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ENTRODTJCWON

This paper is a continuation of research devoted to the rigorous
development of calculus of variation ([14], [15]). Owing to the studies
begun by Eells and his school and continued by Kijowski and Komorow-
ski many important families of functions have been equipped with the
(natural) differentiate structure, e.g. the set "f of smooth sections over
compact domains of a bundle V is a 0°° manifold modelled on the F-S
space.

Such an approach has enabled Palais and Smale to work out the
general Morse theory, and Kijowski and Komorowski to formulate the
strict Lagrange formalism in classical field theory.

So far we have dealt with smooth fields and smooth local functionals.
However, in classical field theories one is forced to deal with singularities
of fields (e.g. an electromagnetic field of a single particle), singularities
of Lagrangian and non-local effects (e.g. the scale micfoeffect [31], the
memory effect [31], interacting fields [23]).

These needs force us to consider theories in which both singular
fields and singular non-local functionals appear. We can do this in the
case of a vector bundle V, taking section-distributions [24] instead of
sections.

If V is a vector bundle, •f is also a vector bundle and the family
of section-distributions forms a conjugate bundle ~f". Hence, the natural
problem is that of equipping T with a differentiate structure. Although
i^' cannot be equipped with a topology, it carries a natural structure of
a manifold over Marinescu spaces ([11]). To this goal we solve a more
general problem of existence of a differentiable structure in a conjugate
bundle to a Oft-vector bundle modelled oh F-S spaces (Chapter HI).
For this purpose we develop the differential calculus in the Marinescu
spaces which are products of normed Marinescu spaces and infrabarrelled
DF locally convex vector spaces (Chapters I and II).

As an example we consider in Chapter IY the bundle of section-
distributions.

By the Lagrange density function we mean the function of bundles

'"*
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i^3v->L(v)e"f. A Lagrangian associated with L is a function
->^(f): = (L(v), •»). It is shown that if L is of class C1 then J§? is of class Cl.

The author would like to express his gratitude to Professor K.Maurin
for his inspiring interest and constant encouragement in this work. He
is also indebted to Dr. J. Komorowski for suggesting the problem and many
profitable conversations, and to Dr. J. Kijowski and Dr. W. Szczyrba for
critical reviews of the manuscript.



CHAPTER I

DIFFERENTIATION IN CARTESIAN PRODUCTS OF NORMED
AND DF-TYPE INFRABARRELLED SPACES

In Chapter III -we shall deal "with manifolds modeled on spaces
which are in some sense "families" of products of normed and DF-type
infrabarrelled locally convex vector spaces (l.c.v. spaces). In this chapter
we shall outline the theory of differentiation in such products. This theory
is based on W. Szczyrba's theory of differentiation in metrizable, quasi-
normable and DF-S l.c.v. spaces. .

§ 1. Preliminaries. We shall deal with locally convex vector spaces
which are assumed to be Hausdorff. We shall denote them by block letters
JE7, F, G. The field of scalars will be real or complex and fixed throughout
the whole paper. «V(E) will denote the base of absolutely convex neigh-
bourhoods of zero in E. If Ue JV(E) then || \\ will denote the gauge function
of U, and Eu will denote the normed space E!N(U) where N(U)
:= {eeE: \\e\\ = 0} with the norm induced by || H^. The symbol 3§(E)
will stand for the family of all absolutely convex, closed and bounded
subsets of E. If Be SS(E} then EB will denote the linear span of B with
the topology defined by B. The symbols E's and E'b will denote the weak
and the strong conjugate, respectively, to E spaces. The spaces of all
continuous linear, bilinear, and w-linear mappings from E,ExE,
Ex ... xE into F will be denoted by L(E, F), L(E, E; F) and
Ln(E, F), respectively.

§ 2. Fundamental definitions. Let T be a mapping T: E
where Q is open in E.

DEFINITION. We say that the mapping T: E => Q-+F has the Gateaux
(weak) derivative at a point e0e Q if there exists a linear mapping VT(e0)
eL(E,F) such that the mapping

E => U^h~>rh): = Te0 + h)-T(e0)-VT(e0)Ji€ F

for each he U has the following property:

limj— re (th)\ 0, where te K (R or C), UeJf(E) and e0+ U <= Q.
tr-X>\t ° I
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The definition above is identical with the definition of the Gateaux
derivative in normed spaces. The Frechet derivative may be defined
in many different ways, but we will use the definition given in Marineseu
[20] and Keller [12].

DEFINITION. We say that the mapping T: E => Q^-F is differentiate
in the sense of Frechet at the point ee Q if there exists Le L(E, F) such
that the mapping

F

has the following property: for each Ve^(F) there exists Ue*W(E)

such that for each M.-S. sequence {^}^e/J, 7«A-^0 in E, lim—-—^—-^ =0.
Wit/

Eemark. If \\h\\ = \\re(h)\\ = 0 we put l|r'(*)llr = 0.
IWlu

The mapping L is defined uniquely (if it exists) and is denoted by T'(e)
or DT(e). We say that L is the Frechet derivative of T at the point e.
We say that the derivative T' is continuous at e0 if the mapping e->T' (e)
eLb(E,F) is continuous at e0. Prom the definition immediately follows

THEOBEM 1.
a) A mapping which is differentiate in the sense of Frechet at the point

e is continuous at e.
b) A mapping differentiable in the sense of Frechet at the point e has

the Gateaux-derivative at this point and T'(e) = VT(e).
c) If T and Tl are differentiable at the point e, then aT + bT± (a, be K)

is differentiable at e and

(aT + bTjie) = aT'(e) + bT'1(e).

d) If the mapping 2\ E ^ Ql-^-F is differentiable at e and Tz: F => Qz

-*G is differentiable at T^e), then T^oTj^ is differentiable at e and (T^oT^)' (e)
= T'2(T1(e))oT'l(e).

Eemark. In what follows by differentiability we shall understand
differentiability in the sense of Frechet. J. Kijowski and W. Szczyrba
in ([13], [28]) have constructed a theory of differentiation in a certain
class of l.c.v. spaces.

In this paper we shall base ourselves on the theory of W. Szczyrba
for two classes of l.c.v. spaces: metrizable, and quasi-normable or Schwartz
of DF-type (DF-S) l.c.v. spaces.

Modifying the theorems given in [28] we shall obtain the theory
of differentiation in the Cartesian product of normed and infrabarrellecl
DF-spaces.
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DEFINITIONS.
a) We say that an l.c.v. space E is qtiasi-normable if for each equi-

continuous set A c E' there exists V <= ^(E) such that on A the
topology induced by E'b coincides -with the topology of uniform conver-
gence on V.

b) We say that an l.c.v. space E is DF-space if the following conditions
are fulfilled:

1° E admits a countable basis of bounded sets.
2° Every bounded set in E'b which is a countable sum of equicontinuous

sets is also equicontinuous.
Property 2° is called a-infrabarrelledness.
c) We say that an l.c.v. space E is Schicartz (8) if for each Ue Jf(E]

there exists Vej^(E) such that V is precompact in Ev.

§ 3. Certain properties of mappings in some l.c.v. space. We shall
give below some theorems corresponding to theorems due to W. Szczyrba
(theorems 2 & 14 in [28]).

