Be #(H) there exist ¢ >0 and B« % (F) such that
T(e+eB) = B, +T(e).
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LeMMA 1. Let E; be normed, B, —infrabarrelled, and F—any loe.w.
space. Suppose we are given a mapping

T: Byx By QX Ey>F

satisfying following properties:

1° for each ec Q T(e,-)e L(H,, F),

2° for each We /' (F) the mapping Q>e—>T(e,")e Ly (E,, Fy) is
continuous and quasi-locally bounded at e,.

Then T is continuous at (ey, ) (he B,).

Proof. Because of infrabarrelledness and quasi-local boundedness,
for each We 4 (F) there exists U< 4 (H,) such that the family T'(e,+ U, +)
< L(E,, Ey) is equicontinuous. Hence the continuity of 7 ab (€9, 0).
From the continuity the proof foliows. M

Remark. It is easy to see that in Lemma 1 it is sufficient to assume
the continuity of the function

¢—>T(e, )e L;(Hy, F).

COROLLARY. Let E; be normed, E,—infrabarrelled, and F —any l.c.v.
space. Then

Ly (H,, E,; F) = Lb(Ela Ly (HE,, F))-

Proof. Let fe Ly(E;, L,(E,, F)). This function is bounded, and so
Lemma 1 implies that the mapping

B X Ey> (€1, €3)—>f(e)) e,

is continuous. Further as in the Corollary to Proposition 1.

Now let us recall some well-known facts concerning l.c.v. space.
PROPOSITION 2 ([9]). Every infrabarrelled DF-space is quasi-normable.
LeMmMA 2 ([9]). An lew. space B is quasi-normable if and only if for

every Ue N (E) there exists Ve N (H) such that for every 2 >0 we can find

Be Z(E) satisfying the relation V < AU+ B.

We can modify the above lemma:

LevmA 27 ([28]). Let E be a quasi-normable l.c.v. space, and Q a neigh-
bourhood of zero in B, X e /' (E) and Y+ Y < . Then for every i > 0 there
exists a bounded set B < Q with V < A Y+ B.

LeMMA 3 ([28]). Let E be a DF-space, (U2, & sequence of neigh-
bourhoods of zero im E. Then there exists Ve & (E) such that there emsis
a sequence of real numbers 2; > 0 satisfying the relation 1, U < V.

With the above lemmas we can prove a theorem of fundamental
importance for the following considerations. It will be a simple modifica-
tion of W. Szezyrba’s theorem (theorem 14’ in [28]).
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TuEoREM 2. Let E, be normed, B, and E; infrabarrelled of DF-type,
and T —any l.c.v. space. Let T be a mappinyg T: B, X By x By o QX B;—F
satisfying the following conditions: '

1° for each e = (6, €s)¢ Q, T(e,-)e L(E;, F), .

2° for each We 4 (F) there exists an open neighbourhood Oy, of the
point (€qy, €e) Such that ithe mapping Oy (€, 65) = e—~T (e, -)e Ly(E;, F)
is continuous at the pownt €, = (o1 €o2) AN uniformly continuous with
respect to the second variable on Oy,

3° for any bounded set B = Oy the family T(B,-) is bounded 1in
Ly( By, Fry)- :

Then the mapping T is continuous at (€, k) (ke Hy).

Proof. Let the sequence (B;)>, form a basis of bounded sets in .
From the uniform continuity it follows that for any We / (¥) and any B;
there exists V,e .4 (H,) such that for e Oy and he B;

(+) iu%)HT(e—l—(O,y), r)—T (e, b)|lyy < 1.

eV
From Lemma 3 we infer that there exist Ve 4 (H) and a sequence 4; >0
such that 4,V = V,;. Now we can choose open sets Qp = Qi x Oy and V
such that V4V +e, < Q). From Lemma 2" there exist Ve N (B, and
a bounded set 4., for any a >0, such that V < aV +4, So we have for
a (bounded) Ue ./ (B;) contained in-Qy the relation

e+ UXV e+ UxA,+{0} x(aV).
Taking 4; = 4, from (*) we have:

sup sup || T(e,+ e, )|lw
hkeB; eeUx4d

< sup sup supJIT(eo—{—eJr(O, y), h) — T(eo+ €, B)||y +sup sup [T (6+

heB; ecUxd; yeky heB; ecUx4;
+e, )y < L+sup sup [|T(e+e, h)lp < .

heB;ecUxd;
The last inequality holds because of 3° and the boundedness of U X 4; < Q.
Tn other words, the family {T (€, €, *)}ecrx v I8 bounded in Ly(Es, Fy)
and, because of the infrabarrelledness, equicontinuous. Hence we have
the continuity of T at (e, 0). The. continuity at (€9, B) (he Hy) is the
result of the continuity of the mapping

e—>T(e,)e Ly(Es, F) at ¢. A
§ 4. Mean value iheorems. The theorems below are based on similar

results (cf. [28]) in' the case of quasi-normable, metrizable or DF-S l.c.v.
spaces.
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THEOREM 3. Let E, be a normed and E, an infrabarrelled DF-space,
E = E, X By, and F—any l.c.v. space. Let T: E > Q—F be a mapping
continuously differentiable at the point ege 2. Let D,T (i.e. the partial deriv-
ative in the direction of H,) satisfy the assumptions of Theorem 2. Then
for each Ve N (F) there exist U, We & (E) such that for every e ey+ U,
heW the following is true:

1T(e+h)—T(o)lly < Cllklly, where € = Sup 17" (e + k) sl < co.

Proof. Let us write e = (€1, €oa), € = (€1,€5), b = (hy, hy) ete.
For any We /' (H), VeV (F), we have the following relation ([3], [5]):

IT(e+k)—T(e)lly < sup |T"(e+ Oh)hlly < sup ||T"(e+ )kl klly
o<b<1 k,seW

(the last inequality holds for he W). Also
17" (e +8) klly- < 1D, T (e + 8)keally + 1D T (€ + ) kally-

From Proposition 1 and Theorem 2 it follows that there exist Uet (&),
Wie /' (E,) and Wye & (H,) with
1% sup sup |[1"(ey+8)kylly < oo,
kyeWysel
2° sup sup [|T"(ey+8) kslly < oco.
kaelWq seU
Hence, by taking U+ U < (}, We W, xW, and W < U, the proof -
follows. B
Remark. In the proof of the above theorem we used the continuity
of D,T at the point (e, 0) only.
The next theorem deals with the problem of estimating the remainder.
PRrROPOSITION 3 ([28]). Let E be a quasi-normable and F a normed
l.c.v. space. Let A be an equicontinuous subset of L(H, F). Then there exists
VeV (E) such that on A the topology induced by Ly(E, I') coincides with
the topology of uniform convergence on V.