PROPOSITION 1. Let Ez be a normed l.c.v. space and E! and G—any
l.c.v. space. Suppose we are given a mapping

T: E!XEZ=> QxE2->G

satisfying the following conditions:

1° for each ee Q, T ( e , - ) e L(E2, G),

2° the mapping Q ^ e->T (e , •) c Lb(E2, (?) is contimious at e0.
Then T is continuous at (ev,h) (heE2).

COROLLARY. Let 'Et and F be any l.c.v. spaces, and E2 a normed l.c.v.
space. Then Lb(E1: Lb(E2, F)) = Lb(Elt Et; F).

Proof . We have L(El: E,,; F) c L(E1} Lb(Ez, F)). Let f^L(E^
Lb(E2,F)}. From the proposition it follows that the mapping
(e1? e2)^/(e1)e2 is continuous, hence algebraic equality. The equivalence
of topologies is obvious. •

If we want to change the roles of E1 and Ez in Proposition 1, we
must assume more about the mapping T.

DEFINITION. We say that a mapping T: E => Q-^F is locally bounded
on Q if for each e« Q there exists Fe JV(E~) such that, for each Be 3S(E),
T((e + V}c\B] is bounded in F.

DEFINITION. A mapping T: E r> Q^*F is called quasi-locally bounded
at e« Q if for each Be^(E) there exist e >0 and B1e^(F) such that
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LEMMA 1. Let Et be normed, E2—infrabarrelled, and F —any l.c.v.
space. Suppose we are given a mapping

T: EiXE^^ QxE^F

satisfying following properties:
1° for each e<= Q T(e, -)eL(Ez, F),

2° for each W f ^ V ( F ) the mapping Q*e->T(e, - )e Lb(Ez, Fw) is
continuoiis and quasi-locally bounded at e0.

Then T is continuous at (e0,h) (heE2).

Proof. Because of infrabarrelledness and quasi-local boundedness,
for each W e jV(F) there exists Ue JV(E-^ such that the family T(e0+ U, •)
c L(E2, Ew] is equicontinuous. Hence the continuity of T at (<?„, 0).
From the continuity the proof follows. •

Eemark. It is easy to see that in Lemma, 1 it is sufficient to assume
the continuity of the function

COROLLARY. Let E1 be normed, E2—infrabar relied, and F —any l.c.v.
space. Then

Lb(Ei,Ez; F) =Lb(E1,Lb(Ea,I')).

Proof. Let f e Lb(Et, Lb(E2, F)). This function is bounded, and so
Lemma 1 implies that the mapping

is continuous. Further as in the Corollary to Proposition 1. H
JSTow let us recall some well-known facts concerning l.c.v. space.

PROPOSITION 2 ([9]). Every infrabarrelled DF-space is qiiasi-normable.
LEMMA 2 ([9]). An l.c.v. space E is quasi-normable if and only if for

every Ue ^V(E) there exists Ve JV(E} s^tch that for every A > 0 we can find
Be^(E) satisfying the relation VcA.U-\-B.

We can modify the above lemma:
LEMMA 2' ([28]). Let E be a quasi-normable l.c.v. space, and Q a neigh-

bourhood of zero in E, Ye JY~(E) and Y+Y <= Q. Then for every 1 > 0 there
exists a bounded set B c Q with V c A.Y + B.

LEMMA 3 ([28]). Let E be a DF-space, (*7;)«li « sequence of neigh-
bourhoods of zero in E. Then there exists VeJ^(E) such that there exists
a sequence of real numbers /14- > 0 satisfying the relation A4 U <= Vf .

With the above lemmas we can prove a theorem of fundamental
importance for the following considerations. It will be a simple modifica-
tion of W. Szczyrba's theorem (theorem 14' in [28]).
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THEOREM 2. Let E-^ be normed, Ez and Es infrabarrelled of DF-type,
and F—any l.c.v. space. Let T be a mapping T: E^xE^xE^^ Qx E3-+F
satisfying the following conditions:

1° for each e=(e1,ez)eQ, T(e, -)eL(E3, F),
2° for each We JV(F) there exists an open neighbourhood Ow of the

point (eolj e02) suc^ ^na^ ^ne mapping Owa(e^ ez) = e-s-T(e, -)eLb(Es, F)
is continuous at the point eQ = (ecl, eoz) and uniformly continuous with
respect to the second variable on Ow,

3° for any bounded set B c Qw the family T(B, •) is bounded in
Lb(Es, Fw).

Then the mapping T is continuous at (e0, h) (heEa).
Proof. Let the sequence (Bi)f=i form a basis of bounded sets in Ez.

Prom the uniform continuity it follows that for any WeJ^(F) and any Bt

there exists VieJ^(E2) such that for e*0w and heBf

From Lemma 3 we infer that there exist V e ̂ (E) and a sequence ^ > 0
such that Aj V c yi. Now we can choose open sets Qw = Q'w x Q'^v and V
such that F+F + e02 c Q'^. From Lemma 2' there exist Ve^(Ez) and
a bounded set Aa, for any a > 0, such that V c aV+Aa. So we have for
a (bounded) UeJr(E1) contained in -Q'w the relation

e0+ 17 x V c e0+ UxAa + { Q } x ( a V ) .

Taking Ai = A^. from (*) we have:

sup sup \\T(e0 + e, h)\\
JieB^eeUxA

^ sup sup &\rp\\T(e0 + e+(Q,y),h) — T(e0 + e,h)\\ + &ttp sup \\T(e0 +
Ut'Biet'U*Aiy<i\V heSi

sup \\T(e0 + e,h)\\< oo.

The last inequality holds because of 3° and the boundedness of U x At c Qw.
In other words, the family {T(e0 + e, -)}efUxV is bounded in Lb(Ea, Fw]

and, because of the infrabarrelledness, equicontinuous. Hence we have
the continuity of T at (e0, 0). The continuity at (e0, h) (he E3) is the
result of the continuity of the mapping

e->T(e,-)*Lb(Es,F) at e0. •

§ 4. Mean value theorems. The theorems below are based on similar
results (cf. [28]) in the case of quasi-normable, metrizable or DF-S l.c.v.
spaces.
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THEOREM 3. Let E! be a normed and Ez an infrabarrelled DF-space,
E = E1xEz, and F —any l.c.v. space. Let T: E => £?—>!? be a, mapping
continuously differentiable at the point e0e Q. Let DZT (i.e. the partial deriv-
ative in the direction of E2) satisfy the assumptions of Theorem 2. Then
for each VeJ^(F) there exist U, W e J f ( E ) such that for every eee0+U,
heW the following is true:

\\T(e + h)-T(e)\\r<0\\h\\, where G = slip \\T' (e + k) s\\ < oo.
Tc,SfW

Proof. Let us write e0 = (en, eoa), e = ( e l : e z ) ^ h=(h1,h2) etc.
For any We^V(E), VeJf(F), we have the following relation ([3], [5]):

+ h)-T(e)\]r<: sup \\T' (e + Oh)h\\ < sup \\T'(e + s)Tc\\\\h\\
0<0<l k,seW

(the last inequality holds for he IF). Also

From Proposition 1 and Theorem 2 it follows that there exist
W1eJ^(E1) and WseJ^(E2) with

1° sup sup \\T'(

2° sup sup ||T'(Co + «)ft, | |F< oo.
k2iWzseU

Hence, by taking U+U <= U, W c \\\xWz and IF c V, the proof
follows. •

Eemark. In the proof of the above theorem we used the continuity
of DZT at the point (e0, 0) only.

The next theorem deals with the problem of estimating the remainder.

PROPOSITION 3 ([28]). Let E be a quasi-normable and F a normed
l.c.v. space. Let A be an equicontinuous subset of L(E, F). Then there exists
VejV(E) such that on A the topology induced by Lb(E,F) coincides with
the topology of uniform convergence on V.

THEOREM 4. Let the assumptions of Theorem 3 be fulfilled. Let T' be
continuous in a neighbourhood of e0 . Then for any V e JV (F) there exist
U, We jy(E) such that for each ee e0+U, Ye JV(E) and he T the following
relation holds:

ivhere

Ce(Y) =
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and

lim Ce(7) =0.

Proof. Let us consider the mapping T(e + h) = T(e + h) — T'(e)h.
As in the proof of Theorem 3, "we have

sup \\T'(e + 6H)h-T'(e)h\\
0<B<1

fecF

Because of Proposition 1 and Theorem 2 the following families of functions
are equicontinuous for a certain U

A, = {

U <= L(E2, Fv).

But on AI (i =1,2) the topology induced from L^E^Fy) coincides
with the topology of uniform convergence on a certain Wie^"(Ei) (Pro-
position 3). Taking W = W^Y.WZ^ from the continuity it follows that

SeW

One can easily see that in the above theorem (and also in Theorem 3)
we have taken advantage of the existence and continuity of the Gateaux
derivative only. Thus Theorem 4 may be interpreted as a theorem giving
the existence of a Frechet derivative of the continuously Gateaux-dif-
ferentiable function. Hence one can obtain the theorem on partially dif-
ferentiable functions, but we are going to prove it independently in a more
efficient way.

THEOREM 5. Let E be normed, and F and G —any l.c.v. spaces. If a map-
ping

T: ExF => Q-+G

is partially differentiate at (e0,f0) and the derivative in the direction of E
is continuous in a neighbourhood of (e0, /„), then T is differentiable at (e0,/0).

Proof. Let us write heE, seF. The remainder may be put in the
following form:

, /„ + s) h - DtTfaJJ h +r(eo,fo+s) (h) +r(eo./o)
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By the theorem on remainders in normed spaces there exist U, W
such that

= a(s,t)\\h\\.
keY leW

By the continuity of D^T, a(s, t)^^>0. Similarly,

and 0(8)0. lfW

) \\h\\

2
Since r^e j > (s) is a remainder, the whole expression (*) is a remainder. H
Eemark. In the above theorem the normability of E and continuity

of J>! may be replaced by the assumptions of another "remainder theorem"
(e.g. in the case of DF-infrabarrelled, DF-S, metrizable and quasi-normable
spaces, etc. cf [28]).

Assuming the continuity of D2 in Theorem 5 we obtain the necessary
and sufficient conditions for the continuity of T'.

§ 5. Differentiation of a superposition. In the following we shall
prove a theorem important in the differential calculus.

THEOREM 6. Let E1} J^ be normed, and E2 and Fa infrabarrelled JDF-
l.c.v. spaces E = E1xEz, F=F1xFz.

Let Cf be any l.c.v. space. Let the functions

TI~. E =. Q1-->-F(e9e Qj), Tz: F ^ Q^-^G

(/„ = T^eo)^ Qz) satisfy the following conditions:
1° T-l and T2 are continuously differentiable at e0 and f0 respectively,
2° for each We^(G) the mapping Ow* e^DzTz(e) is uniformly

continuous with respect to the second variable on a neighbourhood Ow o//0,
3° for each bounded s^lbset B c Ow, D2T2(B) is bounded in Lb(F2, Gw).
Then the mapping T^oT^ is contimiously differentiable at e0.
Proof. By Theorem 1 it is enough to prove the continuity of the

derivative. We have:
W = T'a(T1(e))oTf1(e)

Let us fix WeJV(G). By Proposition 1 and Theorem 2 there are Ve
) , V2ejV(F2) such that

llF < 1 and \{DMf0 + h)8t\\ <

for he V, Sje F1? S2e Fa.
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Because of the continuity of T1 and T[, for each bounded set B
there exists UeJf(E) such that Ti (e0 + U) <= /0 + V and T1(e(t + U)B
<= FX x F2 • Hence the proof follows immediately. M

Eemark. One can easily notice that by assuming in Theorem 6
the following additional conditions:

1° the mappings T^ and -Z^^i are locally bounded at e0,
2° Tj is uniformly continuous on a certain open set & 3 e0 with

respect to the second variable,
3° for each We^(G) the mapping Ow* e^T'z(e) e Lb(F , Gw) is

locally bounded at /„ and uniformly continuous on some neighbourhood
Ow*fo,

4° for each VejV(F) the mapping Ow* e->D2Tie Lb(E , FT} is uni-
formly continuous with respect to the second variable on some neigh-
bourhood Ov 9 e0,
one infers that for each We^V(G) the mapping Ow* e-^DzTzoT1

eLb(E,Gw) is locally bounded at e0 and uniformly continuous with re-
spect to the second variable on some neighbourhood Ow* e0.

§ 6. Higher order derivatives. By Proposition 1 and Theorem 2,
Lb(JE,Lb(JE, J1)) =Lb(E,E; F), where E = ElxEz:Elis a normed and
Ez an infrabarelled DF-l.c.v. space, and F is any l.c.v. space. By induction
we can prove an analogous equality in the case of w-linear mappings.
Thus the nth derivative is a symmetric, w-linear function.

Using a generalization of Proposition 3 to the case of a multilinear
mapping, one can prove theorems on "the higher order derivative",
"higher order remainders", "the Taylor formula", etc.

We are not going to formulate and prove them because they can be
obtained as a simple modification of the corresponding theorems in the
case of metrizable, quasi-normable spaces (cf [28]).



CHAPTER II

DIFFERENTIAL CALCULUS IN MARINESCU SPACES

In this chapter we shall be dealing with the theory of differentiation
in a certain class, important for applications, of pseudotopological spaces
("Limesraume" of Fischer [7]), the so-called Marinescu spaces or "Unions
of topological spaces "("reunion pseudotopologique" cf [21], [11]). A "Union
of topological spaces" is a generalization of spaces investigated and applied
by several authors: L. Waelbrock ("espaces a bornes" cf [30]), J. Seba-
stiao e Silva ("reunions d'espaces normes" cf [25], [26]), J. Mikusinski
("reunions d'espaces de Banach" cf [22]), B. H. Arnold [1], M. F. Suhynin
("politopological spaces" [27]) and others. Except for [27] all those con-
cepts are special cases of the notion of "espace vectoriel bornologique"
investigated by H. Hogbe-Mend and his group in Bordeaux. The basic
concepts of this theory can be found in [10].

The theory which we are going to present coincides with that of [10]
and [4] (in the case of "espaces bornologiques convexes"). Close to ours
is the concept of a differential function due to J. Sebastiao e Silva [25],
B. Dubinsky [6] and M. F. Suhynin. On the other hand, it has no inter-
esting analogy with the theories of Frohlicher & Bucher [8] and A.
Bastiani [2].