THEOREM 4. Let the assumptions of Theorem 3 be fulfilled. Let 1’ be
continuous in a meighbourhood of e,. Then for any Ve N (F) there ewist
U, We & (E) such that for each e< ey U, X e N (H) and he Y the following
relation holds:

lire(P)lly < Co( X) IR,
where

Ce(Y) = supsup||T'(e+k)s —T"(e)sly
ke¥ seW
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and

lim C(Y) =0.
YeHN(E)
Proof. Let us consider the mapping T(e+h) = T(e+h)—T'(e)h.
As in the proof of Theorem 3, we have

IT(e+h)—T(e) —T"(e)hlly < sup [IT"(e+ k)b —T"(e) hlly
0<o<1

< supsup |77 (e +k)s —T"(e)slpliblly  (heX).
keY seW
Because of Proposition 1 and Theorem 2 the following families of functions
are equicontinuous for a certain Ue 4 (H):

A, = {D,T(6+€)}ecy = L(Ey, Fy),
4, = {DzT(eo‘l‘e)}eeU c L(HE;, Fy).

But on 4; (i =1,2) the topology induced from L,(E;, Fy) coincides
with the topology of uniform convergence on a certain W;e A (#;) (Pro-
position 3). Taking W = W, x W,, from the continuity it follows that

sup [|[I"(e+k)s —T'(e)lly 3> 0- M
seW
One can easily see that in the above theorem (and also in Theorem 3)
we have taken advantage of the existence and continuity of the Giteaux
derivative only. Thus Theorem 4 may be interpreted as a theorem giving
the existence of a Fréchet derivative of the continuously Géiteaux-dif-
ferentiable function. Hence one can obtain the theorem on partially dif-
ferentiable functions, but we are going to prove it independently in a more
efficient way.
TuEOREM 5. Let B be normed, and F and G —any l.c.v. spaces. If a map-
ping

T: ExXF > Q-G

is partially differentiable ai (ey, f;) and the derivative in the direction of H
is continuous in a neighbourhood of (eq, fo), then T is differentiable at (e, To)-

Proof. Let us write ke E, se¢ F. The remainder may be put in the
following form:

(*) T(eo‘l‘h’fo'l's)—T(eo’fo)_T,(emfo)(ha )

1 2
= D,T (e, fo+8)h— DT (e, fo) b +7'(eo,fo+s)(h) H g0 (5)-
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By the theorem on remainders in normed spaces there exist U, We 4 (E)
such that

]
17 (eguig+s) (W)l
< supsup ||D1T(eo+k7fo+3)t—DlT(eoafo‘l“s)”Vuh”W = a(s, 1) ||Aly-

ke teW
_ By the continuity of DT, a(s, t)55>0 Similarly,
D1 T (o, fo+8) e — D1 T (€0, fo) kil
< sup||D, T (6, fo+8)t — Dyleo, fo)tlly Ikl = B(s)|I~llm
and B(8)=90- bW

Since 1*(3 oot (5) is a remainder, the whole expression (*) is a remainder. R
Remark. In the above theorem the normability of B and continuity
of D, may be replaced by the assumptions of another “remainder theorem”
(c.g. in the case of DF-infrabarrelled, DF-8, metrizable and quasi-normable

spaces, ete. cf [28]).
Assuming the continuity of D, in Theorem 5 we obtain the necessary
and sufficient conditions for the continuity of T".

§ 5. Differentiation of a superposition. In the following we shall
prove a theorem important in the differential calculus.

THEOREM 6. Let E,, F, be normed, and E, and F, infrabarrelled DF-
l.cv. spaces B = B, xH, F = F, X F,.

Let G be any l.c.v. space. Let the functions

T.: E> Q—F(ee 2,), Ts: F> 2,~>G

(fo = Tileo)« 2y) satisfy the following conditions:

1° T, and T, are continuously differentiable ai e, and f, respectively,

2° for each We /' (G) the mapping Op> e—>D,Ts(e) is uniformly
continuous with respect to the second variable on a neighbourhood Oy of fos

3° for each bounded subset B = Oy, D, T,(B) is bounded in Ly(F5, Gy)-

Then the mapping T,oT, is continuously differentiable ai o

Proof. By Theorem 1 it is enough to prove the contlnulty of the
derivative. We have:

(Ty0Th) (6) = To(Ts(e))oTy(e)
= D1T2(T1(3)) oD,T(e) +D1T2(T1(3)) oD,T,(e)
+D2T2(T1(3))ODlTl(G)+D2T2(T1(9))0D2T1(3)'
Let us fix We 4 (G). By Proposition 1 and Theorem 2 there are Ve 4" (F),
Vie N/ (Fy), Voe ¥/ (F,) such that
IDyTo(fo+h)silly <% and  [|DyTa(fo+h)solly < 4
for he V, 8,6 Vq, 8,6 V,.
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Because of the continuity of T, and T;, for each b(;unded set Be Z(E)
there exists Ue A4 (H) such that T(¢y+ U) < fo+V and T,(¢,+ U)B
c VX V,. Hence the proof follows immediately.

Remark. One can easily notice that by assuming in Theorem 6
the following additional eonditions:

1° the mappings T, and D,T, are locally bounded at e,,

2° T, is uniformly continuous on a certain open set 0s¢, with
respect to the second variable,

3° for each We /' (G) the mapping Op> e—Ts(e)e Ly(F, Gyp) is
loeally bounded at f, and uniformly continuous on some neighbourhood
0W9f07 .

4° for each Ve /' (F) the mapping Oy > e¢—D,T e L,(E, F;) is uni-
formly comntinuous with respect to the second variable on some neigh-
bourhood O > ¢,

one infers that for each We /' (G) the mapping Op>e—D,T,0T,
e Ly(E, Gy) is locally bounded at ¢, and wuniformly continuous with re-
spect to the second variable on some neighbourhood Oy > ¢,.

§ 6. Higher order derivatives. By Proposition 1 and Theorem 2,
Ly(E, L,(E, F)) = L,(E, B; F), where B = B, x E,, F;is a normed and
B, an infrabarelled DF-l.c.v. space, and F is any l.c.v. space. By induction
we can prove an analogous equality in the case of n-linear mappings.
Thus the nth derivative is a symmetric, n-linear function.

Using a generalization of Proposition 3 to the case of a multilinear
mapping, one can prove theorems on “the higher order derivative?”,
“higher order remainders”, “the Taylor formula”, etc. '

We are not going to formulate and prove them because they can be
obtained as a simple modification of the corresponding theorems in the
case of metrizable, quasi-normable spaces (ef [28]).



CHAPTER 1II
DIFFERENTIAL CALCULUS IN MARINESCU SPACES

In this chapter we shall be dealing with the theory of differentiation
in a certain class, important for applications, of pseundotopological spaces
(“Limesraume” of Fischer [7]), the so-called-Marinescu spaces or “Unions
of topological spaces” (“reunion pseudotopologique” ef [21], [11]). A “Union
of topological spaces” is a generalization of spaces investigated and applied
by several authors: L. Waelbrock (“espaces % bornes” cf [30]), J. Seba-
stiao e Silva (“réunions d’espaces normés” cf [25], [26]), J. Mikusinski
(“réunions d’espaces de Banach” ef [22]), B. H. Arnold [1], M. F. Subynin
(“politopological spaces” [27]) and others. Except for [27] all those con-
cepts are special cases of the notion of “espace vectoriel bornologique”
investigated by H. Hogbe-Nlend and his group in Bordeaux. The basic
concepts of this theory can be found in [10].

The theory which we are going to present coincides with that of [10]
and [4] (in the case of “espaces bornologiques convexes”). Close to ours
is the concept of a differential function due to J. Sebastiao e Silva [25],
E. Dubinsky [6] and M. F. Subynin. On the other hand, it has no inter-
esting analogy with the theories of Frohlicher & Bucher [8] and A.
Bastiani [2].

§ 1. Basic concepis and definitions.

DeFINITION ([11], [21]). A Marinescu space (M-space) is a vector
‘space B with the family {E;},., of L.c.v. spaces with the following properties:

;1% A is a directed set,
2° for cach ie A, B, is a subspace of B and E = U E;,

Aed

3° for each pair (A;, Ay)e A X /A there exists AeA such that E; > By,
and the injections H,—H, are continuous.

{B:}rea ({B;} if it does not cause any misunderstandings) and &
will be used simultaneusly as a symbol of an M-space. In the following we
assume all &, to be Hausdorff.

EXAMPLES. -

1. If B, = (B, 1,), we say that E is politopological.

2. If each E, is normed, then E is called a bornological (convex) space.
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3. B = (B, ). The M-space {Eg)p.gum is called a bornological Von
Neuwmann space associated with E and will be denoted by BE.

Rematk. In the definition of an M-space the convexity assumptions
are not necessary but we are not interested in such a generalization.

DEFINITION. A Moore-Smith sequence {z,},.x in {#;};.4 converges
to xoc B if there exists A< A such that for each Ue A/ (H)) there exists
ye N such that (v >»)=>(x,cx,+ U).

Remark. In the above definition we can put x,+ U < E,.

DEFINITION. A mapping T: {B,}—{F,} is continuous at w,c B if
T(x;)—(w,) for every M.-S. sequence &;,—>&,.

LEMMA 4. A mapping T:{E,}—~{F.} is continuous at x, iff for every

1 such that xyc B, there exist v and a neighbourhood U <= E, (x,c U) such
that T(U) c F, and the mapping T|y: By > U—~F, is continuous at z,.

Proof. 1° At first we shall demonstrate that there exist U < E,
and » such that T(U) c F,. Assume that there exists an ), such that for
each F, and U c B, (zye U) there exists v« U with T'(z)¢ F,. Taking a basis
{U,} of neighbourhoods of #, in E,, we obtain a sequence converging
to z,. But T(xg) does mot converge in 7.

2° Similarly we prove continuity. If, for each U and », T: B, >U—~F,
is discontinuous at @,, then for each » and p there exists ze U, with T'()

¢ U, F, (U,> T(x,)). This gives a contradiction (as in 1°). M
, Remarks. 1° The assumption x;e EA may be omitted by taking the
affine spaeces o+ 5.

2° From the proof of Lemma 4 it follows that in the case of normed
E, it is not sufficient to look upon continuity as sequence continuity. It
is sufficient if the family {#,} is countable. A counterexample can be found
in [10].

In the same manner as in the eategory of l.c.v. space one can define
products, direct limits and other induced structures (cf. [11]).

EXAMPLES.

1. Let {E,};.4 and {F,},.x be M-spaces. The set B XF equipped with
the structure of an M-space defined by {E; X F,}q,,jcaxx 18 called the (Carte-
sian) product of M-spaces F and F.

2. One can easily notice that {E;};. 4 = lim B, (direct limit of M-spaces).
3. (B} x {H;} = {8, xB;}. -

§ 2. Differentiation in Marinesen spaces. Let B = {E;}. The space
E can be equipped in a natural way with two topologies:

1° The topology of a direct limit of l.c.v. spaces H;. E 'W‘lth thls
topology will be denoted by TEH.

* 2 — Dissertationes Mathematicae CXIII
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2° The topology of a direct limit of topological spaces H;. tE will
stand for B with this topology. The topology of tE is a larger topology
preserving the convergence of sequences which converge in E.

‘Remarks.

1. tE may not be a topological vector space (cf. [10], [1]).

2. The sequences converging in t# do not converge in general in
{E;} (cf [16]).

By a neighbourhood in £ we mean one in (E.

ProOPOSITION 4. Let U be a neighbourhood of x, in {E,}. Then, for each
2, Un(zy+ E,;) is a neighbourhood in K, x,.

DEFINITION. A mapping r: {;} > Q—{F,} is a remainder if for each
A there exists » such that r: E,nQ2—F, is a remainder in the sense of
an l.e.v. space.

DEFINITION. A mapping T: E o Q—F is differentiable at x< Q if
there exists Le L(E, F) (the collection of all linear and continuous mappings
from E to F) such that the mapping

v (h): = T(x+h)—T(x)—Lh i3 a._i’ema,inder.

Notice that L is defined uniquely. The mapping L will be called the
(Fréchet) derivaiive of T at  and denoted by T”(x). The definition imme-
diately implies

THEOREM 7. 1° Every mapping differentiable at x is also continuous at .

2° A linear combination of differentiable functions s also differentiable
and its derivative is a linear combination of derivaiives.

3° A superposition of differentiable functions is also differentiable
and

(Ty0Ty) (%) = T;(Tl(w))OT;(“’)-

DEFINITION. We say that a sequence of mappings 7T,: E—{F,}
converges uniformly on A = B if there exists » such that 7;(4) < F, and
the sequence 7,: A—F, converges uniformly on A.

DEFINITION. A set B < {E,} is called bounded if B c E, and B is
bounded in HE, for a certain A.