§ 1. Basic concepts ami definitions.
DEFINITION ([11], [21]). A Marinesoii space (M-space) is a vector

'space E with the family {E1(}JieA of l.c.v. spaces with the following properties:
/ 1° A is a directed set,

2° for each A.cA,Ei is a subspace of E and E = UEn
Ae/l

3° for each pair (A1? A.2)eAxA there exists Tie A such that UA => E^.
and the injections E^.-^E^ are continuous.

{-®;i}/u,i ({&*} if it does not cause any misunderstandings) and E
will be used simultaneusly as a symbol of an M-space. In the following we
assume all E^ to be Hausdorff.

EXAMPLES.
1. If EH = (E, TA), we say that E is politopological.
2. If each E^ is norrned, then E is called a bornological (convex) space.
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3. E = (E, T). The M-space {JB!B}JB^(E) ^ called a bornological Von
Neumann space associated with E and "will be denoted by BE.

Remark. In the definition of an M-space the convexity assumptions
are not necessary but we are not interested in such a generalization.

DEFINITION. A Moore-Smith sequence {ao,}veN in {E^}!ieA converges
to so0eE if there exists /U A such that for each UeJV(E^ there exists
veN such that {/ >v)±>(tvr.ex0+U).

Be mark. In the above definition we can put &„+ U <= E^.

DEETNITION. A mapping T: {JE^}-^{F,} is continuous at x0e E if
T(x!i)^(x0) for every M.-S. sequence #A-«e0.

LEMMA 4. A mapping T: {E^}->{Fy} is continuous at x0 iff for every
A siich that x0e EH there exist v and a neighbourhood U c EH (x0e U) such
that T(U) c Fv and the .mapping T\: EH z> U^>FV is continuous at x0.

Proof. 1° At first we shall demonstrate that there exist U c E^
and v such that T(U) <= Fv. Assume that there exists an EH such that for
each Fr and U <= J®A (x0e U) there exists xe U with T(so)dFv. Taking a basis
{Up} of neighbourhoods of #0 in E^ we obtain a sequence xft eonTerging
to «„. But T(xffv) does not converge in 'F.

2° Similarly we prove continuity. If, for each U and v, T: E% r> U^>Fr

is discontinuous at x0, then for each v and /? there exists xe Up with T(x)
<{ Uv c: Ff (Uvs T(x0)). This gives a contradiction (as in 1°). •

Ee marks. 1° The assumption scae E^ may be omitted by taking the
affine spaces x0 + E%.

2° From the proof of Lemma 4 it follows that in the case of normed
EH it is not sufficient to look upon continuity as sequence continuity. It
is sufficient if the family {Fv} is countable. A counterexample can be found
in [30].

In the same manner as in the category of l.c.v. space one can define
products, direct limits and other induced structures (cf. [11]).

EXAMPLES.
1. Let {E^}nfA and {Fv}veN be M-spaces. The set E x F equipped with

the structure of an M-space defined by {E^ x.Fv}^eAxN is called the (Carte-
sian) product of M-spaces E and F.

2. One can easily notice that {E^^A. = lini-E^ (direct limit of M-spaces).
3. •*

§ 2. Differentiation in Marineseu spaces. Let E = {E;}. The space,
E can be equipped in a natural way with two topologies:

1° The topology of a direct limit of l.c.v. spaces E^. E with this
topology will be denoted by TE.

2 — Dissertationes Mathematicae CXIII
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2° The topology of a direct limit of topological spaces 22 \. tE -will
stand for E with this topology. The topology of tE is a larger topology
preserving the convergence of sequences which converge in E.

Eemarks.
1. tE may not be a topological vector space (cf. [10], [1]).
2. The sequences converging in tE do not converge in general in

{E,} (cf [16]).
By a neighbourhood in E we mean one in tE.
PROPOSITION 4. Let U be a neighbourhood of x0 in {E^. Then, for each

1, Ur\(x0 + Ell) is a neighbourhood in EH + XO.
DEFINITION. A mapping r: {E%} z> Q-. >{FV] is a remainder if for each

1 there exists v such that r: E^r\Q-^Fv is a remainder in the sense of
an l.c.v. space.

DEFINITION. A mapping T: E ^ Q-^F is differentiate at xe Q if
there exists Le L(E, F) (the collection of all linear and continuous mappings
from E to F) such that the mapping

rx(h) : = T (x + h) — T (x) — Lh is a remainder.

Notice that L is defined uniquely. The mapping L will be called the
(Fr6chet) derivative of T at x and denoted by T'(x). The definition imme-
diately implies

THEOREM 7. 1° Every mapping differentiable at x is also continuous at x.
2° A linear combination of differentiable functions is also differentiable

and its derivative is a linear combination of derivatives.
3° A superposition of differentiable functions is also differentiable

and

(TioTJW =T'2(T1(x))oT'1(x).

DEFINITION. We say that a sequence of mappings Ta: E^{FP}
converges uniformly on A c: E if there exists v such that Ta(A) c Fv and
the sequence Ta: A-^Fy converges uniformly on A.

DEFINITION. A set B c {EA} is called bounded if B c J2A and B is
bounded in E^ for a certain L

Now we can introduce the structure of an M-space in the space L(E, F)
(compare with [11]).

Let A and N be directed sets. Let us denote by II the set of all mono-
tonic functions n: A-+N equipped with the relation (nt >n%)<> (for each

Let {E,}^A and {Fv}rcN be M-spaces. For each jieTTwe define the set

L,(E, F) = {f*L(E, F): f ( E , ) <= F^ and /: E^Fn(i) is continuous}.
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Of course Ln(E,F) is a vector space, U La(E,F) =L(E,F) and
afii

for each pair (n^ TIZ) there exists n > ̂  (i =1,2) such that (.£„ (I?, J7)

Let £ = {BA};.£yi be a family of sets such that EK is bounded in
and Ov€^(Fr). The sets

form a basis for the locally convex topology in La(E, F). One can easily
examine that L(E, F) = {Ln(E, F)}neII is an M-space. We shall denote
it by Lb(E, F).

In the same manner we define the M-space LS(E, F).

PROPOSITION 5. The convergence in Lb(E,F) is imiform on bounded
sets.

Now we can introduce the concept of a continuously differentiable
function and higher order derivatives.

DEFINITION. We say that a mapping T: {E^} => Q^{FV) defined
on an open set Q is continuously differentiable at e0e Q if T is differentiable
on a certain neighbourhood 0 of e0 and the mapping E => 0* e->T'(e)
£Lb(E,F) is continuous at e0.

DEFINITION. Let T be as above. We say that T is differentiable twice
at e0 if the mapping

E z> Oa e^T'(e)e Lb(E, F)

is differentiable at e0.
Higher order derivatives are defined by induction.

THEOREM 8. A mapping T: {E,} => Q-. >{Ff} is differentiable at e0e Q
iff for each A there exist v and 0!i£jy(Ei) such that

and the mapping T: e0 + 0>L-^T(e0)+Fv is differentiable -at e0.

Proof. <= Let T(e0 + 0j c T(e0)+Fv and let the mapping T: e0

. >T(e0) +FV be differentiable at e0. This means that

T(e0 + h)-T(e0) = T'^ejh + r^h), where T'^

Now it is enough to prove that T'^tV.(e0) coincides with T'^v(e0) on E^ for
A' >- A (we can assume that v' >- v). Accordingly, notice that on e0 + 0A the
mapping T may be treated as a mapping into Fr- + T(e0) (differentiable
of course). But JVlsA: E^-^-F,, is a remainder, and so by the uniqueness
of the derivative in l.c.v. space the proof follows.