Now we can introduce the structure of an M-space in the space L(H, F)
(compare with [11]).

Let A and N be directed sets. Let us denote by II the set of all mono-
tonic functions 7: A—N equipped with the relation (7, > 7)< (for each
Ae A 7y (R) > 7mo(R)).

Let {B;};.4 and {F,},.y be M-spaces. For each e IT'we define the set

LB, F) ={fc L(E, F): f(B;,) c Fy and f: E;—>F_; is continuous}.
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Of course L, (B, F) is a vector space, \J L. (B, F) = L(E, F) and

mell
for each pair (s, ;) there exists = > z; (¢ = 1, 2) such that (L, (B, F)
UL, (B, F)) < L,(E, F). '
Let B = {B;};.4 be a family of sets such that B, is bounded in F,
and 0,¢ &/ (F,). The sets

Ug: = {fe L,(E, F): f(B;) = Oua}

form a basis for the locally convex topology in L,(E, F). One can easily
examine that L(HE, F) = {L,(E, F)},.; is an M-space. We shall denote
it by L,(H, F). S

In the same manner we define the M-space L (E, F).

PropostTioN 5. The convergence in Ly(E, F) is uniform on bounded
sets.

Now we can introduce the concept of a continuously differentiable
function and higher order derivatives.

DEFINITION. We say that a mapping T: {,} > Q—{F,} defined
on an open set 2 is continuously differentiable at e, Q if T is differentiable
on a certain neighbourhood O of ¢, and the mapping E > 02 ¢—~>T'(e)
e L,(E, F) is continuous at .

DEFINITION. Let T be as above. We say that T is differentiable twice
at ¢, if the mapping

E > 0se—T'(e)e Ly(E, F)

is differentiable at e¢,.

Higher order derivatives are defined by induction.

THEOREM 8. A mapping T: {E,} o Q-{F,} is differentiable at e, 2
iff for each A there ewist v and Oze N (E,) such that

T(ey+ 0;) = T(eo) + F,

and the mapping T: e+ 0,—~T(e)+ F, is differentiable-at e,.

Proof. < Let T(e,+0;) = T(e,)+ F, and let the mapping T': ¢,+ 0,
—T(e,) +F, be differentiable at e,. This means that

T(eo+h)—T (&) = T3,(e)h+7,(k), ~where T« L(E;, 7).

Now it is enough to prove that T ,(¢,) coincides with T;’,,(eo) on E, for
A > A (we can assume that » > »). Accordingly, notice that on ¢+ 0, the
mapping T may be treated as a mapping into F, -+ T'(e) (differentiable
of course). But 7ylg,: E;—~F, is a remainder, and so by the uniqueness
of the derivative in l.c.v. space the proof follows.

= The proof is obvious. W
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COROLLARY. A mapping T: {E,} > Q2 —~{F,} has the continuous deriv-
ative at eye Q iff for each A there exist v and O ¢ N (H;) such that

T: e+ 0,—~F,+T(e)

has a continuous derivative at e,.

Proof. By Theorem 8 it suffices to prove that the mapping 2> ¢
—T'(e)e L,(B, ) is continuous at ¢, iff for every 1 there exist » and 0,
¢ /' (E,) such that the mapping B, o 0;+¢,> e—>T,< L,(H,, F,) is con-
tinuous. o

= Let the mapping Q> e—~>T'(¢)c L,(E, F) be continuous at 6.
By Lemma 4 this means that for each 1 there exist = and 0,c 4 (B,
such that O;+e6,2> e—>T'(e)e L,(H, F) is continuous at ¢,. But T'(¢)|g,
= T(e), and so we have continuity of the mapping 6T . (€) € Ly( By, Fogp).

< Let the mapping T': eo-{—0,1—>1‘3’,,(,1)(e)e Ly(E;, F,z) be continuous.
Let us fix 1, and put =(4) such that =(2) > »(4) and () > 7(4). As in
the proof of Theorem 8, we have T} ,|5, = Ty, for 4> 1'. By the defini-
tion of L,(#, F), the mapping e+ 03,> ¢e—>T' (¢)< L (B, F) is continuous
at ¢, R

In the same way we can prove a corresponding theorem for higher
order derivatives. We may also prove a collection of theorems correspond-
ing to theorems of differential calculus in l.c.v. space, according to the
kind of E,, F, (see Chapter I). The procedure is similar in all cases and
we are going to give a few examples only. At first let us introduce some
concepts.

DEFINITION. A Marinescu space {H},., is said to be meirizable if,
for every Ae A, H, is metrizable.

In the same manner we introduce the notions of DF, Schwartz,
Fréchet, complete, ... — Marinescu spaces.

Remark. In the above definition the expression “for every Aed
there exists A > such that” may be put instead of “for every
Aed ... _ v

Now, the examples:

LevMA 5. Let E be an infrabarrelled-DF-M-space. Let B be any M-
space. Then .
L}(B; F) = Ly(B, Ly(E, ... L(E, F) c)e

Proof. Put » = 2. Of course L(E, L,(E, F)) = L(E, E; F). fc L{E,
L,(E, F)) generates the mapping fic L(E;, L.(B,F)) and fae L(E,,
Ly(By, F w(?.)))' By Theorem 1 Lb(EM Ly(By, F ﬂ(ﬂ))) = Ly (B, B3 Fop)-
Thus f defines an element of L(¥, H; F). The equivalence of M-struc-
tures is obvious. ,

For n >2 the proof follows by induction. H
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COROLLARY. An n-th derivative is an n-linear, symmetmc and continuous
function. :

The definition of the Giteaux derivative for l.c.v. space is valid a.lso
for M-spaces.

ToeoREM 9. Let H, be normed, E,—quasibarrelled-DF, any F any
M-spaces. E = B, x H,. Let a mapping T: K > O-F be continuously .
Gateaux-differentiable on a ceriain neighbourhood of e, If for each A there
exist O, and v such that H, > 0, and T(eo—]—Oa) c T(eo)—i— ., then T is
continuously differentiable at e,.

Proof. By the assumptions, for each A there exist 0, and » such that
the mapping T: ¢,+ 0,~F,+T(e) is continuously Giteaux-differentiable
at ¢,- Thus it is differentiable at 6o (Theorem 4). By Theorem 8 the proof
follows. B

§ 3. Differential calculus in l)ornolo'rica]-Von Neumann spaces. In this
" part we shall be dealing with differentiation in the special case of M-spaces
(bornological Von Neumann spaces) and its connections with differentia-
tion in l.e.v.s. A

‘We start with some lemomas concerning continuous funetions.

LeEMMA 6. Let B be a bornological l.c.v. space, and F —any 1.c.0. space.
Then L,(BE,BF) = BL,(E,F).

Proof. Let fe L(HE,F). For each Be< #(E) there exists B,eZ(F)
such that f: Hp—Fp is bounded and continuous. Thus fe L(BE, BF).
Now let fe L(BE BF), then f: E—F is bounded. Hence we obtain alge-
braic equality. The equivalence of M-structures follows from the faet
that in L,(H, F) sets {fe L(E, F): f(B) < B,} (B and B, are fixed) form
a2 basis of bounded sets. B _

In further considerations the concept of “Mackey convergence con-
dition” will be useful.

DEFINITION ([9]). We say that an l.c.v. space B satisfies the sirict
Mackey convergence condition (M.c.c.) if for every bounded set A there
exists Be #(E) such that the topology induced by E on A coincides with
the topology induced on 4 by the normed space Ep.

LevMA 7 ([9]). A metrizable l.c.v. space satisfies the strict Mackey
convergence condition.

Cp(H, F)will stand for the space of all eontinuous, quasﬂoea.lly bound-
ed funections f: E—P.

PROPOSITION 6. Let E be a metrizable l.c.v. space and let F satzsfy M.c.e.
Then Cy(E, ) = C(BE, BF).

Proof. Ogz(B, F) = C(BE, BF) because F satisties M.c.c. Cx(E, F)
> ((BE, BF) because the converging sequence in E convergs also in BE
(Lemma 7). W .
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COROLLARY. If, in Proposition 6, E is an F-8 (Fréchet-Schwariz)
space, then
C(E,F)=C(BE,BF).

Proof. In an F-S space every closed bounded set is compact. Thus
Cpz(B,F) =C(E, F).2

LeMMA 8. Let B be a quasinormable and infrabarrelled and F a normed
l.c.v. space. Then L,(E,F) satisfies M.c.c.

Proof. By the infrabarrelledness of E it follows that a set
Be QZ(L,,(E',F)) is equicontinuous. Thus the topology in [L,(E, F)lg is
the topology of uniform convergence on a certain Ue 4 (H). By quasi-
normability the topology induced by L,(B, F) on [L,(E, F)]z is the
topology of uniform convergence on a certain Ve #'(E). By taking B, =
{f: If(e)l < @, ec V} where a is such that B; > B the proof follows. M

With Lemina 8 we can prove the following important ,

THEOREM 10. Let B be a quasi-normable and infrabarrelled, and F
any metrizable l.c.v. space. Then LB, F) satisfies M.c.c.

Proof. Let B be a bounded subset of L, (&, F). It is enough to prove
that there exists a bounded set B, < L,(E, F) such that for each >0
there exists Ve & (L,(E, F)) with VNnB = AB;NB (because the topology
induced by a bounded set is finer than that induced by L,(H, F)). Let
{U)2., form a basis of absolutely convex neighbourhoods of zero in F.

' B is bounded iff it is bounded in L,(H, Fy,) ¢ =1,2,... Thus by
Lemma 8 the topology induced on B by L,(E, Fy,) coincides with the
topology induced on B by [Ly(E, Fy,)]p, where B B, < L,(H, Fy,)
and B; are bounded.

Hence the topology induced by L, (¥, F) on B is given by sets BN (eB;)
where ¢ >0 ¢ =1,2,... Let 4, >0 form a sequence 2;->cc. This means

1
that for each 1 > 0 there exists n > 0 such that, for ¢ >n, 4, > — (Mi >1).

The set B, = ﬂ 1;B; is bounded in L,(E, F), and if xe B, ze() 4B
i=1
then ze 1B, nB But

{Bn(naaiBi)}:{VhB}, where Ve (L,(E, F). R

Using the following facts:

" 1° if B is a quasi-normable, and F a normed le.v. space, then the
topology induced by L7 (E,F) on a equicontinuous set 4 < L”(E' )
coincides with the topology of uniform convergence on VX VX ...xV,
where Ve /' (H) (cf [28]),

e N e e e v . T
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2° if Eis an infrabarrelled, and F a normed l.c.v. space, then a bounded
set A =« L*(E, F) is equicontinuous, '
one can also prove in a similar way

TuEorEM 10'. Let E be a quasi-normable and infrabarrelled, and F
a melrizable l.c.v. space. Then Ly (E, F) satisfies M.c.c.

Now we can prove some relations between differentiable functions
on E and BE.

THEOREM 11. Let E be an F-8 l.c.v. space. Let F satisfy the strict Mackey
convergence condition. If a mapping T: B > Q—F is differentiable at
epc 2 and continuous on 0> ey, then the mapping T: BE > Q—BF is dif-
ferentiable ai e,. :

Proof. By Lemma 6 it suffices to prove that if a mapping r: B
> Q-F is a remainder, then a remainder is also the mapping r: BE > 2
—BF. Let us fix Be #Z(E). For each Ue.# (E) there exists ¢y >0 such
that |||y < ¢y ll#llz- Moreover, there exist Bye #Z(F) and & >0 such that
r(e¢B) = B, (by the continuity of » and Proposition 6). Thus

@y _ @y o @

€ Lp
lely = eulwls llll 1

r
if < ¢B. This means that the mapping Ezn0>2— w

< F' is continuous
1zl z

and there exists a B,< Z(F)such that the mapping Eg > B> z— %ﬁ;—) ¢« Fp,
is continuous. W

COROLLARY. Lei E be F-8, and F a meirizable l.c.v. space. If a mapping
T: B > Q—F has the continuous n-th derivative at e < 2, then also the mapping

T: BE o> Q—BF has the continuous n-th derivative ai e.

Proof. Differentiability follows from Theorems 11 and 10" and from
the fact that an F-S space is barrelled and quasi-normable. The continu-
ity of the derivatives follows from Theorem 10’ and Proposition 6. l



CHAPTER III
DIFFERENTIABLE STRUCTURE IN A CONJUGATE BUNDLE

In this Chapter we shall discuss definitions of differentiable manifolds
(§1) and vector bundles (§2) modelled on infinite-dimensional, non-
banachian l.c.v. space.

Then we shall prove the existence of a differentiable (pseudotopolo-
gical) structure in the bundle eonjugate to the F-8 bundle (i.e. the basis
and the fiber are F-S spaces).

§ 1. Non-banachian differentiable manifolds. In the differential
caleulus in Banach spaces the class of continuously differentiable funetions
plays a fundamental role. The theorem on continuous differentiability
of superpositions of C* functions is also valid in it.

In view of this fact one can define a differentiable manifold modelled
on Banach spaces ([14], [18]).