=> The proof is obvious. •
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COROLLARY. A mapping T: {E%} =>Q->{Fr} has the continuous deriv-
ative at e0e Q iff for each A there exist v and 0Ae Jf(E^) such that

has a continuous derivative at e0.
Proof. By Theorem 8 it suffices to prove that the mapping Q?> e

-+T'(e)eLb(E, F) is continuous at e0 iff for every A there exist v and 0^
ejV(E^ such that the mapping EH=> 0A + e0s e^T'^e Lb(E^, Fv) is con-
tinuous.

=*- Let the mapping Q* e-^-T'(e)eLb(E, F) be continuous at e0.
By Lemma 4 this means that for each 1 there exist H, and O^JV (E^)
such that On + e0s e^T' (e) e L^E , F) is continuous at e0. But T'(e)\
= T'n (e), and so we have continuity of the mapping e-^T^w (e) e -^&(-®A •> ̂ (^)-

<= Let the mapping T: e0 + 0A-s-21^J,w(e)ei6(JE/A, F^) be continuous.
Let us fix A0 and put ?r(/l) such that n(k) >• i>(A) and ?r(/l) >- 5z(A0). As in
the proof of Theorem 8, we have T'^V\^ = T'x>v for A >- A'. By the defini-
tion of Ln(E,F), the mapping e^ + O^s e^T'(e)e Ln(E, F) is continuous
at e0. •

In the same way we can prove a corresponding theorem for higher
order derivatives. We may also prove a collection of theorems correspond-
ing to theorems of differential calculus in l.e.v. space, according to the
kind of EH, Fr (see Chapter I). The procedure is similar in all cases and
we are going to give a few examples only. At first let us introduce some
concepts.

DEFINITION. A Marineseu space {E^}^^ is said to be metrizable if,
for every Ac A, J5A is metrizable.

In the same manner we introduce the notions of DF, Schwartz,
Prechet, complete, ... — Marineseu spaces.

Eemark. In the above definition the expression "for every Ae A
there exists A ' > A such that" may be put instead of "for every
Ae^l...".

Sow, the examples:
LEMMA 5. Let E be an infrabarrelled-DF-M-space. Let F be any M-

space. Then
L%(E; F)=L(t(E,Lb(E,...Lb(E,F)...).

Proof. Put n = 2. Of course L(E, Lb(E, F)) <= L(E, E; F). fe L(E,
Lb(E,F)) generates the mapping f^eL(E^ La(M, F)) and J^L(E^
Lb(E,, Fa(X>)). By Theorem 1 Lb(E,, Lb(E,, F^)) = Lb(E,, E,; F^).
Thus / defines an element of L(E, E; F). The equivalence of M-struc-
tures is obvious.

For n > 2 the proof follows by induction. •
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COROLLARY. An n-th derivative is <m n-linear, symmetric and continuous
function.

The definition of the Gateaux derivative for I.C.T. space is valid also
for M-spaces.

THEOREM 9. Let E± be normed, Ez—quasibarrelled-DF, any F any
M-spaces. E = E1xE2. Let a mapping T: E => Q->F be continuously
Gatea^^!x;-differentiable on a certain neighbourhood of e0. If for each A there
exist Oi and v such that E% => 0A and T(e0 + 0^) c: T(e0) + Fv, then T is
continuo^^sly differentiate at e0.

Proof. By the assumptions, for each X there exist 0^ and v such that
the mapping T: e0 + 0A->JPy + T(e0) is continuously Gateaux-differentiable
at <?0. Thus it is differentiate at e0 (Theorem 4). By Theorem 8 the proof
follows. • . ' *

§ 3. Differential calculus in bornological-Yon Neumann spaces. In this
part we shall be dealing with differentiation in the special case of M-spaces
(bornological Von Neumann spaces) and its connections with differentia-
tion in l.c.v.s.

We start with some lemmas concerning continuous functions.
LEMMA 6. Let E be a bornological l.e.v. space, and F—any l.c.is. space.

Then Lb(BE,BF) =BLb(E,F).
Proof. Let feL(E,F). For each Be^(E) there exists B1e^(F)

such that /: EB^-FBl is bounded and continuous. Thus feL(BE,BF).
Now let /e L(BE, BF); then /: E-^-F is bounded. Hence we obtain alge-
braic equality. The equivalence of M-structures follows from the fact
that in Lb(E, F) sets {feL(E, F): f(B) <= BJ (B and B^ are fixed) form
a basis of bounded sets. H

In further considerations the concept of "Mackey convergence con-
dition" will be useful.

DEFINITION ([9]). We say that an l.c.v. space E satisfies the strict
Mackey convergence condition (M.c.c.) if for every bounded set A there
exists Be &(E) such that the topology induced by E on A coincides with
the topology induced on A by the normed space EB.

LEMMA 7 ([9]). A metrisable l.c.v. space satisfies the strict Mackey
convergence condition.

CB(E, F) will stand for the space of all continuous, quasilocally bound-
ed functions /: E->F.

PROPOSITION 6. Let E be a metrizable l.c.v. space and let F satisfy M.c.c.
Then CB(E, F) = C(BE, BF).

Proof. 0B(E,F) c G(BE,BF) because F satisfies M.c.e. CB(E,F)
=> C(BE, BF) because the converging sequence in E convergs also in BE
(Lemma 7). •
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COKOLLAKY. If, in Proposition 6, E is an F-S (Frechet- Schwartz)
space, then

C(E,F) = C(BE,BF).

Proof. In an F-S space every closed bounded set is compact. Thus
CB(E,F)=C(E,F).m

LEMMA 8. Let E be a q^uasinormable and infrabarrelled and F a normed
l.c.v. space. Then Lb(E,F) -satisfies M.c.c.

Proof. By the infrabarrelledness of E it follows that a set
.Be &(Lb(E, F)} is equicontinuous. Thus the topology in [Lb(E, F)]B is
the topology of uniform convergence on a certain UeJ^(E). By quasi-
normability the topology induced by Lb(E, F) on [Lb(E, F)]s is the
topology of uniform convergence on a certain Ve^(E). By taking Bl =
{/: \\f(e)\\ a, ee V} where a is such that B± => B the proof follows. •

With Lemma 8 we can prove the following important
THEOREM 10. Let E be a qiiasi-normable and infrabarrelled, and F

any metrizable l.c.v. space. Then Lb(E, F) satisfies M.c.c.
Proof. Let B be a bounded subset of Lb(E, F). It is enough to prove

that there exists a bounded set Bl <=. Lb(E, F) such that for each I >0
there exists Ve jV(Lb(E, F)) with Vr\B c lB^r\E (because the topology
induced by a bounded set is finer than that induced by Lb(E, F)). Let
{J/J^li form a basis of absolutely convex neighbourhoods of zero in F.

B is bounded iff it is bounded in Lb(E, Fv.) i =1,2, ... Thus by
Lemma 8 the topology induced on B by Lb(E, Fv.) coincides with the
topology induced on B by [Lb(E, Fv.)]Bi, where B c B{ cz Lb(E, Fv.)
and Bf are bounded.