DEFINITION. A differentiable manifold of class CF is a triplet (#, T, K),
where

1° 2 is a certain set,

2° T: T(2): = U T,(#), where T,(#) are Banach spaces,

pe?

3° K: = | K,where K, is a non-empty set of bijections which map
peP
subsets containing p on neighbourhoods of zero in T,(2),

4° the following axioms are satisfied:

a) if*xe K,, then »(p) =0,

b) if x,, #,¢ K, then the mapping #,0%; "' is a C*-diffeomorphism de-
fined on an open set,

¢) the set K is complete in the sense that every larger set does not
satisfy the axioms (a) and (b).

The set K is called a (complete) atlas and its elements —maps. With
this definition one can introduce the notion of a continuously differentiable
function on a manifold ([18]) and develop differential calculus on it.

‘We have a similar situation in the case of metrizable, quasi-normable
Le.v. space ([28]). For the same Teasons we can adopt the definition of
the manifold given above. However, in the case of DF-S spaces (and the
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spaces we have considered in Chapter I) some complications appear.
From Chapter I it is known that in the calculus the most important role
in such spaces is played by continuously differentiable functions with ad-
ditional assumptions as to the kind of boundedness and uniform continuity.
Also in the theorem on derivative of superposition something more than
continuouity is needed.

Taking into account the above-mentioned facts, we: shall defme a mani-
fold modelled on spaces which are Cartesian products of a normed space
and a DF-infrabairelled one in the following manner.

DEFINITION. Let #, be a normed, B, a DF-infrabarrelled, and F any
l.e.v. space B = B, x E,. We say that a mapping T: B > Q—F is of
class C* on Q if the following conditions are satisfied:

1° T is of class ¢ on Q, -

2° T® is locally bounded on £2,0<¢<k,

3° for each We / (F) the mapping 9> e¢—T@ (e)e Li(H, Fy) is
locally uniformly continuous on Q.

Now, we define a manifold modelled on such Cartesian products
as in the case of Banach spaces, putmg C* instead of OF.

RemaTks. .

1. C* is the smallest class of functions closed under superposition
and containing all functions important in ecalculus.

2. 'We have made no use of the normability of B,. The same definition
is valid in the case of general DF-infrabarrelled spaces.

All these considerations are valid for M-spaces. In other words,
we can define a manifold modelled on M-spaces of types considered above
by changing the expression “open in T,” into “open in ir,”.

§ 2. Infinite-dimensional vector bundles. By a “vector bundle” we
shall understand a triple (%, X, =) where 7z: - #—X is a surjection and,
for each xe¢ X,z '(#) is equipped with the structure of a vector space.
‘We shall assume that X and 2 are topological spaces and £ is locally triv-
ial. If X is a (banachian) O*-manifold and =~ *(z), xe X, are Banach spaces,
we can introduee the notion of C*-bundle. Let {0,},.4 be a covering of X
with a corresponding trivialization t,: @7 (0,)—>P, X 0,. P, is a Banach
space. We can choose {0,} such that each O, is contained in the domain
of a certain map z,

Let us define the mapping 7,: 1(0 )=>%,(0,) X P, by the followmg
it 1,(p) = (w(p), ¢}, e<P, then na(p) (%07 (D), €)-

DEFINITION. A vector bundle (2, X ) is of class C% if X is a banachian
C*-manifold and, for each ay, o, Nay© My 1js of class C° (on the set on which
it is defined) and an 1somorph1sm of an l.e.v. space with respect to the
second variable.
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Of course {7}, is an atlas on 2. Hence it defines the structure of
differentiable C*-manifold. The definition above is compatible with that
given by Lang [18]. Namely: each C*-bundle in our sense is a C* L bundle
in the sense of Lang. We can treat non-banachian bundles similarly,
puting a corresponding class (e.g. C*) instead of C*. Let us concentrate
on the most interesting case for us, where X is a banachian manifold and
the fibre is a DF-infrabarrelled l.c.v. space. Taking into account the fact
that 7, has a special form, we can change the class C* into a larger one.

DEFINITION. Let F, be a metrizable and E, a DF-infrabarrelled Lec.v.
space B = B, X E,. Let F be any l.c.v. space. ‘We say that a mapping
T: E > Q—F is of class C* on Q if the following conditions are fulfilled:

1° T is of class O% on 0,

9° 7T is locally bounded and locally uniformly continuous with respect
to the second variable on £,

3° for each We /' (F) the mapping Q> e—DiDJT(e) is locally uni-
formly continuous and locally bounded on @ for 1< i+i<k j #0.

Now, let Ta,a, be the mapping defined by

7]a207’]a_11 (.’L’, e’) = (xazo xa—ll (x)7 Talaz(‘E7 6))'

DEFINITION. We say that a vector bundle (2, X, x) is of class c* if
the following conditions are satisfied:

1° X is a manifold of class CF,
2% 94,0 ’7.1_11 is of class C* and an isomorphism of the l.c.v.s. in the
second variable,

3% T4q, is of class C* on its domain of existence.

Remark. From 2° it follows from the definition of (le‘ that the second
part of 2° (uniform continuity) is satisfied.

With this definitions we can consider the differential calculus of
morphisms of bundles. In general, 5, do not form an atlas for a manifold
of class C*. Thus a C*-bundle is not necessarily a C*-manifold. The above
construction may be use if X is a banachian M-space.

§ 3. Conjugate bundle. The aim of this section is to introduce the
differentiable structure in a certain class of conjugate bundles.
DEFINITION. A conjugate bundle to a vector bundle (#, X, =) is

a bundle (#', X, #') where 2’ = \J 2, and 2, = (z~'(«))' is the strong
. xeX
conjugate to #, in the sense of l.c.v. spaces and z’ is the natural projection.

Let X be a differentiable manifold of class C¥, modelled on an F-S
space. By the corollary to Theorem 11, X is a C*-manifold modelled on
the spaces BT,. X equipped with this structure will be denoted by BX.
Moreover, it is a C*-manifold.
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Caution. From now on F' will denote F,. If a mapping T: EX G
5 QX @—F is linear and continuous in the second variable, then T™:
ExF -G wil stand for the mapping conjugate to T in the second
variable.

Now we can prove the main theorem.

TaEoREM 12. Lt B, F, G be an F-8 l.c.v. space. Let T: B XG > QX G
—F be of class C**! and, for each e 2, let T(e, ) be linear and continuous.

Then the mapping T": BE X F' > QX F'—@ is of class o
Proof. I. Continuity and boundedness of 7. Let (x, ¢)e QX F".