Hence the topology induced by Lb(E, F) on B is given by sets Br\(sBi)
where £>0 i = 1,2, ... Let A4 >0 form a sequence ^^-oo. This means

that for each X > 0 there exists n > 0 such that, for i > n, Xt > — - (M^ > 1).

The set Bt = i is bounded in Lb(E, F), and if #e B, x*.

then xe XB^B. But

where , F)).'

Using the following facts:
1° if J2 is a quasi-normable, and J7 a normed l.c.v. space, then the

topology induced by Lb(E,F) on a equicontinuous set A<=Ln(E,F)
coincides with the topology of uniform convergence on V x V x . . . x V,
where VeJ^(E) (cf [28]),
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2° if E is an infrabarrelled, and F a normed l.c.v. space, then a bounded
set A c Ln(E, F) is equicontinuous,
one can also prove in a similar way

THEOREM 10'. Let E be a quasi-normable and infrabarrelled, and F
a metrizable l.c.v. space. Then L%(E,F) satisfies M.c.c.

ISfow we can prove some relations between differentiable functions
on E and BE.

THEOREM 11. Let E be an F-S l.c.v. space. Let F satisfy the strict MacUey
convergence condition. If a mapping T: E r> £?—>j? is differentiable at
e0e Q and continuous on 0^ eQ, then the mapping T: BE z> Q-*-BF is dif-
ferentiable at e0.

Proof. By Lemma 6 it suffices to prove that if a mapping r: E
z> Q^>F is a remainder, then a remainder is also the mapping r: BE z> Q
->BF. Let us fix Be3S(E). For each Us^(E) there exists cv >0 such
that \\x\\y < CfjH^Lg. Moreover, there exist B1e&(F) and e >0 such that
r(sB) cz B± (by the continuity of r and Proposition 6). Thus

IH^HK _,, r(®) F
BI

v<*

r(x)
if xe sB. This means that the mapping EBr\0 *x-^ — — e F is continuous

and there exists a B2e &(F) such that the mapping EB^> eB* #-»- — — e FBz
\\%\\B

is continuous. •
COROLLARY. Let E be F-S, and F a metrizable l.c.v. space. If a mapping

T: E => Q-*F has the continuous n-th derivative atee Q, then also the mapping
T: BE => Q^>BF has the continuous n-th derivative at e.

Proof. Differentiability follows from Theorems 11 and 10' and from
the fact that an F-S space is barrelled and quasi-normable. The continu-
ity of the derivatives follows from Theorem 10' and Proposition 6. •



CHAPTEE III

DIFFERENTIABLE STRUCTURE IN A CONJUGATE BUNDLE

In this Chapter we shall discuss definitions of differentiable manifolds
(§1) and vector bundles (§2) modelled on infinite-dimensional, non-
banachian l.c.v. space.

Then we shall prove the existence of a differentiable (pseudotopolo-
gical) structure in the bundle conjugate to the F-S bundle (i.e. the basis
and the fiber are F-S spaces).

§ 1. Non-banachian differentiable manifolds. In the differential
calculus in Banach spaces the class of continuously differentiable functions
plays a fundamental role. The theorem on continuous differentiability
of superpositions of C1 functions is also valid in it.

In view of this fact one can define a differentiable manifold modelled
on Banach spaces ([14], [18]).

DEFINITION. A differentiable manifold of class C*is a triplet (0>, T, K),
where

1° 3P is a certain set,
2° T: T(3/>): = U Tp(&>), where Tp(0>} are Banach spaces,

3° K: = U Jfj/where Kp is a non-empty set of bijections which map

subsets containing p on neighbourhoods of zero in Tp(^),
4° the following axioms are satisfied:
a) if'xeKp, then x(p) = 0,
b) if »1} xze K, then the mapping x^ott^1 is a Ck-diffeomorphism de-

fined on an open set,
c) the set K is complete in the sense that every larger set does not

satisfy the axioms (a) and (b).
The set K is called a (complete) atlas and its elements —maps. With

this definition one can introduce the notion of a continuously differentiable
function on a manifold ([18]) and develop differential calculus on it.

We have a similar situation in the case of metrizable, quasi-normable
l.c.v. space ([28]). For the same reasons we can adopt the definition of
the manifold given above. However, in the case of DF-S spaces (and the
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spaces we have considered in Chapter I) some complications appear.
From Chapter I it is known that in the calculus the most important role
in such spaces is played by continuously differentiable functions with ad-
ditional assumptions as to the kind of boundedness and uniform continuity.
Also in the theorem on derivative of superposition something more than
continuouity is needed.

Taking into account the above-mentioned facts, we shall define a mani-
fold modelled on spaces which are Cartesian products of a normed space
and a DF-infrabarrelled one in the following manner.

DEFINITION. Let J7X be a normed, 1S2 a DF-infrabarrelled, and F any
l.c.v. space E =^71x^B2- We say that a mapping T: H => Q-+F is of
class Ck on Q if the following conditions are satisfied:

1° T is of class Ck on Q, -
2° T® is locally bounded on Q, 0 < * ̂  ~k,
3° for each WeJV(F) the mapping Q* e->T^ (e)e Ll(E, Fw) is

locally uniformly continuous on Q.
Kow, we define a manifold modelled on such Cartesian products

as in the case of Banach spaces, puting Ck instead of Ok.
Remarks.
1. Ck is the smallest class of functions closed under superposition

and containing all functions important in calculus.
2. We have made no use of the normability of E^. The same definition

is valid in the case of general DF-infrabarrelled spaces.
All these considerations are valid for M-spaces. In other words,

we can define a manifold modelled on M-spaces of types considered above
by changing the expression "open in Tpn into "open in tTpn.

§ 2. Infinite-dimensional vector bundles. By a "vector bundle" we
shall understand a triple (^% X, yi) where-n:-&->X is a surjection and,
for each ooe X, n~l(x) is equipped with the structure of a vector space.
We shall assume that X and 0* are topological spaces and & is locally triv-
ial. If X is a (banachian) (/'"-manifold and ri~l(a>), ace X, are Banach spaces,
we can introduce the notion of <7fc-bundle. Let {Oa}acA be a covering of X
with a corresponding trivialization *„: ir~1(Oa)^PaxOa. Pa is a Banach
space. We can choose {Oa} such that each Oa is contained in the domain
of a certain map xa

Let us define the mapping r/a: ft~l(0a)-^»ea(0a) xPa by the following:
if ta(p) = (a(p), e), esPa, then ^a(p) = (xaoji(p), e).

DEFINITION. A vector bundle (0>, X, n) is of class Ck if X is a banachian
C^-manifold and, for each al7 a2, r)a o^"1 is of class Gk (on the set on which
it is defined) and an isomorphism of an l.c.v. space with respect to the
second variable.
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Of course {'>]a\ is an atlas on 3P. Hence it defines the structure of
differentiable C*-manifold. The definition above is compatible with that
given by Lang [18]. Namely: each C*-bundle in our sense is a Ck~'-bundle
in the sense of Lang. We can treat non-banachian bundles similarly,
puting a corresponding class (e.g. Ck) instead of C*. Let us concentrate
on the most interesting case for us, where X is a banachian manifold and
the fibre is a DF-infrabarrelled l.c.v. space. Taking into account the fact
that r)a has a special form, we can change the class Ck into a larger one.