By continuity, for each Be #(E) and B,< #(G) there exist ¢ >0 and
B,< #(F) such that, for he ¢B, ge B, 2nd fe BY (the polar in F'), we have

KT (@41, ), e+f>—<(T(z, 9), )| ,
= KT (@+h, ), [>+<{T(@+h,g)—T(z,9), e <1

Let us take ¢ and B, such that x+¢B c £ and T(z+¢B, B;) = 1B,
(¢B and B, are compact in the F-S space). Thus [KT(z+h, 9, <1
On the other hand the mapping (z,e)—=D,T(x,e) = T(®,.)e Ly(G, F)
is continuous. Hence there exists ¢ > 0 with [(T(z+k, 9) —T(%, g), 3| < 3.
This means that T" is continuous.

Remark. It is easy to see that the mapping T%: B x F'—G" is not
necessarily continnouss (eB cannot be replaced by 2 neighbourhood in E).

Now we shall prove the boundedness of 7". By the barrelledness of
F and @ it is enough to prove that for each Ue A (F), ¢ > 0 and Be #(K)
(such that - z+¢B < Q) there exist Ve /' (G) with T(x+eB,V)c U.

But F and @ are bornological, and so the sets Uy := conv (U 2.B.),

where {B,} is a base of bounded sets and {A,} ranges over all sequences
of positive numbers, forms a basis of neighbourhoods of zero (conv4
den:otes an absolutely convex hull of 4). Let U = conv(U Y B) From

previous considerations we know that T(x+¢B, B,) < Ba(,,) ({B,} and

{B,} form bases of bounded sets in ¢ and F, respectively). Taking V
—conv(U Ay B,)y we have T(x+¢B, V)< U. :

11. leferentlablllty of T. n =1 We have D,T"(e, f)(*)
= T*(e,"). D,T" is continuous on Q x F' = BE x F' if for each Ue & (F),
Be #(Q), B, « #(E) and ze Q2 there exists ¢ > 0 such that T"(x +eB,, U°)
c B i.e. T(w+¢B,, B) = U. But this is implied by the continuity of D,T.
Uniform continuity follows from the compactness of @--zB. We prove
boundedness as in I. Now let us turn to D,T. We notice that the
mapping L, '

QXGXE> (e, 97h)_"D1 (¢, 9)h =: Lie,g,h)e F,
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is linear and continuous in the second variable, and so the following map-
pings are well-defined: D;T: QX F' x E—G and v* = (T—D,T)". We
shall show that D,T7° = D;T. For metrizable spaces Proposition 1 is
valid ([28]). Thus L is continucus. The following fact is true:

(*) DiTe L(E, @).

Indeed, it is enough to show that for each (e, f')e 2 X F', Be #(G) there
exists Ve 4/ (E) such that D; T (e, f)(V) < B, i.e. D,T(e, B)(V) = (f')°
But (') is a neighbourhood, by continuity we have the required fact.
From this we have also D;Te<L(BE, ).

By (*) it is enough to show that 7* is a remainder. At first we shall
prove the following lemma.

LevmA 10. Let E be a normable l.c.v. space and let @ mapping B XG X H
> 2, xG X 252(¢, 9, h)>rqy(h)e F be linear and continuous in the second

”’r(e,g) (k}.)uU

variable. For each Ue N/ (F) and h; -0 let >0 uniformly on

li2l
bounded sets in G. Then vy, ;) is a remainder.
g, o (R) . .
Proof. We have to show that the mapping A— Lﬁf}:ﬁ—) is continuous
at zero, i.e., for each Be Z(G), ' .

Supl<7”(ef')(ha);g>| SUPKf, Pen (Dl 5570 (f < F'). W

1
ol g I%all g

Let us fix Be B(E) and xe 2 and consider the mapping Tg: =T':
(Bg+2) X G o (Ug+a)xG—F (Ug+x <« Q). Ty is continuously dii-
ferentiable, and so, by the mean value theorem, in normed spaces for
each Ve & (F)

17 e, ()l < supsup 1D T(e+E, g)s— Dy T (e, g)sliylIAl5-
8e €

Since D, D,T is continuous, we bave for each B,e ()
supsup \D, T (e +k, g)s — D1 T (¢, g)slly 5=5>0-
seB geBy
Thus, by Lemma 10, #* is a remainder. The continuity of the derivative
can be proved in the same way as the continuity of 7.
III. # >1. By induction as for » =1. R
Remark. T from the above theorem is not in general of class C"
(even for bilinear T).
Summing up the results of this section we obtain
THEOREM 13. Leét (2, X, x) be a C"'-vector bundle. Let X and the
fibres be F-8. Then the bundle (2, BX, ') is of class C*.



CHAPTER 1V

THE BUNDLE OF SECTION-DISTRIBUTIONS

In this chapter we shall equip the bundle of section-distributions
with a differentiable structure by applying the construction developed
in Chapter ITII. These bundles appear in a natural way in the field theories
dealing with singular fields or singular functionals. As an example we
shall verify the differentiability of some functionals deseribing interacting
fields.

§ 1. The bundle of section-distributions. Let X denote a ¢*-manifold
of dimension n+1. _

DEFINITION. An n-dimensional (imbedded) C*-submanifold of X
is called a border if it is the boundary of a relatively compact domain
in X. -

2 denotes the set of all borders in X.

If #: V—X is smooth vector bundle, then by ¥ we denote the bundle
over # whose fibre 7 (P = dD) is formed by all C*-sections over D,
prolongable to an open neighbourhood of D. The bundle ¥ is called the
bundle of section-distributions. By the theorem of Whitney (cf. [19]) ¥ »
with the topology of uniform convergence of all derivatives on D is complete.
Thus it is an F-S space. Hence in order to equip 7" (which is the object
of our interest) with a differentiable structure it is enough to prove the
existence of a differentiable structure (with an F-S base) on ¥ (Theorem
13). But this was done by Kijowski and Komorowski [15] (see also [14]
and [17]).

Now, let us recall the main ideas of their construction.

A. Differentiable structure in 2.

DEFINITION. By a {transversal homotopy H through a border Pe #
we mean a (*-diffeomorphism

Px]l—r,r[>(p,t)>H(p,t)e X, H(p,0) =p, r>0.

$H(P) will denote the set of all transversal homotopies through P. Let
& (P) denote the set of C*-functions on P with the topology of uniform
convergence of all derivatives. It is an F-8 space.
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He H(P) defines the mapping
E(P) > Usp—x'(g):={H(p, ¢(p))c X: pcP}e 2,

where U is a neighbourhood of zero.
The family {»} forms an atlas of the C*-manifold .

B. Differentiable structure in 7. From now on by “domain”
we mean a compact submanifold of X with the boundary which is a border.
Let € (X, X) denote the set of C*-mappings X —X with the usual topology.

DEFINITION. By a dragging of & domain D < X along a transversal
homotopy He $(dD) we mean a continuous mapping &(0D) = Usa¢
—~c,e £(X, X) where o satisies the following conditions: -

1° ¢, is C*-diffeomorphism,
2° o4(x) = %, where g,: = g, for ¢ =0,
3° if z¢ @D then o,(x) = H(z, ¢(x)).
Example of a dragging. Let H < $(0D) be defined on 0Dx1—r,r[,
r > 0. If 0< &cOy(RY) with suppé = ]—r,r[ and £(0) =1; then the
funection
(p7t+§ (P(p)) it ¢ =H(p,1), (p,)edDX]—r, r[,

a,(x) =
z at other points

is a dragging.

Now, let us fix a homotopy He$(0D), a dragging ¢ along H and
a smooth linear connection K in the bundle V. The parallel displacement
of a fibre over z< X along the curve [0, 1]2i—0y,(x) X to the fibre over
the point o¢,(x) defines the bundie-mapping

K,p: -VID—>V10',},(D)
and thus the mapping
3 K(p: ’V(?D—%VG.?(@D)'
Tt is easy to see that K, is an isomorphism of an l.c.v. space. ‘We can define,
for a certain Ue ./ (£(0D)), the mapping
(¢7 'U)' - O'DOO'—I€ ’VG (0D)
Kijowski and Komorowski have proved that the mappings (or rather
their inverses) form an atlas of a C*-bundle. Thus 7" is a C®-bundle in
the sense of Chapter I1II.

Remark. We have assumed that P is a 0°° submanifold. One can
generalize the constructlon presented above by admitting “piecewise
smooth borders”.

In the following we shall need another generalization. Let us consider

in the space X™: = X x X X ... X X (m times) the family of sets D™
=D xDx ... xD (m times), whele Disa domain in X. We shall denote
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it by 2™. There is a natural bijection 2™ <2 which enables us to endow
™ ~with a differentiable structure transported from 2.

Let V=TV QV®...Q0V (m times) be the exterior tensor product
(cf. [29]). The bundle of smooth sections of V™ over domains D™ will
be denoted by ¥ ™. It is the bundle over #™. A dragging of D defines the
dragging of D™ by the formula

O{:(xh AERY xm):z (th(wl)7 LR Gq)(‘”m)),

and hence a differentiable structure in ¥™ (connection K in V induces
the connection K™ in V™) and in ™.

§ 2. An application in the field theory. As was mentioned in the
introduction, the bundle of section-distributions is useful in the strict
formulation of variational problems with a non-local and singular
Lagrangian.

DEFINITIONS. 1° By a Lagrangian-density function we mean the map-
ping of bundles

v s v—>L(v)e ¥™,

where the induced mapping of bases is the natural bijection Z«<BZ™.

As was pointed in Chapter III, the bijection 2 -B#™ is not contin-
nous. We can omit the complications originating in that fact by treating
4 as a bundle over BZ. It is easy to see (Chapter III) that the bundle
(v, B2, 7) is of class C®. Now, we say that Lagrange density is of class
CF if it is of class C* as a mapping between the bundles (¥, BZ, =) and
(v"™, B2, ).

2° The Lagrangian funciion associated with L is the function

V30> LW):={L®),rQ ... Qvye K.

Of course the introduction of 7™ is not necessary (we can obtain all
& taking m = 1) but it is very useful (cf § 3).

Since we are interested in & of class €%, the following theorem may
be useful.

THEOREM 14. If a Lagrangian-density function L is of class C*, then
the associated Lagrangian is also of class C'.

Proof. Let us choose a map 7 related to a domain D gn: ¥ —&(0.D) X
XV op- 1y, 80d 7, denote induced maps of bundles ¥™ and 7™, respec-
tively. Using the notation of Chapter 3, we have in these coordinate
systems 7,(?® ... ®%) = (¢, 7Q ... ®7) and gm(L(a)) = (¢, L(g, 7)) for
5 =" g, ). Thus Lon (g,) =<1 (g, L(g; D), nmlp, o) (7":=
7Q®...07), and since 7 =7, (y, is the inverse function to 7 in
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the second variable), we have
ZLon e, v) = (L(g, ), o).

The mapping (v', v)—<%', v) is not continuous, but it is hypocontinuous
and hence the mapping 7 ipXB¥ 152 (v, v)—>{v', ») is continuous (and
thus of class ). On the other hand, the mappings

BY yp20—>0"e BY 5y

and B&(0D)xBY 352 (@, v)>L(p, v)e m are of class C* (Chapter 1T § 3).
Hence the mapping Loz ' is of class C' on BE(OD)XBY p.

Now, the proof follows from the lemma below.

LevMA 11. Let E be a metrizable, quasi-normable l.c.v. space. If the
mapping T: BE o Q>R is of class C*, then the mapping T: E = Q—R*
is also of class CL.

Proof. Notice that the notion of the directional derivative does
not depend on the topological structure of E. But B = (BE)' (B is bornolo-
gical), and so the Géateaux-derivativesin £ and BE are equal: VT = Tg
(T denotes the derivative of T' in BE). The mapping BE o Q>22—>V1(x)
is continuous, and so by the metrizability of E we have (z,—w in )
=(w,—>x in BE)=(VT(x,)—~VT(2) in BE;)=(VT (#,)~VT () in B
Since in metrizable, quasi-normable spaces any function which is contin-
uously Géteaux-differentiable is also of class C*, the proof follows. W

§ 3. Example of a Lagrangian. Let M be a smooth, oriented, imbedded

k-dimensional submanifold of X» Let o be a (® V)*|s-valued k-form
on M. For a locally integrable w we can define a Lagrangian-density L,

Vop2v—> [ (o, Hed™.
D®"aM

For simplicity of calculations and notations let us concentrate on the
case of m = 2.

DEFINITION. A submanifold M = X x X is said to be {ransversal
to 0D (MydD?) if My(0.D x D) and My(D xdD).

THEOREM 15 ([29]). If w is continuous and M is iransversal to 00?2,
then L, is continuously differentiable in a certain neighbourhood (in V")
of ve ¥yp.

Such Lagrangians are useful in describing non-local interactions
which may appear as a consequence of internal structure of particles
(cf. [23] and [31]). Under certain assumptions (ef. [29]) one can interprete
m as the number of interacting particles.
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