DEFINITION. Let E^ be a metrizable and E2 a DF-infrabarrelled l.c.v.
space E = E1 x Ez. Let F be any l.c.v. space. We say that a mapping
T: E n> Q^»F is of class Ck on Q if the following conditions are fulfilled:

1° T is of class Ck on Q,
2° T is locally bounded and locally uniformly continuous with respect

to the second variable on Q,
3° for each We^V(F) the mapping Q^ e->D\D{T(e) is locally uni-

formly continuous and locally bounded on Q for l^i+j^Jc, j ^ 0.
Now, let T^a^ be the mapping defined by

%2o»?-/(.£, e) = (X^OK-^X), Taia2(x, e)).

DEFINITION. We say that a vector bundle (0>, X, n) is of class Ck if
the following conditions are satisfied:

1° X is a manifold of class C*,
2° t]a or]~l is of class Ck and an isomorphism of the l.c.v.s. in the

second variable,
3° Taia.2 is of class Ck on its domain of existence.

Kemark. From 2° it follows from the definition of C* that the second
part of 2° (uniform continuity) is satisfied.

With this definitions we can consider the differential calculus of
morphisms of bundles. In general, rja do not form an atlas for a manifold
of class Ck. Thus a C*-bundle is not necessarily a C*-manifold. The above
construction may be use if X is a banachian M-space.

§ 3. Conjugate bundle. The aim of this section is to introduce the
differentiable structure in a certain class of conjugate bundles.

DEFINITION. A conjugate bundle to a vector bundle (&, X, n) is
a bundle (&', X, n) where &' = (J ^x and &'x = (^~l(x))' ^ tne strong

XeX

conjugate to &x in the sense of l.c.v. spaces and n' is the natural projection.
Let X be a differentiable manifold of class C*, modelled on an F-8

space. By the corollary to Theorem 11, X is a <7fe-manifold modelled on
the spaces BTP. X equipped with this structure will be denoted by BX,
Moreover, it is a Cfe-manifold.



3. Conjugate bundle 27

Caution. From now on F' -will denote F'b. If a mapping T: ExG
•=> Q x G-*F is linear and continuous in the second variable, then T* :
E x F'-*G' will stand for the mapping conjugate to T in the second
variable.

JSTow we can prove the main theorem.
THEOREM 12. Let E, F, G be an F-8 l.c.v. space. Let T: E xG •=> QxG

->F be of class Cn+1 and, for each ee Q, let T(e, •) be linear and continuous.
Then the mapping T*: BE x F' z> QxF'->G' is of class Cn.
Proof. I. Continuity and boundedness of T. Let (an, e)e Q x F'.

By continuity, for each Be3S(E) and B1e^(G) there exist e >0 and
B2e &(F) such that, for he eB, ge B^ and fe B\e polar in F'), we have

, g)-T(x, g),

Let us take e and B2 such, that x + sB c Q and T(x + sB,Bl) c \BZ

(sB and B1 are compact in the F-8 space). Thus \(T(x + h, g ) , f ) \ \.
On the other hand the mapping (x, e)-^JD2T(x, e) = T(oo, .)e Lb(G, F)
is continuous. Hence there exists e > 0 with \(T(x-\-h, g) — T(x, g), e>| < ^.
This means that T* is continuous.

Eemai-k. It is easy to see that the mapping T*: ExF'^G' is not
necessarily continuouss (sB cannot be replaced by a neighbourhood in E).

jSTow we shall prove the boundedness of T*. By the barrelledness of
F and G it is enough to prove that for each Ue ^(F), e > 0 and Be &(E)
(such that - x + sB <= Q) there exist VeJ/~(G) with T(oo + eB, V) c U.

But F and G are bornological, and so the sets U^ }: = conv (U ^a^a)>
a

where {Ba} is a base of bounded sets and {Aa} ranges over all sequences
of positive numbers, forms a basis of neighbourhoods of zero (convJ.
denotes an absolutely convex hull of A). Let U = conv(U AA)- From

a

previous considerations we know that T(sc + eB, Bv) <=. Ba(v) ({B7} and
{Ba} form bases of bounded sets in G and F, respectively). Taking V
= conv(U4(y)^)> ^e have T(x + eB, V) c U.

V

II. Different iabi l i ty of T. n = 1. We have D2T*(e, /)(-)
= T*(e, •)- jDa^* is continuous on QxF' <= BE xF' tf. for each ?7e ^T (F),
Be &(G), B! e &(E) and a;e 13 there exists e > 0 such that ^(aj + eBj, ?7°)
c 5°, i.e. T^ + eBj, 5) c J7. But this is implied by the continuity of D2T.
Uniform continuity follows from the compactness of sc + sB. We prove
boundedness as in I. Now let us turn to D^T. We notice that the
mapping L, •

=: L(e,g, h)e F,
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is linear and continuous in the second variable, and so the following map-
pings are well-defined: D*T: QxF'xE^G' and r* = (T — D^Tf. We
shall show that J^T* = D*T. For metrizable spaces Proposition 1 is
valid ([28]). Thus L is continuous. The following fact is true:

Indeed, it is enough to show that for each (e,/')e QxF': Be£$(G) there
exists Ve^(E) such that D*T(e,f')(V) c B°, i.e. DlT(e, B)(V) <= (/')°-
But (/')° is a neighbourhood, by continuity we have the required fact.
From this we have also D*Te L(BE,G').

By (*) it is enough to show that r* is a remainder. At first we shall
prove the following lemma.

LEMMA 10. Let E be a normable l.c.v. space and let a mapping E xG xE
=> Q! x G x Qz 3(6? 9i h)-^*r(e,g)(n)e F &e linear and continuous in the second

variable. For each UeJV(F) and h^ ^0 let (e'g)' u >0 uniformly on

bounded sets in G. Then r*^ is a remainder.

Proof. We have to show that the mapping h-^- (e'/) is continuous
Pll

at zero, i.e., for each B

Let us fix Be &(E) and xe Q and consider the mapping TB: = T:
(EB+x)xG => (UB+x)xG-+F (UB+x c Q). TB is continuously dif-
ferentiable, and so, by the mean value theorem, in normed spaces for
each V

Since D^D^T is continuous, we have for each

SeB ffeBj

*Thus, by Lemma 10, r* is a remainder. The continuity of the derivative
can be proved in the same way as the continuity of T.

III. n > 1. By induction as for n = 1. •
Be mark. T* from the above theorem is not in general of class Cn

(even for bilinear T*).
Summing up the results of this section we obtain
THEOREM 13. Let (0, X, n) be a Ck+l-vector bundle. Let X and the

fibres be F-8. Then the bundle (0>',BX, jt') is of class Gk.



CHAPTER IV

THE BUNDLE OF SECTION-DISTRIBUTIONS

In this chapter we shall equip the bundle of section-distributions
with a differentiable structure by applying the construction developed
in Chapter III. These bundles appear in a natural way in the field theories
dealing with singular fields or singular functionals. As an example we
shall verify the differentiability of some functionals describing interacting
fields.

§ 1. The bundle of section-distributions. Let X denote a (7°°-manifold
of dimension n + 1.

DEFINITION. An w-dimensional (imbedded) (7°°-submanifold of X
is called a border if it is the boundary of a relatively compact domain
mX.

& denotes the set of all borders in X.
If 7i: V->X is smooth vector bundle, then by "P" we denote the bundle

over & whose fibre i^P (P = 3D) is formed by all (/""-sections over D,
prolongable to an open neighbourhood of D. The bundle -f' is called the
bundle of section-distributions. By the theorem of Whitney (cf. [19]) VP

with the topology of uniform convergence of all derivatives on D is complete.
Thus it is an F-S space. Hence in order to equip "P~' (which is the object
of our interest) with a differentiable structure it is enough to prove the
existence of a differentiable structure (with an F-S base) on V (Theorem
13). But this was done by Kijowski and Komorowski [15] (see also [14]
and [17]).

jSTow, let us recall the main ideas of their construction.
A. Differentiable structure in ^.
DEFINITION. By a transversal homotopy H through a border Pet?

we mean a O^-diffeomorphism

Px]-r,r[3(p,t)~>H(p,t)eX, H(p,0) =p, r>0.

§>(P) will denote the set of all transversal homotopies through P. Let
§ (P) denote the set of C°°-f unctions on P with the topology of uniform
convergence of all derivatives. It is an F-S space.
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He§>(P) defines the mapping

where U is a neighbourhood of zero.
The family {x} forms an atlas of the (/""-manifold &>.
B. Differentiate structure in i^. From now on by "domain"

•we mean a compact submanifold of X with the boundary which is a border.
Let $(X, X) denote the set of O^-mappings X-*-X with the usual topology.

DEFINITION. By a dragging of a domain D c X along a transversal
homotopy He§)(dD) we mean a continuous mapping S(dD)^ U s<p
-^ff<feS(X,X) where a satisfies the following conditions:

1° ffg, is C°°-diffeomorphism,
2° a0(x) = x, where cr0: = av for cp = 0,
3° if xedD then av(x) = H ( x , y ( x ) ) .
Example of a dragging. Let H e §>(dD) be defined on dDx~] — r,r[,

t > 0. If 0 < |e C^R1) with suppf c ]—r, r[ and 1(0) = 1; then the
function

<p = \ at other points
is a dragging.

Now, let us fix a homotopy He§>(dD), a dragging a along H and
a smooth linear connection JL in the bundle V. The parallel displacement
of a fibre over xe X along the curre [0, 1] *t-*-atv(x)X to the fibre over
the point av(a>) defines the bundle-mapping

and thus the mapping

It is easy to see that K v is an isomorphism of an l.c.v. space. We can define,
for a certain Ue^^(dD)), the mapping

17(99, v):=Kq,ovoa-1e -r0ip(dj>).

Kijowski and Komorowski have proved that the mappings (or rather
their inverses) form an atlas of a (7°°-bundle. Thus f is a C°°-bundle in
the sense of Chapter III.

Be mark. We have assumed that P is a C^-submanifold. One can
generalize the construction presented above by admitting "piecewise
smooth borders".

In th.e following we shall need another generalization. Let us consider
in the space Xm: =XxXx ... xX (m times) the family of sets Dm

: = D x D x . . . x D (m times), where D is a domain in X. We shall denote
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it by &ffll. There is a natural bijection ^>m<->^> which enables us to endow
^*m with a differentiate structure transported from 0>.

Let Fm:= V® F® ... ® F (m times) be the exterior tensor product
(cf. [29]). The bundle of smooth sections of Vm over domains Dm will
be denoted by irm. It is the bundle over &>m. A dragging of D defines the
dragging of Dm by the formula

and hence a differentiable structure in i^m (connection If in V induces
the connection Km in Vm) and in T

§ 2. An application in the field theory. As was mentioned in the
introduction, the bundle of section-distributions is useful in the strict
formulation of variational problems with a non-local and singular
Lagrangian.

DEFINITIONS. 1° By a Lagrangian- density function we mean the map-
ping of bundles

where the induced mapping of bases is the natural bijection
As was pointed in Chapter III, the bijection ^"^B^"1 is not contin-

uous. We can omit the complications originating in that fact by treating
f" as a bundle over B£P. It is easy to see (Chapter III) that the bundle
(•V, B0>, n) is of class C°°. Now, we say that Lagrange density is of class
C* if it is of class C* as a mapping between the bundles (iT, B&>, n) and

B^, n').
2° The Lagrangian function associated with L is the function

Of course the introduction of i^m' is not necessary (we can obtain all
££ taking m = 1) but it is very useful (cf § 3).

Since we are interested in 3? of class C1, the following theorem may
be useful.

THEOREM 14. // a Lagrangian-density function L is of class C1, then
the associated Lagrangian is also of class C1.

Proof. Let us choose a map r\d to a domain D rj: V->$(dD) x
x ^do • ^m a:n<l ^m denote induced maps of bundles fm and TTm', respec-
tively. Using the notation of Chapter 3, we have in these coordinate
systems rim(v®...®v) = (99, v® ... ®v) and ym(L(v)) = (cp, L(<p,v)) for

v). Thus JSfojT1^) = <fl~1(?'» L ( V ' , v ) ) , »? »(?» «")> (^' =
), and since rj = q* (?yx is the inverse function to 97 in
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the second variable), we have

The mapping (vr , t?)-»-<X, «> is not continuous, but it is hypocontinuous
and hence the mapping f^x JBi^^, 3 (®', «)->-<«',«> is continuous (and
thus of class C°°). On the other hand, the mappings

and B£(dD)xB-rgD3(<p, v)^L(v, v)e-rf^ are of class C1 (Chapter II § 3).
Hence the mapping .SPo??"1 is of class C1 on B£(dD)xBVdD.

Now, the proof follows from the lemma below.
LEMMA 11. Let E be a metrizable, qiiasi-normable l.c.v. space. If the

mapping T : BE =3 Q^E1 is of class C1, then the mapping T: E => Q^-B1

is also of class C1.

Proof. Notice that the notion of the directional derivative does
not depend on the topological structure of E. But E' = (BE)' (E is bornolo-
gical), and so the Gateaux-derivatives in E and BE are equal: VT = T'B
(T'B denotes the derivative of T in BE). The mapping BE => Q 3x->VT(x)
is continuous, and so by the metrizability of E we have (xn-. >x in E)
=>(xn-+x in BE)=>(VT(xn)-+VT(x) in BE'b)^-(VT(xn)^VT(x) in E'b).
Since in metrizable, quasi-normable spaces any function which is contin-
uously Gateaux-differentiable is also of class C1, the proof follows. •

§ 3. Example of a Lagrangian. Let M be a smooth, oriented, imbedded
m

&- dimensional submanifold of Xn. Let co be a (®V)*\- valued fc-form
on M. For a locally integrable co we can define a Lagrangian- density Lm

For simplicity of calculations and notations let us concentrate on the
case of m ~ 2.

DEFINITION. A submanifold M c X x X is said to be transversal
to dDz (Jf^J>2) if My(dDxD] and My(DxdD).

THEOREM 15 ([29]). If co is continuous and M is transversal to dD2,
then Lm is contimtoiisly differentiate in a certain neighbourhood (in f )
of 0e i^aD.

Such Lagrangians are useful in describing non-local interactions
which may appear as a consequence of internal structure of particles
(cf. [23] and [31]). Under certain assumptions (cf. [29]) one can interprete
m as the number of interacting particles.
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